JPS6164765A - Infrared radiating and absorbing paint and preparation thereof - Google Patents

Infrared radiating and absorbing paint and preparation thereof

Info

Publication number
JPS6164765A
JPS6164765A JP18528684A JP18528684A JPS6164765A JP S6164765 A JPS6164765 A JP S6164765A JP 18528684 A JP18528684 A JP 18528684A JP 18528684 A JP18528684 A JP 18528684A JP S6164765 A JPS6164765 A JP S6164765A
Authority
JP
Japan
Prior art keywords
oxide
infrared radiation
paint
weight
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18528684A
Other languages
Japanese (ja)
Other versions
JPS6325033B2 (en
Inventor
Toshiyasu Indo
引頭 敏泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP18528684A priority Critical patent/JPS6164765A/en
Publication of JPS6164765A publication Critical patent/JPS6164765A/en
Publication of JPS6325033B2 publication Critical patent/JPS6325033B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PURPOSE:To obtain the titled painting which has excellent infrared radiating and absorbing efficiency and is effective in energy saving, by finely grinding a solid solution made by mixing and sintering powders of specified three or more transition-element oxides, and incorporating it into a coating. CONSTITUTION:A solid solution obtained by sintering a mixture of powders of three or more transition-element oxides which are selected from among 15-80wt% MnO2, 5-25wt% CoO, 0-80wt% Fe2O4, and 0-10wt% and which have a wavelength region showing a high infrared spectral reflectance, different from each other, and if necessary, an extender such as ZrO2, at a temperature of 1,000 deg.C or higher and lower than the melting point of each component afore mentioned under ordinary pressures for at least 20min, is ground to 0.1-20mum in a grinder, such as a jet mill, to give an infrared radiating and absorbing base material. 25-75wt% obtained base material and 75-25wt% coating, such as a ceramic coating composed mainly of SiO2, Zr2O3, Al2O3, etc. or a synthetic resin coating consisting of an epoxy resin, are compounded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、赤外線により熱の伝達r行なう塗料、特に熱
の放射あるいは吸収を必要とする物体の表面に塗韮する
ことにより、赤外線の放射あるいは吸収効率を向上させ
るための赤外線放射・吸収塗料及びその製造方法に関す
る。
Detailed Description of the Invention (Industrial Field of Application) The present invention is a paint that transfers heat by infrared rays, and in particular, is applied to the surface of an object that requires heat radiation or absorption. Alternatively, the present invention relates to an infrared radiation/absorbing paint for improving absorption efficiency and a method for producing the same.

(従来技術) 一般に、ヒーターや熱交換器等の放熱器具や鍋゛eボイ
ラー等の加熱器具においては、その攻熱効率や加熱効率
を向上させるための1つの手段として、これら器具類の
表面に赤外線の放射あるいは吸収効率を向上させうる塗
料fr、塗布することが行なわれている。
(Prior art) In general, in heat dissipation devices such as heaters and heat exchangers, and heating devices such as pots and boilers, infrared rays are applied to the surfaces of these devices as a means to improve their heat capture efficiency and heating efficiency. Paints that can improve radiation or absorption efficiency are being applied.

従来、上記赤外線の放射・吸収効率を向上させうる塗料
としては、カーボンブラック、アセチレンブラック、グ
ラファイト等の黒色顔料全混入した黒色塗料があり、熱
の放射・吸収表面に塗布して用いられている。また、一
部ではセラミック塗料が赤外線の放射・吸収に有効とさ
れ、利用されている。
Conventionally, as paints that can improve the efficiency of emitting and absorbing infrared rays, there are black paints that are completely mixed with black pigments such as carbon black, acetylene black, and graphite, and are used by applying them to surfaces that emit and absorb heat. . Additionally, ceramic paints are used in some areas as they are considered effective in emitting and absorbing infrared rays.

