JPH11130966A - Heat-ray-nonabsorbent coloring composition containing metal semiconductor powder and molded article - Google Patents

Heat-ray-nonabsorbent coloring composition containing metal semiconductor powder and molded article

Info

Publication number
JPH11130966A
JPH11130966A JP10138268A JP13826898A JPH11130966A JP H11130966 A JPH11130966 A JP H11130966A JP 10138268 A JP10138268 A JP 10138268A JP 13826898 A JP13826898 A JP 13826898A JP H11130966 A JPH11130966 A JP H11130966A
Authority
JP
Japan
Prior art keywords
coloring composition
metal semiconductor
heat
black
heat ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10138268A
Other languages
Japanese (ja)
Inventor
Yasuhide Yamaguchi
靖英 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP10138268A priority Critical patent/JPH11130966A/en
Priority to PCT/JP1998/003812 priority patent/WO1999011715A1/en
Publication of JPH11130966A publication Critical patent/JPH11130966A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm

Abstract

PROBLEM TO BE SOLVED: To obtain a heat-ray-nonabsorbent coloring compsn. which enables a molded article to be colored black or deeply and to be heat-ray-nonabsorbent by incorporating a metal semiconductor powder such as a silicon powder into the same. SOLUTION: This coloring compsn. contains a metal semiconductor powder as a pigment. Powders of silicon, germanium, gallium-arsenic, gallium-aluminum- arsenic, etc., are listed as the metal semiconductor powders. Light with energy higher than the band gap, 0.8-1.5 eV, of these metal semiconductors is completely absorbed, though light with a lower energy is not absorbed. Silicon, having a band gap of 1.1 eV, does not absorb light with a wavelength corresponding to the band gap, i.e., 1100 nm, or higher while absorbing visible light only and hence looks black. The reflectance of heat rays can be increased by increasing the amt. of metal semiconductor particles compounded, and the transmittance of heat rays can be increased by decreasing the particle size and film thickness. The coloring compsn. can be used in resin compsns., coating compsns., oil or fat compsns., etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱線非吸収性着色組
成物、該着色組成物により構成された成型物、及び該着
色組成物により構成された層を有する成型物に関し、詳
しくは黒色系、有色系に着色されているにもかかわらず
熱線非吸収性である着色組成物、該着色組成物により構
成された成型物、及び該着色組成物により構成された層
を有する成型物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat ray non-absorbing colored composition, a molded article composed of the colored composition, and a molded article having a layer composed of the colored composition. The present invention relates to a colored composition which is colored and has a non-heat ray absorbing property despite being colored, a molded article composed of the colored composition, and a molded article having a layer composed of the colored composition. .

【0002】[0002]

【従来の技術】白色の皮膜は可視光、赤外光の反射率が
高いのに対し、有色系、黒色系の着色皮膜は可視光と共
に赤外光(熱線)も吸収する。このため、例えば黒色皮
膜を施した物体は太陽光に曝露されると白色皮膜を施し
た物体に比べて一層高温に加熱され、物体温度が上昇す
るという問題があった。
2. Description of the Related Art While a white film has a high reflectance of visible light and infrared light, a colored film or a black colored film absorbs infrared light (heat ray) together with visible light. For this reason, there is a problem that, for example, when an object having a black film is exposed to sunlight, the object is heated to a higher temperature than an object having a white film, and the object temperature rises.

【0003】従来、黒色塗料、黒色を呈する樹脂等の多
くはカーボンブラックなどの微粒子を分散させて用いて
いる。カ−ボンブラックは可視光領域全般の光を吸収す
るので極めて良好な黒色を呈する。しかし、カ−ボンブ
ラックは赤外線領域の光までも良好に吸収する。太陽か
らの光のうち赤外線領域、特に近赤外線領域(1000
〜2500nm)の光は熱線であり、カ−ボンブラック
はこの熱線を良好に吸収するので発熱しやすい。
Conventionally, most of black paint, black resin and the like use fine particles such as carbon black dispersed therein. Carbon black absorbs light in the entire visible light range and therefore exhibits a very good black color. However, carbon black absorbs light well in the infrared region. Of the light from the sun, the infrared region, particularly the near infrared region (1000
(2500 nm) is a heat ray, and carbon black easily absorbs this heat ray and easily generates heat.

