JPS6163542A - Crystallized glass having high thermal expansion coefficient and its preparation - Google Patents

Crystallized glass having high thermal expansion coefficient and its preparation

Info

Publication number
JPS6163542A
JPS6163542A JP18283484A JP18283484A JPS6163542A JP S6163542 A JPS6163542 A JP S6163542A JP 18283484 A JP18283484 A JP 18283484A JP 18283484 A JP18283484 A JP 18283484A JP S6163542 A JPS6163542 A JP S6163542A
Authority
JP
Japan
Prior art keywords
glass
thermal expansion
crystallized glass
expansion coefficient
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18283484A
Other languages
Japanese (ja)
Other versions
JPH0211538B2 (en
Inventor
Toshiharu Yamashita
俊晴 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP18283484A priority Critical patent/JPS6163542A/en
Publication of JPS6163542A publication Critical patent/JPS6163542A/en
Publication of JPH0211538B2 publication Critical patent/JPH0211538B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a crystallized glass having high thermal expansion coefficient and suitable for chemical milling, etc., by melting and forming a glass raw material containing nucleation substance, and carrying out the thermal treatment and crystallization under controlled exposure to ultraviolet radiation at a specific temperature range. CONSTITUTION:100pts. of a base glass containing 76-84(wt)% SiO2, 1-7% Al2O3, 8-13% Li2O, 0-3% Na2O, 0-6% K2O, O-5% MgO, CaO, SrO, BaO, ZnO and/or PbO, and 0-3% B2O3 is added with 0.003-0.05% CeO2, 0.005-0.03% Au, 0.001-0.20% Ag, 0-0.5% Sb2O3, etc. The glass having the above composi tion is formed by melting, exposed to a controlled dose of ultraviolet radiation, and heat-treated at 780-840 deg.C. Fine crystals of lithium metasilicate, lithium disilicate and alpha-quartz are precipitated in the glass by this process. A crystal lized glass having a thermal expansion coefficient adjustable arbitrary within 110X10<-7>-145X10<-7>/ deg.C can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は磁気ヘッド用基板材のごとき熱膨張係数の大
きな結晶化ガラスおよびその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a crystallized glass having a large coefficient of thermal expansion, such as a substrate material for a magnetic head, and a method for producing the same.

[従来の技術] VTRや電算機等の磁気記録装置では、記録の高密度化
、高精度化と装置の小型化、低価格化が進められており
、これを実現するために記録媒体とヘッドに新たな素材
や製造法の導入が図られている。
[Prior Art] In magnetic recording devices such as VTRs and computers, advances are being made to increase recording density and accuracy, and to reduce device size and cost. Efforts are being made to introduce new materials and manufacturing methods.

磁気記録テープやディスクの書込み、読出しに使われる
磁気ヘッドには、これまで機械加工して作られるソフト
フェライトヘッドが使われてきた。
So far, machined soft ferrite heads have been used for magnetic heads used for writing and reading magnetic recording tapes and disks.

しかしソフトフェライトヘッドでは飽和磁気密度が高く
なり、10M l−1z以上の高周波域では透磁率が急
激に低下するとか或いは高密度記録に伴って狭くなるト
ラック幅を加工できない等の問題があり、このため非磁
性体の基板にセンダスト、パーマロイやアモルファス金
属等を蒸着またはスパッターしてIC製作手法と同様の
方法で作られる薄膜磁気ヘッドの開発が盛んに行なわれ
ている。
However, soft ferrite heads have problems such as a high saturation magnetic density, a sharp drop in magnetic permeability in the high frequency range of 10M l-1z or more, and an inability to process track widths that are becoming narrower with high-density recording. Therefore, thin film magnetic heads are being actively developed which are manufactured by vapor deposition or sputtering of sendust, permalloy, amorphous metal, etc. on a non-magnetic substrate using a method similar to that used for manufacturing ICs.

この基板材料には、粉体を焼結して作られるセラミック
やガラス中に結晶を析出させた結晶化ガラスが候補とし
て上げられている。これらの材料では、磁性7ig膜と
基板との熱膨張係数差が大きいと基板が割れるか或いは
磁性aj!が剥離または切れたりし、小さくてもそりの
原因となるため、基板と磁性薄膜の熱膨張係数の一致は
基板に要求される重要な特性であるが、セラミック基板
では磁性薄膜の熱膨張係数に合った高熱膨張をも2基板
材料は未だ得られていない。また基板には気孔がないこ
とおよび研磨によって良好な平面性と面粗度が得られる
ことが要求されるが粉体を焼結して作られるセラミック
では、気孔が全くないものを得ることは困難であり、し
かも面粗度の小さい平面を得るためには、粉体の粒度を
細かく、かつ揃えなければならないので非常に高価とな
る。
Candidates for this substrate material include ceramics made by sintering powder and crystallized glass made by depositing crystals in glass. With these materials, if the difference in thermal expansion coefficient between the magnetic 7ig film and the substrate is large, the substrate may crack or the magnetic aj! Even if it is small, it may peel or break, causing warping, so matching the thermal expansion coefficient of the substrate and the magnetic thin film is an important property required for the substrate. However, for ceramic substrates, the thermal expansion coefficient of the magnetic thin film A two-substrate material with matching high thermal expansion has not yet been obtained. Additionally, the substrate is required to have no pores and to be able to obtain good flatness and surface roughness by polishing, but it is difficult to obtain a ceramic made by sintering powder that is completely free of pores. Moreover, in order to obtain a flat surface with low surface roughness, the particle size of the powder must be fine and uniform, making it very expensive.