(発明が解決しようとする問題点) しかし、斯かる従来例の場合には、前者の黒色塗料にあ
っては、黒色顔料として炭素のみからなる同素体を用い
ており、炭素自体は赤外線の放射効率がそれほど良好で
はないため、この黒色塗料は赤外線放射・吸収塗料とし
て、満足できるものではなかった。″1几、後者のセラ
ミック塗料は、赤外線の放射・吸収効率は他の物質に比
して良好であったが、赤外線が熱を伝達する熱線として
特に重要な5μm以下の波長域で分光I々射率が低く赤
外線放射・吸収効率が悪いという問題点があった。
(Problem to be solved by the invention) However, in the case of such a conventional example, the former black paint uses an allotrope consisting only of carbon as a black pigment, and carbon itself has a low infrared radiation efficiency. This black paint was not satisfactory as an infrared radiation/absorbing paint. The latter ceramic paint had better infrared radiation and absorption efficiency than other materials, but it had a spectral difference in the wavelength range of 5 μm or less, which is particularly important for infrared rays as heat rays that transmit heat. The problem was that the emissivity was low and the efficiency of infrared radiation and absorption was poor.

本発明は、従来技術の斯かる問題点を解決するためにな
されたもので、その目的とするところは。
The present invention has been made to solve the problems of the prior art, and its purpose is to:

本発明の塗料にあっては、赤外線波長域全体において赤
外線放射・吸収効率が高く、理想黒体に近い赤外線分光
放射率を有する赤外−放射・吸収塗料及びその製造方法
を提供することにある。
An object of the present invention is to provide an infrared radiation/absorption paint having high infrared radiation/absorption efficiency in the entire infrared wavelength range and an infrared spectral emissivity close to that of an ideal black body, and a method for producing the same. .

(問題点を解決するための中段) そこで、本発明は、上記の目的を$A成するために、本
発明の塗料にあっては、尚い赤外線分光放射率を示す波
長域が互いに異なる3種類以上の遷移元素酸化物の固溶
体を微粉砕しtものを塗料に混入するようにしたもので
ある。また、本発明の製造方法にあっては、高い赤外線
分光放射率を示す波長域が互いに異なる3種類以上の遷
移元素酸(ヒ物の粉末状混合物を焼成して固溶化した後
、当゛該同溶体を畝粉砕して塗料に混入するようにし几
ものである。
(Middle section for solving the problem) Therefore, in order to achieve the above object, the present invention provides a coating material having three different wavelength ranges showing infrared spectral emissivity. A solid solution of more than one type of transition element oxide is finely pulverized and mixed into a paint. In addition, in the production method of the present invention, a powder mixture of three or more types of transition element acids (arsenium) having different wavelength ranges showing high infrared spectral emissivity is calcined to form a solid solution, and then the corresponding The solution is milled into ridges and mixed into the paint.

以下に、本発明に係る赤外線放射・吸収塗料をその製造
方法とともに説明する。
Below, the infrared radiation/absorbing paint according to the present invention will be explained along with its manufacturing method.

まず、各1重の遷移元素酸化物の赤外線放射・吸収性能
について、赤外線分光光度計により赤外線分光放射率を
測定し、島い分光放射率金示す遷移元素酸化物を選び出
す。この遷移元素酸化物としては、二噛化マンガンMn
O2、酸化コバル)Coo、酸化鉄Fet O5、酸化
銅Cub、酸化ジルコンZr0tなどが挙げられる。
First, regarding the infrared radiation and absorption performance of each single transition element oxide, the infrared spectral emissivity is measured using an infrared spectrophotometer, and transition element oxides exhibiting a low spectral emissivity are selected. As this transition element oxide, manganese dinitrate Mn
O2, cobal oxide) Coo, iron oxide Fet O5, copper oxide Cub, zircon oxide Zr0t, etc.

次に、上記遷移元系酸化物のうち、簡い赤外線分光光度
計を示す波長域が互いに異なるもの(すなわち短波長、
中波長、長波長領域でそれぞれ赤外線分光放射率の高い
もの)を3 a類以上選び出し、これらの遷移元素酸化
物の粉末を攪拌混合する。この混合成分及び混合割合は
、第1表に示されている。友だし、単位は重量%である
Next, among the above transition element-based oxides, those whose wavelength ranges that indicate a simple infrared spectrophotometer are different from each other (i.e., short wavelength,
Those with high infrared spectral emissivity in the medium wavelength and long wavelength regions are selected from Class 3a or higher, and the powders of these transition element oxides are stirred and mixed. The mixture components and mixing proportions are shown in Table 1. It's a friend, and the unit is weight %.