【0004】このため、例えば黒色皮膜を外装材、屋根
など太陽光に露出される面に用いると、例えばカ−ボン
ブラックが発熱し、その熱を皮膜が吸熱することにより
塗装材が加熱され、よって建築物内部も加熱されてしま
うという問題があった。この対策として、塗料や着色樹
脂に赤外線を反射する酸化マンガン、酸化コバルト、酸
化鉄、酸化クロムなどの金属酸化物顔料を含ませる方法
が実施されている。しかしながら、これらの顔料はカ−
ボンブラックほどは熱線を吸収しないが、可視光領域の
みならず赤外線領域にも少なからず吸収帯を有してお
り、このため熱線非吸収性の顔料、塗料、樹脂組成物が
望まれていた。
For example, when a black film is used for a surface exposed to sunlight such as an exterior material or a roof, for example, carbon black generates heat, and the coating absorbs the heat, thereby heating the coating material. Therefore, there was a problem that the inside of the building was also heated. As a countermeasure, a method of incorporating a metal oxide pigment such as manganese oxide, cobalt oxide, iron oxide, or chromium oxide that reflects infrared rays into a paint or a colored resin has been implemented. However, these pigments do not
Although it does not absorb heat rays as much as Bon Black, it has not less absorption bands not only in the visible light region but also in the infrared region. Therefore, pigments, paints and resin compositions which do not absorb heat rays have been desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の諸欠点を解消するためになされたものであ
り、本発明の課題は、黒色系、有色系に着色されている
にもかかわらず熱線非吸収性である着色組成物、該着色
組成物により構成された成型物、及び該着色組成物によ
り構成された層を有する成型物を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks of the prior art, and it is an object of the present invention to provide a method for coloring black or colored. An object of the present invention is to provide a colored composition which is non-heat ray-absorbing, a molded article composed of the colored composition, and a molded article having a layer composed of the colored composition.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記の課題
について鋭意検討した結果、顔料として金属半導体微粒
子を添加すると、黒色系、有色系でありながら熱線非吸
収性であり、その添加量等を調整することにより熱線反
射性若しくは透過性の組成物とすることができることを
見出し、本発明を完成させた。
Means for Solving the Problems As a result of diligent studies on the above-mentioned problems, the present inventors have found that when metal semiconductor fine particles are added as a pigment, they are black and colored, but not heat ray-absorbing. It has been found that a composition that is capable of reflecting or transmitting heat rays can be obtained by adjusting the composition and the like, and the present invention has been completed.

【0007】即ち、本発明の熱線非吸収性着色組成物
は、金属半導体微粉末を含有することを特徴とする。更
に、本発明の成型物は、上記の着色組成物により構成さ
れていることを特徴とする成型物、又は上記の着色組成
物により構成された層を有することを特徴とする成型物
である。また、本発明の熱線非吸収性着色組成物は、熱
線反射性着色組成物であるか、又は熱線透過性着色組成
物である。
That is, the heat ray non-absorbing coloring composition of the present invention is characterized by containing a metal semiconductor fine powder. Furthermore, the molded article of the present invention is a molded article characterized by being constituted by the above-mentioned colored composition, or a molded article characterized by having a layer constituted by the above-mentioned colored composition. Further, the heat ray non-absorbing coloring composition of the present invention is a heat ray reflecting coloring composition or a heat ray transmitting coloring composition.

【0008】[0008]

【発明の実施の形態】本発明で用いることができる金属
半導体微粉末としては、シリコンやゲルマニウム、ガリ
ウム・砒素、ガリウム・アルミニウム・砒素などを挙げ
らことができる。これらは0.8〜1.5eVの範囲内
にあるバンドギャップを有する半導体である。それらの
金属半導体微粉末を用いると、それらのバンドギャップ
よりも大きなエネルギーの光は完全に吸収されるが、そ
れらのバンドギャップよりも小さなエネルギーの光は吸
収されない。本発明において金属半導体微粉末として例
えばシリコン微粉末を用いる場合について説明すると、
シリコンのバンドギャップは1.1eVであり、これは
波長1100nmに相当する。従って、1100nmよ
りも短い波長の光はほぼ完全に吸収されるが、1100
nmよりも長い波長の光は吸収されない。即ち、可視光
領域の光は完全に吸収されて良好な黒色を呈するが、赤
外線は吸収されない。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the fine metal semiconductor powder that can be used in the present invention include silicon, germanium, gallium / arsenic, and gallium / aluminum / arsenic. These are semiconductors having a band gap in the range of 0.8 to 1.5 eV. When these metal semiconductor fine powders are used, light having an energy larger than their band gap is completely absorbed, but light having an energy smaller than their band gap is not absorbed. In the present invention, for example, when using a silicon fine powder as the metal semiconductor fine powder,
The band gap of silicon is 1.1 eV, which corresponds to a wavelength of 1100 nm. Therefore, light having a wavelength shorter than 1100 nm is almost completely absorbed, but 1100 nm
Light having a wavelength longer than nm is not absorbed. That is, light in the visible light region is completely absorbed and exhibits good black color, but infrared light is not absorbed.

【0009】金属半導体には単結晶粉末や多結晶粉末が
あるが、本発明は金属半導体の本質的な物性を利用した
ものであり、これらの製法や形状は問わない。しかし、
粒径の大きな粒状金属半導体やフレーク状金属半導体は
金属光沢を有し、また樹脂、油脂、塗料組成物等中の分
散性が良くないので、そのままでは黒色系、有色系の組
成物とすることは困難である。しかし、微粒子、好まし
くは平均粒径が100μm以下の微粒子にすると、樹
脂、油脂、塗料組成物等中の分散性が良好になる上、黒
色度が向上する傾向があるので、金属半導体は微粉末と
して用いることが望ましい。この微粉末として金属半導
体の粉砕粉や半導体切断残渣などを用いることもでき
る。しかし、ガリウム・砒素の微粉末は人体に有害であ
るため、一般的にはシリコン微粉末を使うことが望まし
い。また金属半導体に不純物、例えばリンなどのドーパ
ントが含まれていても熱線非吸収性、熱線反射効率には
ほとんど差はない。
Metal semiconductors include single crystal powders and polycrystalline powders, but the present invention utilizes the essential physical properties of metal semiconductors, and their production method and shape are not limited. But,
Large-grain metal semiconductors and flake metal semiconductors have metallic luster and have poor dispersibility in resins, oils, paint compositions, etc. It is difficult. However, fine particles, preferably fine particles having an average particle diameter of 100 μm or less, have good dispersibility in resins, oils and fats, coating compositions and the like, and tend to improve blackness. It is desirable to use as. As the fine powder, a pulverized powder of a metal semiconductor or a semiconductor cutting residue can also be used. However, since gallium / arsenic fine powder is harmful to humans, it is generally desirable to use silicon fine powder. Even if the metal semiconductor contains an impurity, for example, a dopant such as phosphorus, there is almost no difference in heat ray non-absorption and heat ray reflection efficiency.

