JPS6164127A - X-ray exposure - Google Patents

X-ray exposure

Info

Publication number
JPS6164127A
JPS6164127A JP59186832A JP18683284A JPS6164127A JP S6164127 A JPS6164127 A JP S6164127A JP 59186832 A JP59186832 A JP 59186832A JP 18683284 A JP18683284 A JP 18683284A JP S6164127 A JPS6164127 A JP S6164127A
Authority
JP
Japan
Prior art keywords
ray
resist
exposure
substance
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59186832A
Other languages
Japanese (ja)
Inventor
Koichi Okada
浩一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59186832A priority Critical patent/JPS6164127A/en
Priority to US06/769,054 priority patent/US4702995A/en
Priority to EP85110678A priority patent/EP0172583A3/en
Publication of JPS6164127A publication Critical patent/JPS6164127A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2037Exposure with X-ray radiation or corpuscular radiation, through a mask with a pattern opaque to that radiation
    • G03F7/2039X-ray radiation

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To make possible to be high throughput X-ray exposure by a method wherein a P type X-ray resist is applied to a substance to be processed and X-ray projects wholly on the substance to be processed, consequently X-ray copy using X-ray mask is performed. CONSTITUTION:At first, a P type X-ray resist 2 is applied on a substance to be processed 1. Secondarily, on the substance to be processed 1 which is applied by the P type X-ray resist, the X-ray is projected wholly using a X-ray source 3. Additionally, a X-ray projection (exposure) is performed to necessary region on the substance to be processed 1, which is applied by the P type X-ray resist 2, with the use of a X-ray mask 8 which is composed with a X-ray transmission section 5, a X-ray absorber pattern 6 and substrate 7, and the X-ray source 3. By this fact, high throughput X-ray exposure is enabled using the practical P type X-ray resist.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、1μm以下の微細/4’ターンの複写に威力
を発揮するX線リングラフィの分野におけるX線露光方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an X-ray exposure method in the field of X-ray phosphorography, which is effective for copying fine/4' turns of 1 μm or less.

(従来の技術) X線露光技術は、サブミクロン幅ノ4ターンの確実な高
解像性の故に、将来の極めて有望な複写技術として期待
され、現在各所で精力的な研究、開発が行われている。
(Prior technology) X-ray exposure technology is expected to be an extremely promising copying technology in the future due to its reliable high resolution of 4 turns of submicron width, and active research and development is currently being carried out in various places. ing.

第3図に、従来性われているX線露光の基本的概念図を
示す。同様の図が、1972年に発行された刊行物エレ
クロニクス・レターズ(El@ctronics L@
tters ) 8巻4号、102〜104頁に示され
ている。X線源31よシ放射されたX線32はX線マス
ク33のX線透過部34を通過して、被加工物35上に
塗布されたX@レジスト36に照射される。このときX
線透過部上に形成されたX線吸収体パターン部37にお
いてはX線が通過せず、マスク/4ターンとしての役割
が得られる。
FIG. 3 shows a basic conceptual diagram of conventional X-ray exposure. A similar diagram appeared in the 1972 publication Electronics Letters (El@ctronics L@
tters) Vol. 8, No. 4, pp. 102-104. X-rays 32 emitted from the X-ray source 31 pass through the X-ray transmitting portion 34 of the X-ray mask 33 and are irradiated onto the X@resist 36 coated on the workpiece 35. At this time
X-rays do not pass through the X-ray absorber pattern section 37 formed on the radiation-transmissive section, so that it functions as a mask/four turns.