第1表 上記の割合で混合されたプλ移元素酸化物の粉末全1麦
述するように1150℃の温度で焼結した第1表中(+
) 、 (2) 、 (3)の赤外線分光放射率金弟1
図に示す。
Table 1 All powders of λ-transfer element oxides mixed in the above proportions were sintered at a temperature of 1150°C as described in Table 1 (+
), (2), (3) infrared spectral emissivity 1
As shown in the figure.

この第1図のグラフから明らかなように、混合成分及び
(JL合割合としては、MnO215〜80  ML 
it%、Co 05〜25 ’BQ、’、 量%、Fe
2O30〜80 車社%、(::uOO〜I O4ji
 −!’i(9イでちり、後述する塗料が合成樹脂、油
性、水性塗料の場合には、増景材としてZrO,などを
混合してもよい。上、;[2混合割合を決定する因子と
しては、赤外約分光放射率の他に、目的とする塗料の付
着性、耐熱温度、耐摩耗性、耐酸性、耐アルカリ性、あ
るいは鍋等の調址器具に使用する場合は食品衛生上の良
否、及び原料価格等が考直される。なお、上記の?jl
量以外では、実験し几結果、満足のいく赤外翌分光)J
t射率がf!Iられなかりた。
As is clear from the graph in FIG.
it%, Co 05~25 'BQ,', amount%, Fe
2O30~80 Carsha%, (::uOO~I O4ji
-! 'i (9) If the paint described later is a synthetic resin, oil-based, or water-based paint, ZrO, etc. may be mixed as a landscape enhancing material. In addition to the infrared spectral emissivity, the target paint's adhesion, heat resistance, abrasion resistance, acid resistance, alkali resistance, and food hygiene standards when used for cooking utensils such as pots are also considered. , raw material prices, etc. will be reconsidered.In addition, the above ?jl
In addition to the quantity, we conducted experiments and obtained satisfactory infrared spectroscopy) J
The firing rate is f! I couldn't do it.

さらに、上記遷移元素rr2化物粉末の混合物は、常圧
において1000℃以上で且つ前記各成分の溶融温度以
下の温度で、20分以上焼結して固溶化し、固溶体とな
す。その後、上記固溶体をジェットミル等の粉砕機にて
0.1〜20μmの大きさに微粉砕して赤外線放射・吸
収基材を形成する。ここで、遷移元素酸化物粉末の混合
物を溶融させないで固溶化させるのは、粉砕ヲ答易にす
るためである。
Furthermore, the mixture of the transition element rr2 compound powder is sintered to form a solid solution at a temperature of 1000° C. or higher and lower than the melting temperature of each of the components for 20 minutes or longer at normal pressure. Thereafter, the solid solution is pulverized to a size of 0.1 to 20 μm using a pulverizer such as a jet mill to form an infrared radiation/absorption base material. Here, the reason why the mixture of transition element oxide powders is made into a solid solution without being melted is to facilitate pulverization.

そして、上記赤外線放射・吸収基材を、各種の塗料にそ
の固形分の25〜751饋%混入して、赤外線放射・吸
収塗料を製造する。上記塗料としては、セラミック塗料
、合成樹脂塗料、水性塗料、油性塗料など種々のものが
用いられるが、ここでは赤外線放射・吸収基材をセラミ
ック塗料と合成樹脂塗料にそれぞれ混入する場合につい
て説明する。
Then, the infrared radiation/absorption base material is mixed into various paints in an amount of 25 to 751% of its solid content to produce an infrared radiation/absorption paint. Various types of paints are used as the paints, such as ceramic paints, synthetic resin paints, water-based paints, and oil-based paints, but here we will explain the case where an infrared radiation/absorbing base material is mixed into the ceramic paint and the synthetic resin paint, respectively.

まず、セラミック塗料の場合は、その主成分として、5
iO1、Zr、03. Zr2O3とSin、の固溶体
、A/’20s 、 Aez Osと5tOt ノ固溶
体’lど各種のもtDがある。こ才]らのセラミック塗
料の固形分の比重は赤外線放射・吸収基材とほぼ類]以
しており、これらの固形分を80重世9C以下とし、該
固形分の25〜75重世%となるごとく赤外線放射・吸
収基材を混入して、赤外線放射・吸収塗料を作成する。
First, in the case of ceramic paint, its main component is 5
iO1, Zr, 03. There are various types of tD, such as a solid solution of Zr2O3 and Sin, A/'20s, and a solid solution of Aez Os and 5tOt. The specific gravity of the solid content of the ceramic paint of Kosai et al. is almost the same as that of the infrared radiation/absorbing base material. An infrared ray emitting/absorbing paint is created by mixing an infrared ray emitting/absorbing base material.