【0010】これらの金属半導体微粉末を樹脂や塗料や
油脂(化粧品等)に含有させることにより、特に黒色系
塗料、黒色系樹脂や黒色系フィルムなどの皮膜組成物に
含有させることにより、従来の黒色系皮膜組成物に比べ
て熱線の吸収を極めて少なくすることができる。また、
黒色系だけでなく、金属半導体微粒子と共に他の種々の
色の顔料を混合することにより組成物を灰色系から黒色
系、あるいは様々な有彩色とすることも可能である。
By incorporating these metal semiconductor fine powders into resins, paints, oils and fats (cosmetics, etc.), and in particular into coating compositions such as black paints, black resins and black films, it is possible to obtain the conventional The absorption of heat rays can be extremely reduced as compared with the black coating composition. Also,
In addition to the black type, the composition can be changed from a gray type to a black type or various chromatic colors by mixing other various color pigments with the metal semiconductor fine particles.

【0011】本発明の着色組成物においては、組成物中
の金属半導体微粒子の粒径や、樹脂、塗料又は油脂との
配合比を変化させること、あるいは着色組成物により構
成される皮膜の厚さを変化させることによって、成型物
による熱線の反射や、成型物を通過する熱線の度合いを
制御することができる。
In the coloring composition of the present invention, the particle size of the metal semiconductor fine particles in the composition, the mixing ratio with the resin, the paint or the oil and the like are changed, or the thickness of the film formed by the coloring composition is changed. By changing the value, it is possible to control the reflection of heat rays by the molded article and the degree of the heat rays passing through the molded article.

【0012】例えば、金属半導体微粒子の配合量を増加
させると熱線の反射率が増加し、また粒子径を小さく
し、かつ皮膜の厚さを薄くすることによって熱線の透過
率を増加させることができる。シリコン微粒子を用いる
場合には、粒子径が100μm以下、望ましくは50μ
m以下であれば、樹脂、油脂等と良く分散させることに
よって熱線透過性のある皮膜を形成させることが可能で
ある。本発明の着色組成物として、樹脂組成物、塗料組
成物、油脂組成物(化粧品等)などが挙げられるが、各
組成物の原料又は成分、組成については、特には限定さ
れない。
For example, when the blending amount of the metal semiconductor fine particles is increased, the reflectance of the heat ray is increased, and the transmittance of the heat ray can be increased by reducing the particle diameter and the thickness of the film. . When silicon fine particles are used, the particle diameter is 100 μm or less, preferably 50 μm.
If it is less than m, it is possible to form a film having heat ray permeability by dispersing well with a resin, oil or the like. Examples of the coloring composition of the present invention include a resin composition, a coating composition, a fat composition (such as cosmetics), and the like, but the raw materials, components, and compositions of each composition are not particularly limited.

【0013】本発明の着色組成物は、上述のように金属
半導体微粒子の粒径等を変えることによって熱線を反射
させたり透過させたりすることができるため、該着色組
成物の使用形態として、次の2つを挙げることができ
る。第1の使用形態として、金属、樹脂、木材、陶磁器
などの素材の被加熱を抑制する目的でその素材表面に本
発明の着色組成物による皮膜を施して用いる場合があ
る。この場合、その皮膜は熱線を吸収せず、皮膜表面で
反射させるようにすべきである。第2の使用形態とし
て、ガラス、樹脂フィルムなどの透明な素材の上に本発
明の着色組成物による皮膜を形成する場合がある。この
場合、その皮膜は熱線を吸収せずに透過させるようにす
べきである。
The coloring composition of the present invention can reflect or transmit heat rays by changing the particle size of the metal semiconductor fine particles as described above. Can be cited. As a first mode of use, there is a case where a coating of the coloring composition of the present invention is applied to the surface of a material such as metal, resin, wood, and porcelain in order to suppress the material from being heated. In this case, the coating should not absorb heat rays but reflect at the coating surface. As a second mode of use, there is a case where a film of the coloring composition of the present invention is formed on a transparent material such as glass or a resin film. In this case, the coating should transmit heat rays without absorbing them.

【0014】上記の使用形態により構成された熱線非吸
収性層を有する成型物において、その成型物全体が本発
明の着色組成物で構成されていてもよく、或いはその成
型物の表面層のみが本発明の着色組成物で構成されてい
てその内部は本発明以外の組成物で構成されていてもよ
い。更に、それらの表面に保護膜が設けられていてもよ
い。
In the molded article having the heat ray non-absorbing layer constituted according to the above-mentioned use form, the entire molded article may be constituted by the coloring composition of the present invention, or only the surface layer of the molded article may be constituted. It may be composed of the coloring composition of the present invention and the inside thereof may be composed of a composition other than the present invention. Furthermore, a protective film may be provided on those surfaces.