(発明が解決しようとする問題点) 第3図のX線露光における基本方式が発表されてから、
今日まで多くの研究開発がなされてきたが、l対lの複
写技術である本方式が根本原理である。これまで、X線
源、アライメント方式及び装置、X線マスク、X線レジ
スト等の各個別技術が精力的に型究、開発され、まとま
ったX#i!露光システムとしてもいくつか数え上げる
ことが出来る。まさにX線露光技術の実用化が実現され
つつある段階であると言えるが、現状及び将来において
最大の問題点はスループットであろう。X線露光におい
てスループットを定める要因は、X線源の強度及びこれ
と関連したX線レジストの感度である。すなわち、通常
段もよく用いられる電子ビーム励起X線源は、電子ビー
ム出力のX線への変換効率が〜1O−4と極めて低いこ
とと発散光源であることから、露光部での照射強度は非
常に弱い。
(Problems to be solved by the invention) Since the basic method for X-ray exposure shown in Figure 3 was announced,
Although much research and development has been carried out to date, this system, which is an 1:1 copying technique, is the fundamental principle. Until now, individual technologies such as X-ray sources, alignment methods and devices, X-ray masks, and X-ray resists have been actively researched and developed, and the X#i! There are several types of exposure systems that can be used. Although it can be said that the practical application of X-ray exposure technology is just being realized, the biggest problem at present and in the future will be throughput. The factors that determine throughput in X-ray exposure are the intensity of the X-ray source and the associated sensitivity of the X-ray resist. In other words, the electron beam excitation X-ray source, which is often used in ordinary stages, has an extremely low conversion efficiency of electron beam output to X-rays of ~1O-4 and is a diverging light source, so the irradiation intensity at the exposed part is Very weak.

高輝度X線源として期待されているプラズマX線源は)
4ルス線源でアシ、−個のノ9ルスにおけるX線への変
換効率は返10−2と大きいが、・クルス発生時の種々
のダメージ、電気的Δルス発生のため高寿命スイッチ回
路開発、及び繰)返し速度向上等実用化においては数多
くの問題点が解決されなければならない。また、最近急
に開発の勢いが高まったシンクロトロン軌道放射線源の
場合は、高強度の平行ビームが得られるということで期
待は高いが、まだ開発の途に着いたばかシであ)、実用
性を論するには時期尚早であろう。従って、X線源につ
いて言えば、現状では最も古典的で実績の高い電子ビー
ム励起線源が、実用レベルのX線露光装置において、最
適であると言えよう。この点に関して、すなわち電子ビ
ーム励起線源を用いるとした場合、特にX線レジストの
高感度が必要である。十分なスルーグツトを得るには1
0mJ/cIIL2以下の高感度X線レジストの開発が
必須である。ところで、このような高感度で実用性のあ
るX線レゾストは今のところほとんど見当らない。X!
!レジストの開発の歴史からみても、感度10mJ/c
m”以下で実用のデバイス作製に耐えるものが得られる
には、これからかなシの開発期間が必要と考えられる。
A plasma X-ray source that is expected to be a high-brightness X-ray source)
The conversion efficiency of -9 Lus to X-rays is as high as 10-2 with a 4 Lus source, but the development of a long-life switch circuit was necessary to prevent various damage when the Lus occurs and the generation of electrical delta Luss. , and repetition rate), many problems must be solved for practical use. Furthermore, in the case of synchrotron orbital radiation sources, the development of which has recently gained momentum, there are high expectations as they can provide high-intensity parallel beams, but they are still in the early stages of development.) It is probably too early to discuss gender. Therefore, regarding X-ray sources, it can be said that at present, the most classical and well-proven electron beam excitation source is optimal for practical-level X-ray exposure apparatuses. In this regard, particularly when using an electron beam excitation source, a high sensitivity of the X-ray resist is required. 1 to get enough slugs
It is essential to develop a highly sensitive X-ray resist of 0 mJ/cIIL2 or less. By the way, such a highly sensitive and practical X-ray resistor is hardly found at present. X!
! Considering the history of resist development, the sensitivity is 10 mJ/c.
It is thought that a long development period will be required in order to obtain something that can withstand the production of practical devices with a size of less than m''.

一般の露光装置の実用上の性能において、最も必要な要
素の一つは、スルーグツトであるが、以上述べたように
X線露光技術においても、スループットの向上が重要な
課題である。
One of the most necessary elements in the practical performance of a general exposure apparatus is throughput, and as mentioned above, improving throughput is also an important issue in X-ray exposure technology.