2JS 2表は、赤外線放射・吸収基14として、Mn
 0160%、 Fe2O,20%、CuO10%、C
o010%を混合し、1150℃で焼結したものを、セ
ラミックに整品1;?5r+z”*るコ−f” イf−
ライト(2MfO−2AI!NO,−5SiOt)に島
台したものの混合割合を示している。
2JS 2 table shows Mn as the infrared radiation/absorption group 14.
0160%, Fe2O, 20%, CuO10%, C
010% was mixed and sintered at 1150°C, and then made into a ceramic product 1;? 5r+z"*ruko-f" if-
The mixture ratio of the light (2MfO-2AI!NO, -5SiOt) is shown.

、  fcだし、単位は重量%でおる。, fc, and the unit is weight %.

第  2  表 イ’ 21::、lは上記第2表に示す混合′↑シ(1
)、 (2) 、 (3)の赤外り、“4分光放射率を
示している。
Table 2 A'21::, l is the mixture '↑C (1
), (2), and (3) infrared rays indicate "4 spectral emissivity.

一方、エポキシ樹脂、アクリル樹脂を主ツな塗膜形成要
素とする樹脂塗料の場合には、樹脂室料の固形分の比重
が1前後であるが、赤外線放射・吸収基材の比重は5以
上であるので、赤外線放射・吸収の面から固形分の30
〜75市量%となるごとく混入するのが望ましい。
On the other hand, in the case of resin paints whose main film-forming elements are epoxy resins and acrylic resins, the solid content of the resin coating material has a specific gravity of around 1, but the specific gravity of the infrared emitting/absorbing base material is 5 or more. Therefore, from the perspective of infrared radiation and absorption, the solid content is 30
It is preferable to mix it so that the market weight is ~75%.

ま之、参考までに塗料が耐熱塗料である場合には、その
塗料の固形分の比重や重量%によって異なるが、固形分
の25〜75重量%となるごとく混入するのが望ましい
However, for reference, when the paint is a heat-resistant paint, it is desirable to mix the solid content to 25 to 75% by weight, although this will vary depending on the specific gravity and weight % of the solid content of the paint.

このようにして得られた赤外線放射・吸収産科は、鉄、
アルミニウムなどの金属、木材、セラミック、プラスチ
ックなど任意の材質からなる部材の表面に塗布すること
によって、使用される。
The infrared radiation and absorption obtained in this way is iron,
It is used by applying it to the surface of a member made of any material such as metal such as aluminum, wood, ceramic, or plastic.

(実施例■) 本発明になる赤外線放射・吸収塗料の、赤外線の放射・
吸収性能を調べるために、5jOztl−主成分とする
セラはツク塗料に、Sin、 75 % 址%に対して
赤外線放射・吸収基材を25重量%混入し、これを鉄板
の表面に30μmの厚さに頭布し、塗布面の赤外、ζj
−τ分−?(、放射率を測′Fとした。1llll ’
)j結果の分光放射率金弟3図に示す。この第3図に示
すように、赤外線放射・吸収セラミック塗料を厚さ30
μmに(−L布することにより、放射表面c黒度500
℃における赤外線分光放射率は2〜25ttmの波長域
において、0.90以上の値を示した。
(Example ■) Infrared radiation and absorption of the infrared radiation and absorption paint of the present invention
In order to investigate the absorption performance, 25% by weight of an infrared radiation/absorbing base material was mixed with 75% Sin in a ceramic paint containing 5jOztl as the main component, and this was applied to the surface of an iron plate to a thickness of 30 μm. Infrared rays of the coated surface, ζj
-τ minute-? (, the emissivity was measured as F.1llll'
) The resulting spectral emissivity is shown in Figure 3. As shown in Figure 3, infrared radiation/absorption ceramic paint is applied to a thickness of 30 mm.
μm (−L cloth), emitting surface c blackness 500
The infrared spectral emissivity at °C showed a value of 0.90 or more in the wavelength range of 2 to 25 ttm.