【0015】黒色系の皮膜や樹脂成型物は意匠性があ
り、また美観的に好ましいので、広く用いられている一
方で、太陽光などを吸収して熱くなりやすいといった欠
点があったが、本発明の着色組成物を用いることにより
その欠点を克服することができる。従って本発明の着色
組成物は、例えば、建築物の外装、屋根、遮光材、窓ガ
ラス、雨戸、乗り物外装皮膜、乗り物内装材などに広く
用いることができる。また、本発明の着色組成物は黒色
以外の色彩であっても太陽光等からの熱が吸収されにく
い皮膜等を形成することができる。
[0015] Black coatings and resin molded products have a design property and are aesthetically pleasing, so they are widely used, but have the drawback that they tend to become hot when they absorb sunlight and the like. The disadvantages can be overcome by using the coloring composition of the invention. Therefore, the coloring composition of the present invention can be widely used for, for example, building exteriors, roofs, light-shielding materials, window glasses, shutters, vehicle exterior coatings, vehicle interior materials, and the like. Further, the coloring composition of the present invention can form a film or the like that is less likely to absorb heat from sunlight or the like even in colors other than black.

【0016】[0016]

【実施例】【Example】

実施例1 シリコン半導体切削油から回収したシリコン微粉末(平
均粒径D50% =5.8μm)50gとアクリルシリケ−
ト系クリア塗料100gとを良く混合して、黒色系塗料
(マンセル記号:5YR2/1近似)を作製した。これ
を金属板に刷毛にて塗布し、1日乾燥させた。
Example 1 50 g of silicon fine powder (average particle size D 50% = 5.8 μm) recovered from silicon semiconductor cutting oil and acrylic silica
A black paint (Munsell symbol: approx. 5YR2 / 1) was prepared by mixing well with 100 g of a clear paint. This was applied to a metal plate with a brush and dried for one day.

【0017】可視−近赤外分光光度計(日立製作所製:
U−4000)を用い、積分球を用いてこの塗膜付金属
板の反射スペクトルを測定した。その結果、図1に示す
ように、可視光(400nm〜800nm)を良く吸収
し、黒色を呈することが確認できたが、1μm以上の波
長の光は塗膜による吸収を除けばほぼ一様に反射してい
ることが分かる。熱線と言われる光の波長は主に1μm
以上であるので、これらの光を反射する塗料であること
が確認できた。この皮膜の日射反射率(JISR 31
06(1985)に従って求めた日射反射率、以下同
じ)は24.0%であった。
Visible-near infrared spectrophotometer (manufactured by Hitachi, Ltd .:
U-4000), and the reflection spectrum of this coated metal plate was measured using an integrating sphere. As a result, as shown in FIG. 1, it was confirmed that visible light (400 nm to 800 nm) was well absorbed and a black color was observed. However, light having a wavelength of 1 μm or more was substantially uniform except for absorption by the coating film. It can be seen that the light is reflected. The wavelength of light called heat rays is mainly 1 μm
As described above, it was confirmed that the paint reflects these lights. The solar reflectance of this film (JISR 31
06 (1985), the solar reflectance was 24.0%.

【0018】比較例1 アクリルシリケ−ト系クリア塗料100gに、弁柄3.
8g、黄鉛2.6g、酸化チタン2g、炭酸カルシウム
7g及びカ−ボンブラック2gを添加して、実施例1と
同色の塗料を作製した。これを金属板に刷毛塗りし、乾
燥させた。この皮膜の可視−近赤外反射スペクトルを測
定した。その結果、図1に示すように、可視光領域と共
に赤外線領域も吸収しており、熱線反射は極めて低かっ
た。また、この皮膜の日射反射率は7.4%であった。
COMPARATIVE EXAMPLE 1 100 g of an acrylic silicate-based clear coating material was added to 3.
8 g, 2.6 g of graphite, 2 g of titanium oxide, 7 g of calcium carbonate and 2 g of carbon black were added to prepare a paint of the same color as in Example 1. This was brush-coated on a metal plate and dried. The visible-near infrared reflection spectrum of this film was measured. As a result, as shown in FIG. 1, the infrared ray region was absorbed as well as the visible light region, and the heat ray reflection was extremely low. The solar reflectance of this film was 7.4%.

【0019】実施例2及び比較例2 実施例1で調整した塗料を3×3×4cmのアルミニウ
ム製の蓋つき密閉容器の外表面6面に塗布して黒色容器
を作製した。この容器内部の中心部に温度計を設置し、
屋外にて直接太陽光が照射される台上で地面に対して4
5°に傾けて暴露して温度上昇を測定した。その結果、
7月中旬の晴天時に9時から暴露を開始し、14時にお
いて測定した容器内部の温度は39℃であった。
Example 2 and Comparative Example 2 The paint prepared in Example 1 was applied to six outer surfaces of a 3 × 3 × 4 cm aluminum closed container with a lid to produce a black container. Install a thermometer in the center of this container,
4 on the ground where sunlight is directly radiated outdoors
The temperature rise was measured by exposing at an angle of 5 °. as a result,
Exposure was started at 9:00 in fine weather in the middle of July, and the temperature inside the container measured at 14:00 was 39 ° C.

【0020】一方、比較例1で調整した塗料を用いて同
様にアルミニウム製容器の外表面に塗布して黒色容器を
作製した。これを実施例2と同一条件で太陽光暴露を行
った結果、容器内部の温度は44℃を示しており、実施
例2の場合より容器内部の温度は5℃高かった。
On the other hand, the paint prepared in Comparative Example 1 was similarly applied to the outer surface of an aluminum container to produce a black container. When this was exposed to sunlight under the same conditions as in Example 2, the temperature inside the container was 44 ° C., and the temperature inside the container was 5 ° C. higher than in Example 2.