本発明の目的は、このような従来の問題点を除去せしめ
て、高スループツトX線露光を可能とする新たなXff
laM光を可能とする新たなX線露光方法を提供するこ
とにある◎ (問題点を解決するための手段) 本発明は、X線源から放射されるX線マスクを通してX
線レジストが塗布された被加工物に照射するXa、露光
方式において、前記被加工物上にポジ型X線レジストを
塗布し、この被加工物上にX線を全面照射し、続いて前
記X線マスクを用いたX線複写を行うことを特徴とする
xfIA露光方法である。
An object of the present invention is to eliminate such conventional problems and to develop a new Xff that enables high-throughput X-ray exposure.
The purpose of the present invention is to provide a new X-ray exposure method that enables laM light. (Means for solving the problems)
In the exposure method, a positive X-ray resist is applied to the workpiece, the entire surface of the workpiece is irradiated with X-rays, and then the Xa-ray resist is applied to the workpiece. This is an xfIA exposure method characterized by performing X-ray copying using a ray mask.

(実施例) 以下本発明の構成について、図面を参照しながら説明す
る。第1図(&)〜(c)は、本発明に係るX、@露光
方法の一実施例を示す概略図である。まず、第1図(、
)において、第一段階として被加工物1上にデジ型X線
レジスト2を塗布する。次に第1図(b) において、
第二段階としてX線源3を用いてデジ型X線レジストが
塗布された被加工物1上に、X線4を全面照射する。さ
らに1第三段階として、第1図(C)に示すようにX線
透過部5、X線吸収体・臂ターン部6.及び支持部7か
ら構成されるX線マスク8とX線源3とを用いて、デジ
型X線レジスト2が塗布された被加工物l上の必要な領
域にX線照射(露光)を行う。以上が本発明の基本構成
であるが、その原理について第2図(a) 、 (b)
を用いて説明する。図はポジ型X線レジストの感度特性
が、X線ドース量に対する残膜率の関係として示しであ
る。
(Example) The configuration of the present invention will be described below with reference to the drawings. FIGS. 1(&) to (c) are schematic diagrams showing an embodiment of the X,@ exposure method according to the present invention. First, Figure 1 (,
), as a first step, a digital X-ray resist 2 is applied onto the workpiece 1. Next, in Figure 1(b),
In the second step, the entire surface of the workpiece 1 coated with the digital X-ray resist is irradiated with X-rays 4 using the X-ray source 3. Furthermore, as a third step, as shown in FIG. X-ray irradiation (exposure) is performed on a required area on the workpiece l coated with the digital X-ray resist 2 using the X-ray mask 8 and the X-ray source 3, which are composed of the X-ray mask 8 and the support part 7. . The above is the basic configuration of the present invention, and its principle is shown in Figures 2 (a) and (b).
Explain using. The figure shows the sensitivity characteristics of a positive X-ray resist as a relationship between the residual film rate and the X-ray dose.

第2図(、)は、X線マスクのX線透過部下におけるX
線レジストの感度特性を表わしておシ、第2図(b)は
X線吸収体ノ4ターン部下におけるX線レジスト感度特
性を表わしている。第1図伽)に示したX線全面照射に
よって、X線レジストにDlのドース量が与えられると
する。このDlはボッ型X線レジストの感度DOo (
現像後腹厚が零になるドース量)よシ小さな値に設定さ
れる。第2図(、)及び(b)においてDlが示されて
いるが、X線マスク無しのX線全面照射であるから、等
しいドース量が与えられる。次に第1図(c)に示した
X線マスクを用いたX線露光に移る。このときは、第2
図(a)の場合においては感度D0を越えたX線ドース
D2、ま憔2図(b)の場合においては感度D0よシ小
さくD2よシ大きなX線ドースD3が、XMレゾストに
与えられるような設定は可能である。D3のX線ドース
はX線吸収体ノ4ターン部を通過してきた少量のX線に
よる、X+’Jレソストへの照射を意味する。言い換え
ると(、)の場合においては、−回目にはDlのX線ド
ース量、二回目には(D2−D、 )のX線ドース量が
X線レジストに与えられ、(b)の場合においては、−
回目にはり、のXaドース量、二回目には(D5−Dl
)のX線ドース量がX線レジストに与えることになる。
Figure 2 (,) shows the X under the X-ray transmission area of the X-ray mask.
FIG. 2(b) shows the sensitivity characteristics of the X-ray resist under the four turns of the X-ray absorber. It is assumed that a dose of Dl is applied to the X-ray resist by irradiating the entire surface with X-rays as shown in FIG. This Dl is the sensitivity DOo (
The dose amount at which the thickness after development becomes zero) is set to a smaller value. Although Dl is shown in FIGS. 2(a) and (b), the same dose is given because the entire surface is irradiated with X-rays without an X-ray mask. Next, the process moves to X-ray exposure using the X-ray mask shown in FIG. 1(c). At this time, the second
In the case of Figure (a), an X-ray dose D2 that exceeds the sensitivity D0 is given to the XM Resist, and in the case of Figure 2 (b), an X-ray dose D3 that is smaller than the sensitivity D0 and larger than D2 is given to the XM Resist. settings are possible. The X-ray dose of D3 means the irradiation of the X+'J resist by a small amount of X-rays that have passed through the four-turn section of the X-ray absorber. In other words, in the case of (,), the X-ray dose of Dl is given to the X-ray resist in the -th time, the X-ray dose of (D2-D, ) is given to the X-ray resist in the second time, and in the case of (b), is -
In the second time, the Xa dose is (D5-Dl).
) will be applied to the X-ray resist.