(実姉例■) 上記と同じセラミック系の赤外線放射・吸収塗料を市販
のステンレス製鋼に塗布して、熱伝達にどのように効果
があるかを実験し之。3個のステンレス製鋼を用意し、
これらの鍋に次のように赤外線放射・吸収塗料を塗布し
た。
(Actual sister example ■) We applied the same ceramic-based infrared radiation/absorption paint as above to commercially available stainless steel, and experimented to see how effective it was in heat transfer. Prepare 3 pieces of stainless steel,
These pots were coated with infrared emitting/absorbing paint as follows.

A:塗布せず B:鍋底の外表面に赤外線放射・吸収塗料全厚き30μ
mに塗布した C:鍋底の内外表面に赤外線放射・吸収塗料を厚さ30
μmに塗布した これらの鍋に水5ooC1:、’i入れたものを、定格
消゛渋′屯力600Wの′成熱器の加熱部表面よf)昼
ざ25fuR伎び3+dK設置し、加熱時間に対する水
の温度変化を測定した。結果を第4図及び第5図に示す
A: Not applied B: Infrared radiation/absorption paint on the outer surface of the bottom of the pot, total thickness 30μ
C: Apply infrared radiation/absorption paint to the inner and outer surfaces of the bottom of the pot to a thickness of 30 mm.
Pour 5ooC1:,'i of water into these pots and place them on the surface of the heating section of a heat generator with a rated power of 600W at a daytime temperature of 25fuR and 3+dK, and set the heating time. The temperature change of water was measured. The results are shown in FIGS. 4 and 5.

この結果から明らかなように、赤外線放射・吸収塗料を
塗布した鍋B、Cは、大幅に熱伝達効率が向上し之01
友、′rに熱器よりの高さが3」のものの方が25II
IjAのものに比べて、鍋B、Cと鍋Aとの熱伝達効率
の差が小さいのは、扁さ3朋の方が電熱器に近いため、
赤外線放射による熱伝達の他に対流伝熱による影響が太
きいからである。なお、鍋Bよりも鍋Cが幾分熱伝達効
率が低いのは、鍋底の内表面に塗布された赤外線放射・
吸収塗料から、鍋内の水を通過して外部に赤外線が放射
されている交めである。
As is clear from these results, pots B and C coated with infrared radiation/absorption paint have significantly improved heat transfer efficiency.
Friend, the one with a height of 3" above the heater is 25II.
The reason why the difference in heat transfer efficiency between pots B and C and pot A is smaller than that of IjA is because the flatness of 3 mm is closer to that of an electric heater.
This is because, in addition to heat transfer by infrared radiation, convection heat transfer has a large influence. Note that the heat transfer efficiency of pot C is somewhat lower than that of pot B because of the infrared radiation applied to the inner surface of the bottom of the pot.
Infrared rays are emitted from the absorbing paint to the outside through the water in the pot.

(実施例m) 上記実施例■と同じ鍋A、B、C’i用いて、さらに赤
外線放射・吸収塗料による熱伝達効率の向上について実
験した。これらの鍋A、B、Cに水700ccを入れt
ものを2組用意し、一方の組にはうどん215ftl−
1他方の組にはポタージュスープ粉末672をそれぞれ
入れ友ものを、定格消費電力600Wの電熱器の加熱部
表面より高さ25Uの位1C亡に設置し、加熱時間に対
する内容物の@度変化を測定したつ結果を第6図及び2
ビア図に示す。この結果から明らかなように、赤外線放
射・吸収塗料を(省布した鍋B、Cは、塗布しない鍋A
に比べて大幅に熱伝達効率が向上した。また、当該実施
ν11の如く鍋内に水の他に内容物を入れたものにあっ
ては、この内容物が鍋底内嵌面に塗布し几赤外線改射・
吸収塗料より放射される赤外線の一部を吸収するため、
鍋Bと鍋Cの熱伝達効率の差が小烙くなっている。
(Example M) Using the same pots A, B, and C'i as in Example 2 above, an experiment was further conducted to improve heat transfer efficiency using infrared radiation/absorption paint. Pour 700cc of water into these pots A, B, and C.
Prepare two sets of food, one set has 215ftl of udon noodles.
1 In the other group, potage soup powder 672 was placed and placed at a height of 25U from the heating part surface of an electric heater with a rated power consumption of 600W, and the temperature change of the contents was measured with respect to the heating time. The measured results are shown in Figure 6 and 2.
Shown in the via diagram. As is clear from this result, pots B and C, which were coated with infrared radiation/absorbing paint, are different from pot A, which was not coated.
Heat transfer efficiency has been significantly improved compared to In addition, in cases where contents other than water are placed in the pot as in Example ν11, the contents may be applied to the inner fitting surface of the bottom of the pot and the
In order to absorb some of the infrared rays emitted by absorbing paint,
The difference in heat transfer efficiency between pots B and C is small.