【0021】実施例3 アクリルシリケ−ト系塗料100gに、実施例1で用い
たシリコン微粉末8.5g及び酸化チタン8.5gを混
合して塗料を作製した。この塗料を金属板に塗布し、乾
燥させて灰色系(マンセル記号:N−5.5)皮膜を得
た。この皮膜の可視−近赤外分光反射スペクトルを測定
して図2に示す結果を得た。また、日射反射率は39.
7%であった。
Example 3 A coating was prepared by mixing 8.5 g of the silicon fine powder and 8.5 g of titanium oxide used in Example 1 with 100 g of an acrylic silicate-based coating. The paint was applied to a metal plate and dried to obtain a gray (Munsell symbol: N-5.5) film. The visible-near infrared spectral reflection spectrum of this film was measured to obtain the results shown in FIG. The solar reflectance is 39.
7%.

【0022】比較例3 アクリルシリケ−ト系塗料100gに酸化チタン16
g、弁柄0.1g、黄鉛0.3g及びカ−ボンブラック
0.3gを添加混合して塗料を作製した。この塗料を金
属板に塗布し、乾燥させて灰色系(マンセル記号:N−
6)皮膜を作製した。この皮膜の可視−近赤外分光反射
スペクトルを測定して図2に示す結果を得た。また日射
反射率は27.1%であり、実施例3の値よりも低かっ
た。
Comparative Example 3 Titanium oxide 16 was added to 100 g of an acrylic silicate paint.
g, red iron oxide 0.1 g, graphite 0.3 g and carbon black 0.3 g were added and mixed to prepare a paint. This paint is applied to a metal plate and dried to give a grayish (Munsell symbol: N-
6) A film was prepared. The visible-near infrared spectral reflection spectrum of this film was measured to obtain the results shown in FIG. The solar reflectance was 27.1%, which was lower than the value of Example 3.

【0023】実施例4及び比較例4 アクリルシリケ−ト系塗料100gに、実施例1で用い
たシリコン微粉末18g及びフタロシアニンブル−1.
3gを混合して塗料を作製した。これを金属板に塗布
し、乾燥させて黒色系(マンセル記号:N−2)皮膜を
得た。この皮膜の可視−近赤外分光反射スペクトルを測
定して図3に示す結果を得た。また日射反射率は20.
9%であった。
Example 4 and Comparative Example 4 18 g of the silicon fine powder used in Example 1 and phthalocyanine rubble were added to 100 g of an acrylic silicate paint.
3 g were mixed to prepare a paint. This was applied to a metal plate and dried to obtain a black (Munsell symbol: N-2) film. The visible-near infrared spectral reflection spectrum of this film was measured to obtain the results shown in FIG. The solar reflectance is 20.
9%.

【0024】一方、アクリルシリケ−ト系塗料100g
に、カ−ボンブラック20gを混合して塗料を作製し
た。これを金属板に塗布し、乾燥させると実施例4と同
色の黒色皮膜になった。この皮膜の可視−近赤外分光反
射スペクトルを測定して図3に示す結果を得た。また日
射反射率は4.1%であった。これらの結果から明確な
ように、シリコン微粉末を含有した塗料は黒色塗料とし
ては極めて良好な熱線反射性塗膜であることが分かる。
On the other hand, 100 g of an acrylic silicate paint
Was mixed with 20 g of carbon black to prepare a paint. This was applied to a metal plate and dried to form a black film of the same color as in Example 4. The visible-near infrared spectral reflection spectrum of this film was measured to obtain the results shown in FIG. The solar reflectance was 4.1%. As is clear from these results, it is understood that the paint containing the silicon fine powder is a very good heat ray reflective coating as a black paint.

【0025】実施例5及び比較例5 アクリルシリケ−ト系塗料100gに、三酸化二クロム
7g及び実施例1で用いたシリコン微粉末8gを混合し
て塗料を作製した。この塗料を金属板に塗布し、乾燥さ
せて暗緑色(マンセル記号:2.5G3/4近似)の皮
膜を得た。この皮膜の可視−近赤外反射スペクトルを測
定して図4に示す結果を得た。
Example 5 and Comparative Example 5 A paint was prepared by mixing 7 g of dichromium trioxide and 8 g of the fine silicon powder used in Example 1 with 100 g of an acrylic silicate paint. The paint was applied to a metal plate and dried to obtain a dark green (Munsell symbol: approx. 2.5G3 / 4) film. The visible-near infrared reflection spectrum of this film was measured to obtain the results shown in FIG.

【0026】比較のため、アクリルシリケ−ト系塗料1
00gに、三酸化二クロム7g及びカ−ボンブラック
1.5gを混合して実施例5とほぼ同色の塗料を作製し
た。この塗料を金属板に塗布し、乾燥させて得た皮膜の
可視−近赤外線反射スペクトルを測定して図4に示す結
果を得た。
For comparison, acrylic silicate paint 1
Then, 7 g of dichromium trioxide and 1.5 g of carbon black were mixed with 00 g to prepare a paint having substantially the same color as in Example 5. This coating material was applied to a metal plate and dried, and the visible-near infrared reflection spectrum of the film obtained was measured to obtain the results shown in FIG.

【0027】これらのスペクトルの比較から明らかなよ
うに、ほぼ同一色を呈しながら、近赤外線領域の反射率
は極めて大きく異なっていることが確認された。この結
果から、本発明に係る塗料は、有彩色、特に従来カ−ボ
ンブラックで調色を行っていた暗色系有彩色を有する熱
線反射性塗料として極めて高い効果を発揮することが確
認された。
As is apparent from the comparison of these spectra, it was confirmed that the reflectance in the near infrared region was extremely different while exhibiting almost the same color. From these results, it was confirmed that the paint according to the present invention exhibited an extremely high effect as a heat ray reflective paint having a chromatic color, particularly a dark chromatic color which was conventionally toned with carbon black.