このようにして、X線吸収体ノぐターン部において残膜
率が1、X線透過部において残膜率が雰となるようなボ
ッ型複写ノ々ターンを得ることができる。
In this way, it is possible to obtain a round copy no-turn in which the residual film ratio is 1 in the X-ray absorber no-turn part and the residual film ratio is 1 in the X-ray transmissive part.

以上の説明において、第一回目のXi全面照射は、見掛
は上ボッ型X線レジストの感度をDlだけ差し引いて向
上させたと考えることができる。すなわち感度がDoか
ら(Do−Dl)になったということである。よって本
発明によれば、X線レジストの感度を、二回のX線露光
によって大巾に向上出来ると考えられる。しかも、この
二回のX線露光は、装置を複数台(一つはX線源系のみ
でもよい)用意すれば、並列処理が可能である。このこ
とは、大巾にスルーグツトを向上できることを意味する
In the above explanation, it can be considered that the first full surface irradiation with Xi apparently improves the sensitivity of the top-bottomed X-ray resist by subtracting Dl. That is, the sensitivity has changed from Do to (Do-Dl). Therefore, according to the present invention, it is considered that the sensitivity of the X-ray resist can be greatly improved by two X-ray exposures. Moreover, these two X-ray exposures can be processed in parallel by providing a plurality of apparatuses (one may be only an X-ray source system). This means that the throughput can be greatly improved.

X線を全面照射したボッ型X線レジストの塗布された被
加工物を多数枚準備して、X線マスクを用いたXa露光
を行うことによって、露光時間の大巾な短縮すなわち高
スルーグツトが得られる。
By preparing a large number of workpieces coated with a top-shaped X-ray resist that has been fully irradiated with X-rays and performing Xa exposure using an X-ray mask, the exposure time can be greatly shortened, that is, a high throughput can be achieved. It will be done.

なお、本発明で用いられるボッ型X線レジストを考えた
場合、感度よシもr値の方がよプ重要である。すなわち
高γのレジストの方が見掛は上の感度(Do−Dl)を
よシ小さく出来るからである。
Note that when considering the Bottled X-ray resist used in the present invention, the r value is more important than the sensitivity. That is, the higher γ resist allows the apparent sensitivity (Do-Dl) to be much smaller.