(う6明の効果) 本発明は、以上の構成及び作用よりなるもので、「島い
赤外にダ放射率を示す波長域がXなる3種類以上の遷移
元素酸化物の粉末状混合物を焼結して固溶化した後、当
該固溶体を1−エ粉硅して塗料に混入することにより、
略赤外線波艮域全体において理想黒体に近い赤外線放射
・吸収効率を有する赤外線放射・吸+1’7塗料を提供
することができる。従って、この赤外線放射・吸収塗料
′fi:放熱器具や加熱器具等にC?=、用することに
より、該放熱器具堂加熱器具の放熱及び加熱効率を飛躍
的に向上させることができるので、上記放熱器具?加熱
器具を冷却又は加熱させるのに要するエネルギーが少な
くて済み、省エネルギーに役立つ等の効果がある。
(Effect of 6th Light) The present invention has the above-described structure and operation, and uses a powder mixture of three or more types of transition element oxides having a wavelength range of After sintering and forming a solid solution, the solid solution is 1-D sintered and mixed into the paint.
It is possible to provide an infrared radiation/absorption +1'7 paint having infrared radiation/absorption efficiency close to that of an ideal black body in substantially the entire infrared wave range. Therefore, this infrared radiation/absorption paint 'fi: C? By using the above-mentioned heat radiating equipment, the heat radiation and heating efficiency of the heat radiating equipment can be dramatically improved. Less energy is required to cool or heat the heating device, which has the effect of helping to save energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は遷移元素酸化物の粉末を混合焼結し友ものの赤
外線分光放射率を示すグラフ、第2図は赤外線放射・吸
収基材をセラミック塗料に混合したものの赤外線分光放
射率を示すグラフ、第3図は本発明に係る赤外線放射・
吸収塗料の赤外線分光放射率を示すグラフ、第4図は同
赤外線放射・吸収塗料を塗布した鍋に水を入れて加熱効
率全測定し之場合の測定結果を示すグラフ、第5図は第
4図に示すものと加熱条件のみ異なる測定結果を示すグ
ラフ、第6図は同赤外線放射・吸収塗料を塗布した鍋に
、水及びうどんを入れて加熱効率金6111定した場合
の測定結果を示すグラフ、第7図は同赤外線放射・吸収
塗料を塗布した鍋に、水及び粉末スープを入れて加熱効
率を測定した場合の測定結果を示すグラフである。 第1図 篤2図
Figure 1 is a graph showing the infrared spectral emissivity of a mixture made by mixing and sintering transition element oxide powder, Figure 2 is a graph showing the infrared spectral emissivity of a ceramic paint mixed with an infrared radiation/absorbing base material, Figure 3 shows the infrared radiation according to the present invention.
A graph showing the infrared spectral emissivity of the absorbing paint, Figure 4 is a graph showing the measurement results when water is poured into a pot coated with the same infrared radiation/absorbing paint and the total heating efficiency is measured. A graph showing measurement results that differ only in heating conditions from those shown in the figure. Figure 6 is a graph showing measurement results when water and udon noodles are placed in a pot coated with the same infrared radiation/absorption paint and the heating efficiency is set to 6111. , FIG. 7 is a graph showing the measurement results when water and powdered soup were poured into a pot coated with the same infrared radiation/absorption paint and the heating efficiency was measured. Figure 1 Atsushi Figure 2

Claims (9)