【0028】実施例6〜7及び比較例6 エチレン−アクリル酸エチル樹脂(日本石油化学レクス
ロンEEA)38gに対し、実施例1で用いたシリコン
微粉末1.9gを添加(添加率5.0重量%)し、19
0℃で混練した後、フィルム成形機によりフィルムを形
成した(実施例6)。このフィルムの厚さは約200μ
mであり、色は茶褐色であり、目視でほとんど不透明で
あった。
Examples 6 to 7 and Comparative Example 6 1.9 g of the silicon fine powder used in Example 1 was added to 38 g of ethylene-ethyl acrylate resin (Nippon Petrochemical Lexlon EEA) (addition ratio: 5.0 wt. %) And 19
After kneading at 0 ° C., a film was formed by a film forming machine (Example 6). The thickness of this film is about 200μ
m, the color was brown and almost opaque visually.

【0029】また、エチレン−アクリル酸エチル樹脂
(日本石油化学レクスロンEEA)38gに対し、シリ
コン微粉末0.57gを添加(添加率1.5重量%)
し、同様にしてフィルムを形成した(実施例7)。この
フィルムの厚さは約170μmであり、目視で半透明で
あった。
Further, 0.57 g of silicon fine powder was added to 38 g of ethylene-ethyl acrylate resin (Nippon Petrochemical Lexlon EEA) (addition ratio: 1.5% by weight).
Then, a film was formed in the same manner (Example 7). The thickness of this film was about 170 μm, and was visually translucent.

【0030】これらのフィルムの可視−近赤外分光透過
スペクトルを測定したところ、図5に示すように、可視
光領域ではほとんど吸収されるが、近赤外線領域の光は
樹脂による吸収を除けばほば一様に透過していることが
確認された。比較のため、シリコン微粉末の代わりにカ
−ボンブラック0.04gを添加して同様にほとんど不
透明の黒色樹脂フィルムを作製した(比較例6)。この
フィルムの可視−近赤外分光透過スペクトルについても
図5に併せて示した。カ−ボンブラックを添加すると微
量でも可視光領域の光をほぼ完全に吸収し、かつ、近赤
外線領域の光をほとんど吸収することが分かる。
The visible-near-infrared spectral transmission spectrum of these films was measured. As shown in FIG. 5, light was almost absorbed in the visible light region, but light in the near-infrared region was almost the same except for absorption by the resin. It was confirmed that the light was uniformly transmitted. For comparison, 0.04 g of carbon black was added in place of the silicon fine powder, and an almost opaque black resin film was similarly produced (Comparative Example 6). The visible-near infrared spectral transmission spectrum of this film is also shown in FIG. It can be seen that addition of carbon black almost completely absorbs light in the visible light region and almost absorbs light in the near-infrared region even in a minute amount.

【0031】これらの結果から、カ−ボンブラックを用
いた従来の黒色フィルムに比べ、本発明の樹脂組成物か
ら得た金属半導体含有フィルムは可視光領域で半透明も
しくはほぼ不透明のいずれの場合においても、近赤外線
透過率が高く、熱線を吸収しないフィルムとして有効で
あることが確認された。
From these results, it can be seen that the metal semiconductor-containing film obtained from the resin composition of the present invention is translucent or almost opaque in the visible light region as compared with the conventional black film using carbon black. Also, it was confirmed that the film had high near-infrared transmittance and was effective as a film that did not absorb heat rays.

【0032】実施例8及び比較例7 ポリエチレン38gに実施例1で用いたシリコン微粉末
1.9gを添加(添加率5.0重量%)し、190℃で
混練した後、射出成形し、厚さ約3mmの茶褐色の樹脂
成型品を得た。この樹脂成型品表面の可視−近赤外反射
スペクトルを測定した結果、図6に示すようになった。
Example 8 and Comparative Example 7 1.9 g of the silicon fine powder used in Example 1 was added to 38 g of polyethylene (addition ratio: 5.0% by weight), kneaded at 190 ° C., and injection molded. A brown resin molded product having a thickness of about 3 mm was obtained. As a result of measuring the visible-near infrared reflection spectrum of the surface of the resin molded product, the result was as shown in FIG.

【0033】一方、比較のため、シリコン微粉末の代わ
りにカ−ボンブラック0.04gを添加して、190℃
で混練した後、射出成形し、厚さ約3mmの黒色の樹脂
成型品を得た。この樹脂成型品表面の可視−近赤外反射
スペクトルは図6に示すように、可視光から近赤外線領
域の光までもほぼ完全に吸収されることが分かる。これ
らの結果から、カ−ボンブラックを用いた従来の黒色樹
脂成型品に比べ、金属半導体含有樹脂成型品は可視光領
域の光は吸収するが近赤外線の反射率が高く、熱線反射
性樹脂成型品として有効であることが確認された。
On the other hand, for comparison, carbon black (0.04 g) was added instead of silicon fine powder,
And then injection molded to obtain a black resin molded product having a thickness of about 3 mm. As shown in FIG. 6, the visible-near-infrared reflection spectrum of the surface of the resin molded product is almost completely absorbed from visible light to near-infrared light. From these results, compared with the conventional black resin molded product using carbon black, the resin molded product containing the metal semiconductor absorbs light in the visible light region but has a high reflectance of near-infrared rays, and the heat ray reflective resin molded product is used. The product was confirmed to be effective.