(発明の効果) 以上説明したように本発明によれば、第1に実用的ポジ
型X線レジストを用いた高スルーグツトX線露光が可能
となシ、第2にボッ型X線レジストを開発する際により
大きな許容度(すなわち高r値ボッ型X線レジストの開
発が重要である)を与えることができ、第3に電子ビー
ム励起X線源等を用いた実用的X線露光システムの早期
市販化を実現できる効果を有するものである。
(Effects of the Invention) As explained above, according to the present invention, firstly, high-throughput X-ray exposure using a practical positive-type X-ray resist is possible, and secondly, a bottom-type X-ray resist has been developed. Thirdly, the development of a practical X-ray exposure system using an electron beam-excited X-ray source, etc. can be achieved at an early stage. This has the effect of realizing commercialization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は(a) 、 (b) 、 (C)は本発明にか
かる一実施例であるX線露光方法を工程順に説明するた
めの概略図、第2図(a) 、 (b)は本発明の詳細
な説明する残膜率とX線ドース量との関係を示す図、第
3図は従来のX線露光の概念図である。 1・・・被加工物、2・・・ボッ型X線レジスト、3・
・・X線源、4・・・X線、5・・・X線透過部、6・
・・X線吸収体・ぐターン部、7・・・支持部、8・・
・X線マスク。 第1図 (α) (C) (α) ×奔泉ドース量 (b) 力泉ドース量
Figures 1 (a), (b), and (C) are schematic diagrams for explaining step-by-step an X-ray exposure method according to an embodiment of the present invention, and Figures 2 (a) and (b) are FIG. 3 is a conceptual diagram of conventional X-ray exposure, which is a diagram showing the relationship between the residual film rate and the X-ray dose, which will be explained in detail in the present invention. 1... Workpiece, 2... Bot type X-ray resist, 3...
...X-ray source, 4...X-ray, 5...X-ray transmission section, 6.
... X-ray absorber turn part, 7... Support part, 8...
・X-ray mask. Figure 1 (α) (C) (α) × Benchen dose (b) Chikarasen dose

Claims (1)

【特許請求の範囲】[Claims] (1)X線源から放射されるX線を、X線マスクを通し
てX線レジストが塗布された被加工物に照射するX線露
光方法において、前記被加工物上にポジ型X線レジスト
を塗布し、この被加工物上にX線を全面照射し、続いて
前記X線マスクを用いたX線複写を行うことを特徴とす
るX線露光方法。
(1) In an X-ray exposure method in which a workpiece coated with an X-ray resist is irradiated with X-rays emitted from an X-ray source through an X-ray mask, a positive X-ray resist is applied on the workpiece. An X-ray exposure method characterized in that the entire surface of the workpiece is irradiated with X-rays, and then X-ray copying is performed using the X-ray mask.
JP59186832A 1984-08-24 1984-09-06 X-ray exposure Pending JPS6164127A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59186832A JPS6164127A (en) 1984-09-06 1984-09-06 X-ray exposure
US06/769,054 US4702995A (en) 1984-08-24 1985-08-26 Method of X-ray lithography
EP85110678A EP0172583A3 (en) 1984-08-24 1985-08-26 Method of x-ray lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59186832A JPS6164127A (en) 1984-09-06 1984-09-06 X-ray exposure

Publications (1)

Publication Number Publication Date
JPS6164127A true JPS6164127A (en) 1986-04-02

Family

ID=16195395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59186832A Pending JPS6164127A (en) 1984-08-24 1984-09-06 X-ray exposure

Country Status (1)

Country Link
JP (1) JPS6164127A (en)

Similar Documents

Publication Publication Date Title
US4028547A (en) X-ray photolithography
EP0605964B1 (en) Electron lithography using a photocathode
US4088896A (en) Actinic radiation emissive pattern defining masks for fine line lithography and lithography utilizing such masks
JPS6164127A (en) X-ray exposure
US4702995A (en) Method of X-ray lithography
US4604345A (en) Exposure method
EP0209152B1 (en) Pre-exposure method for increased sensitivity in high contrast resist development
JP3673431B2 (en) Lithographic projection apparatus
JPS6154625A (en) X-ray exposure process
JPS6154623A (en) X-ray exposure process
JPS6154624A (en) X-ray exposure process
Smith et al. X-ray lithography
JPS5915380B2 (en) Fine pattern transfer device
JPS61160935A (en) X-ray exposure method
Mader Microstructuring in semiconductor technology
JPH05136038A (en) Electron beam lithographic device
Piestrup et al. Single-stepper soft x-ray source for step-and-scan tools
JPH05136026A (en) Pattern forming method
So et al. A Model For Optimal Beamline Design For Synchrotron Radiation X-Ray Lithography
Brodie et al. Pattern Generation
JPS63181426A (en) System for lithography
JPH04101344A (en) Cylindrical electron beam generating apparatus and, method for exposure to electron beam
Buckley Illumination system for X-ray lithography
Toubhans et al. X-ray lithography with laser-plasma sources
Caruthers et al. Soft X-Ray Lithography at Berkeley's Advanced Light Source