【特許請求の範囲】[Claims] (1)高い赤外線分光放射率を示す波長域が互いに異な
る3種類以上の遷移元素酸化物の粉末を混合焼結して固
溶化してなる固溶体を、微粉砕して塗料に混入したこと
を特徴とする赤外線放射・吸収塗料。
(1) A solid solution obtained by mixing and sintering powders of three or more transition element oxides with different wavelength ranges that exhibit high infrared spectral emissivity, and then finely pulverizing the solid solution and mixing it into the paint. Infrared radiation/absorption paint.
(2)前記遷移元素酸化物が少なくとも二酸化マンガン
、酸化コバルト、酸化鉄、酸化銅のうちのいずれか3種
類の組合せからなることを特徴とする特許請求の範囲第
1項記載の赤外線放射・吸収塗料。
(2) Infrared radiation and absorption according to claim 1, wherein the transition element oxide is a combination of at least any three of manganese dioxide, cobalt oxide, iron oxide, and copper oxide. paint.
(3)前記遷移元素酸化物の成分が、二酸化マンガン1
5〜80重量%、酸化コバルト5〜25重量%、酸化鉄
0〜80重量%、酸化銅0〜10重量%であることを特
徴とする特許請求の範囲第2項記載の赤外線放射・吸収
塗料。
(3) The component of the transition element oxide is manganese dioxide 1
5 to 80% by weight of cobalt oxide, 5 to 25% by weight of cobalt oxide, 0 to 80% by weight of iron oxide, and 0 to 10% by weight of copper oxide. .
(4)前記遷移元素酸化物には、酸化ジルコニウム等の
増量材が含有されていることを特徴とする特許請求の範
囲第1項又は第2項記載の赤外線放射・吸収塗料。
(4) The infrared radiation/absorbing paint according to claim 1 or 2, wherein the transition element oxide contains an extender such as zirconium oxide.
(5)高い赤外線分光放射率を示す波長域が互いに異な
る3種類以上の遷移元素酸化物の各粉末を混合した後、
該混合物を1000℃以上で且つ前記各成分の溶融温度
以下の温度で焼結して固溶化し、その後、上記固溶体を
微粉砕して赤外線放射・吸収基材を形成し、当該赤外線
放射・吸収基材を塗料に混入するようにしたことを特徴
とする赤外線放射・吸収塗料の製造方法。
(5) After mixing powders of three or more types of transition element oxides with different wavelength ranges showing high infrared spectral emissivity,
The mixture is sintered at a temperature of 1000°C or higher and lower than the melting temperature of each of the components to form a solid solution, and then the solid solution is finely pulverized to form an infrared radiation/absorption base material, and the infrared radiation/absorption A method for producing an infrared radiation/absorbing paint, characterized in that a base material is mixed into the paint.
(6)前記遷移元素酸化物が少なくとも二酸化マンガン
、酸化コバルト、酸化鉄、酸化銅のうちのいずれか3種
類の組合せからなることを特徴とする特許請求の範囲第
5項記載の赤外線放射・吸収塗料の製造方法。
(6) Infrared radiation and absorption according to claim 5, wherein the transition element oxide is a combination of at least any three of manganese dioxide, cobalt oxide, iron oxide, and copper oxide. Paint manufacturing method.
(7)前記遷移元素酸化物の成分が、二酸化マンガン1
5〜80重量%、酸化コバルト5〜25重量%、酸化鉄
0〜80重量%、酸化銅0〜10重量%であることを特
徴とする特許請求の範囲第6項記載の赤外線放射・吸収
塗料の製造方法。
(7) The component of the transition element oxide is manganese dioxide 1
5 to 80% by weight of cobalt oxide, 5 to 25% by weight of cobalt oxide, 0 to 80% by weight of iron oxide, and 0 to 10% by weight of copper oxide. manufacturing method.
(8)前記遷移元素酸化物には、酸化ジルコニウム等の
増量材が含有されていることを特徴とする特許請求の範
囲第5項又は第6項記載の赤外線放射・吸収塗料の製造
方法。
(8) The method for producing an infrared radiation/absorbing paint according to claim 5 or 6, wherein the transition element oxide contains an extender such as zirconium oxide.
(9)赤外線放射・吸収基材の混入比が25〜75重量
%であることを特徴とする特許請求の範囲第5項乃至第
8項のいずれかの項に記載の赤外線放射・吸収塗料の製
造方法。
(9) The infrared radiation/absorbing paint according to any one of claims 5 to 8, wherein the mixing ratio of the infrared radiation/absorbing base material is 25 to 75% by weight. Production method.
JP18528684A 1984-09-06 1984-09-06 Infrared radiating and absorbing paint and preparation thereof Granted JPS6164765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18528684A JPS6164765A (en) 1984-09-06 1984-09-06 Infrared radiating and absorbing paint and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18528684A JPS6164765A (en) 1984-09-06 1984-09-06 Infrared radiating and absorbing paint and preparation thereof