【0034】[0034]

【発明の効果】以上に説明したように、本発明の熱線非
吸収性着色組成物、それらの着色組成物により構成され
た成型物、及びそれらの着色組成物により構成された層
を有する成型物の層組成物には様々な着色が可能である
上、熱線を吸収しないので、様々の用途に用いることが
できる。
As described above, the heat ray non-absorbable coloring composition of the present invention, a molded article composed of the coloring composition, and a molded article having a layer composed of the coloring composition The layer composition can be colored in various ways and does not absorb heat rays, so that it can be used for various applications.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1及び比較例1で得た黒色系塗膜付金
属板の可視−近赤外分光反射スペクトルを示す図であ
る。
FIG. 1 is a view showing a visible-near-infrared spectral reflection spectrum of a metal plate with a black coating film obtained in Example 1 and Comparative Example 1.

【図2】 実施例3及び比較例3で得た灰色系塗膜付金
属板の可視−近赤外分光反射スペクトルを示す図であ
る。
FIG. 2 is a view showing a visible-near-infrared spectral reflection spectrum of a metal plate with a gray coating film obtained in Example 3 and Comparative Example 3.

【図3】 実施例4及び比較例4で得た黒色系塗膜付金
属板の可視−近赤外分光反射スペクトルを示す図であ
る。
FIG. 3 is a view showing a visible-near-infrared spectral reflection spectrum of the metal plate with a black coating film obtained in Example 4 and Comparative Example 4.

【図4】 実施例5及び比較例5で得た暗緑色系塗膜の
可視−近赤外分光反射スペクトルを示す図である。
FIG. 4 is a view showing a visible-near-infrared spectral reflection spectrum of the dark green coating film obtained in Example 5 and Comparative Example 5.

【図5】 実施例6、7及び比較例6で得た黒色系樹脂
フィルムの可視−近赤外分光透過スペクトルを示す図で
ある。
FIG. 5 is a view showing the visible-near-infrared spectral transmission spectra of the black resin films obtained in Examples 6, 7 and Comparative Example 6.

【図6】 実施例8及び比較例7で得た黒色系樹脂の可
視−近赤外分光反射スペクトルを示す図である。
FIG. 6 is a view showing a visible-near-infrared spectral reflection spectrum of the black resin obtained in Example 8 and Comparative Example 7.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】金属半導体微粉末を含有することを特徴と
する熱線非吸収性着色組成物。
1. A heat ray non-absorbing colored composition comprising a metal semiconductor fine powder.
【請求項2】熱線非吸収性着色組成物が熱線反射性着色
組成物であることを特徴とする請求項1記載の着色組成
物。
2. The coloring composition according to claim 1, wherein the heat ray non-absorbing coloring composition is a heat ray reflecting coloring composition.
【請求項3】熱線非吸収性着色組成物が熱線透過性着色
組成物であることを特徴とする請求項1記載の着色組成
物。
3. The coloring composition according to claim 1, wherein the heat ray non-absorbing coloring composition is a heat ray transmitting coloring composition.
【請求項4】金属半導体微粉末がシリコン微粉末である
ことを特徴とする請求項1〜3のいずれかに記載の着色
組成物。
4. The coloring composition according to claim 1, wherein the metal semiconductor fine powder is a silicon fine powder.
【請求項5】金属半導体粉末の平均粒径が100μm以
下であることを特徴とする請求項1〜4のいずれかに記
載の着色組成物。
5. The colored composition according to claim 1, wherein the metal semiconductor powder has an average particle size of 100 μm or less.
【請求項6】金属半導体微粉末と共に他の顔料を含有す
ることを特徴とする請求項1〜5のいずれかに記載の着
色組成物。
6. The coloring composition according to claim 1, further comprising another pigment together with the metal semiconductor fine powder.
【請求項7】熱線非吸収性着色組成物が着色樹脂組成物
であることを特徴とする請求項1〜6のいずれかに記載
の着色組成物。
7. The coloring composition according to claim 1, wherein the heat ray non-absorbing coloring composition is a coloring resin composition.
【請求項8】熱線非吸収性着色組成物が着色塗料組成物
であることを特徴とする請求項1〜6のいずれかに記載
の着色組成物。
8. The coloring composition according to claim 1, wherein the heat ray non-absorbing coloring composition is a coloring coating composition.
【請求項9】請求項7記載の着色組成物により構成され
たことを特徴とする成型物。
9. A molded article comprising the coloring composition according to claim 7.
【請求項10】請求項7又は8記載の着色組成物により
構成された層を有することを特徴とする成型物。
10. A molded article having a layer composed of the coloring composition according to claim 7 or 8.
JP10138268A 1997-08-28 1998-05-20 Heat-ray-nonabsorbent coloring composition containing metal semiconductor powder and molded article Pending JPH11130966A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10138268A JPH11130966A (en) 1997-08-28 1998-05-20 Heat-ray-nonabsorbent coloring composition containing metal semiconductor powder and molded article
PCT/JP1998/003812 WO1999011715A1 (en) 1997-08-28 1998-08-27 Non-heat-absorbing color composition containing fine metallic semiconductor powder, and moldings

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-232347 1997-08-28
JP23234797 1997-08-28
JP10138268A JPH11130966A (en) 1997-08-28 1998-05-20 Heat-ray-nonabsorbent coloring composition containing metal semiconductor powder and molded article

Publications (1)

Publication Number Publication Date
JPH11130966A true JPH11130966A (en) 1999-05-18

Family

ID=26471363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10138268A Pending JPH11130966A (en) 1997-08-28 1998-05-20 Heat-ray-nonabsorbent coloring composition containing metal semiconductor powder and molded article

Country Status (2)

Country Link
JP (1) JPH11130966A (en)
WO (1) WO1999011715A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180624A (en) * 1997-09-09 1999-03-26 Nisshin Steel Co Ltd Heat reflecting coating composition and coated product
JPH11263872A (en) * 1998-03-18 1999-09-28 Toyoda Gosei Co Ltd Resin molded product for automobile interior, this resin material and coating
JPH11302549A (en) * 1998-04-22 1999-11-02 Origin Electric Co Ltd Infrared-reflective composition and infrared reflector
JP2000129172A (en) * 1998-10-27 2000-05-09 Nagashima Tokushu Toryo Kk Heat-shielding coating and its coating method
WO2003064543A1 (en) * 2002-01-30 2003-08-07 Qinetiq Limited Dark coatings
JP2004027241A (en) * 2003-10-14 2004-01-29 Nagashima Tokushu Toryo Kk Thermal insulation coating and its coating method
CN107500740A (en) * 2017-09-30 2017-12-22 佛山欧神诺陶瓷股份有限公司 A kind of environment-friendly black Ceramic Tiles and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19940681A1 (en) 1999-08-27 2001-03-01 Basf Ag Cholesteric layer material with improved color fastness and process for its production
JP6513957B2 (en) * 2015-02-06 2019-05-15 株式会社豊田自動織機 Solar heat collector tube, solar light-to-heat converter and solar thermal power generator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515808B2 (en) * 1972-09-11 1980-04-26
JPS6042258B2 (en) * 1976-04-16 1985-09-20 工業技術院長 Paints for light-selective absorption films and light-selective absorption materials
JP3493959B2 (en) * 1996-10-30 2004-02-03 Jsr株式会社 Composition for coating

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180624A (en) * 1997-09-09 1999-03-26 Nisshin Steel Co Ltd Heat reflecting coating composition and coated product
JPH11263872A (en) * 1998-03-18 1999-09-28 Toyoda Gosei Co Ltd Resin molded product for automobile interior, this resin material and coating
JPH11302549A (en) * 1998-04-22 1999-11-02 Origin Electric Co Ltd Infrared-reflective composition and infrared reflector
JP2000129172A (en) * 1998-10-27 2000-05-09 Nagashima Tokushu Toryo Kk Heat-shielding coating and its coating method
WO2003064543A1 (en) * 2002-01-30 2003-08-07 Qinetiq Limited Dark coatings
JP2004027241A (en) * 2003-10-14 2004-01-29 Nagashima Tokushu Toryo Kk Thermal insulation coating and its coating method
CN107500740A (en) * 2017-09-30 2017-12-22 佛山欧神诺陶瓷股份有限公司 A kind of environment-friendly black Ceramic Tiles and preparation method thereof
CN107500740B (en) * 2017-09-30 2020-06-16 佛山欧神诺陶瓷有限公司 Environment-friendly black ceramic tile and preparation method thereof

Also Published As

Publication number Publication date
WO1999011715A1 (en) 1999-03-11

Similar Documents

Publication Publication Date Title
US6017981A (en) Coating material with reflective properties in two wavelength ranges, and absorbent properties in a third wavelength range
CN101341218B (en) White pigment reflecting ir radiation, production and use thereof
TW538108B (en) Transpatent medium having angle-selective transmission or reflection properties and/or absorption properties
KR101867266B1 (en) Titanium dioxide
JP6203713B2 (en) Low-load titanate inorganic pigment used for colors that reflect infrared light
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
JPH11130966A (en) Heat-ray-nonabsorbent coloring composition containing metal semiconductor powder and molded article
US8172935B2 (en) Special effect pigments
CZ292176B6 (en) Coating composition with low emissivity in the heat radiation range and use thereof
JP3262248B2 (en) Anti-reflective coating
US20050163999A1 (en) Fine particles of antimony tin oxide for sunscreen, dispersion thereof for sunscreen material formation, sunscreen material and transparent base material for sunscreen
Xiao et al. Preparation of high near-infrared reflectance mica/(Ni, Sb)-co-doped rutile yellow composite pigment via mechanochemical pretreatment and sintering
CN113388305B (en) Radiation refrigeration composite coating with structural color, application and preparation method
US20060086928A1 (en) Sun shade and dispersion liquid for forming sun shade
JP4104353B2 (en) Paint composition
JP6218003B1 (en) Colored UV protection agent
JP2005255798A (en) Near infrared light-reflective membrane and composition for forming the same
KR102552363B1 (en) A composition, a laminate and a window
JP3386918B2 (en) Coating liquid for ultraviolet absorbing film and glass article
CN108624169A (en) Anti- infrared heat-insulated water paint nanometer titanium dioxide composite material and preparation process
WO2021014981A1 (en) Near-infrared shielding material
JP6183677B1 (en) Colored UV protection agent
JP2002201027A (en) Ito microparticle for daylight screening, method for producing the same, and coating liquid and daylight screening film using the same
YOSHINAGA et al. Preparation of Photochromic White Pigments
JP2005231974A (en) Solar radiation screening material, solar radiation screening composite material, and dispersing liquid used for preparing solar radiation screening material or solar radiation screening composite material