Publications (2)

Publication Number Publication Date
JPS6164765A true JPS6164765A (en) 1986-04-03
JPS6325033B2 JPS6325033B2 (en) 1988-05-24

Family

ID=16168182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18528684A Granted JPS6164765A (en) 1984-09-06 1984-09-06 Infrared radiating and absorbing paint and preparation thereof

Country Status (1)

Country Link
JP (1) JPS6164765A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129677A1 (en) 2012-03-02 2013-09-06 荒川化学工業株式会社 Heat dissipating coating composition and heat dissipating coating film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676922A (en) * 1979-11-29 1981-06-24 Matsushita Electric Ind Co Ltd Hot plate
JPS57191973A (en) * 1981-05-20 1982-11-25 Nihon Hiitaa Kk Heat beam radiation heater
JPS59213771A (en) * 1983-05-19 1984-12-03 Nishimura Togyo Kk Coating composition for radiating far infrared ray

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676922A (en) * 1979-11-29 1981-06-24 Matsushita Electric Ind Co Ltd Hot plate
JPS57191973A (en) * 1981-05-20 1982-11-25 Nihon Hiitaa Kk Heat beam radiation heater
JPS59213771A (en) * 1983-05-19 1984-12-03 Nishimura Togyo Kk Coating composition for radiating far infrared ray

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129677A1 (en) 2012-03-02 2013-09-06 荒川化学工業株式会社 Heat dissipating coating composition and heat dissipating coating film
US9346993B2 (en) 2012-03-02 2016-05-24 Arakawa Chemical Industries, Ltd. Heat dissipating coating composition and heat dissipating coating film

Also Published As

Publication number Publication date
JPS6325033B2 (en) 1988-05-24

Similar Documents

Publication Publication Date Title
JP5737523B2 (en) Black pigment, glaze and paint containing the same
CN105907241B (en) A kind of wide spectrum infrared absorption coating and preparation method thereof
CN102320806A (en) Micronano superfine powder high-temperature high-radiance paint and preparation method thereof
JPH05508382A (en) Bismuth phosphovanadate and/or bismuth cyvanadate-based yellow pigment and method for producing the same
JPS6164765A (en) Infrared radiating and absorbing paint and preparation thereof
JP2016540102A (en) Reversible color changeable coating composition and process for its preparation
CN106280904B (en) A kind of preparation method of wide spectrum infrared absorption coating
CN106630967A (en) High-temperature radiation coating and preparation method thereof
JPH11130966A (en) Heat-ray-nonabsorbent coloring composition containing metal semiconductor powder and molded article
JPS60155267A (en) Infrared radiating coating composition
JPS59213771A (en) Coating composition for radiating far infrared ray
WO1997035928A1 (en) Method of manufacturing inorganic pigment
JP3597964B2 (en) Method for producing yellow inorganic pigment
JP5102926B2 (en) Method for producing titanium-iron composite oxide pigment
JPS62223058A (en) Infrared radiation-absorption flame spraying material and manufacture
JPS608978B2 (en) Production method of heat-resistant yellow pigment
CN102532959A (en) Far infrared powder for energy-saving coating and preparation method for far infrared powder
KR900001730B1 (en) Composition of ceramic-coating materials
CN113354974B (en) Black paint and preparation method thereof
KR20150053216A (en) A reversible changeable coating composition and a method thereof
JP3597962B2 (en) Method for producing green inorganic pigment
US3318719A (en) Manufacture of an infra-red reflective pigment
CN101157811A (en) Paint for improving far-infrared heater radiation efficiency and method for manufacturing same
JP4040715B2 (en) Filler and semiconductor sealing resin composition
JPH04246159A (en) Thermal spraying material