一方、結晶化ガラスは所要のガラス成分のものを溶融、
成形したのち、適当な上界速度で熱処理して結晶核、−
次、二次結晶を順次成長させ、ガラス全体に微結晶を析
出させることによって作られるので、無気孔と良好な研
磨面を得ることは容易である。結晶化ガラスにおける析
出結晶の微細化技術に関しては、T!02やZrO2の
酸化物、弗化物および金属コロイド等の結晶生成の核と
して利用することは既に公知である。更にLfzo−A
ff20y  S io2系で感光性の塩化銀、堵感剤
の酸化セリウムを含むガラスは紫外線の露光により照射
部分に潜像が生じ、これを熱処理すると銀のコロイドが
発生し、更に高温ではLi2O・SiO2の結晶が析出
する。この結晶の弗酸への溶解速度がガラス部分の数十
倍も速いので、析出部分のみ溶し去ることができるが、
これを利用して光学的に画像を移し精密に切削できるた
めドツトプリンター用ワイヤーガイド、インクジェット
プリンター用ヘッドなどに使用されている。このような
化学切削用ガラスの製造法は、例えば特公昭32−50
80号公報に記述されている。すなわち特公昭32−5
080号公報には、付記1その伯に明示されているごと
く元のガラスの軟化点(約800℃)〜950℃の温度
で、(1)ジ硅酸リチウム、(2ベ一タ!!1%輝石、
(3)ベータ石英、(4)ベータ廟輝石と石英との結晶
性固溶体、(5)ジ硅酸リチウム並びにベータ動輝石、
(61ジ硅酸リチウム並びにベータ石英、(7)ジ硅酸
すヂウム並びにベータ拗輝石と石英との結晶性固溶体、
等の微結晶を生成せしめるに充分な時間加熱することに
より高い機械的強度を有する陶磁器様窯業物品を製造す
る方法が開示されている。
On the other hand, crystallized glass is produced by melting the required glass components.
After molding, heat treatment is performed at an appropriate upper bound speed to form crystal nuclei, −
Next, it is made by sequentially growing secondary crystals and depositing microcrystals over the entire glass, so it is easy to obtain a porosity-free and well-polished surface. Regarding the technology for refining precipitated crystals in crystallized glass, please refer to T! It is already known that ZrO2 and ZrO2 can be used as nuclei for crystal formation of oxides, fluorides, metal colloids, and the like. Furthermore, Lfzo-A
ff20y S io2 type glass containing photosensitive silver chloride and cerium oxide as a sensitizing agent produces a latent image in the irradiated area when exposed to ultraviolet rays, and when this is heat-treated, silver colloid is generated, and furthermore, at high temperatures, Li2O・SiO2 crystals precipitate. The dissolution rate of these crystals in hydrofluoric acid is several tens of times faster than that of the glass portion, so only the precipitated portion can be dissolved away.
This allows images to be transferred optically and precisely cut, so it is used in wire guides for dot printers, heads for inkjet printers, etc. This method of manufacturing glass for chemical cutting is known, for example, from Japanese Patent Publication No. 32-50.
It is described in Publication No. 80. In other words, Special Public Interest Publications 1973-5
Publication No. 080 states that (1) lithium disilicate, (2 beta!!1) lithium disilicate, (2 beta!!1) %pyroxene,
(3) beta quartz, (4) crystalline solid solution of beta pyroxene and quartz, (5) lithium disilicate and beta pyroxene,
(61 Lithium disilicate and beta quartz, (7) Sodium disilicate and a crystalline solid solution of beta silicate and quartz,
Disclosed is a method for producing ceramic-like ceramic articles having high mechanical strength by heating for a sufficient period of time to form microcrystals such as porcelain.

[発明が解決しようとする問題点] 上記特公昭32−5080号公報は、機械的強度の大き
な結晶化ガラスを得てはいるが、結晶化熱処理は結晶性
メタ硅酸リチウムを本質的に結晶性ジ硅酸リチウムに変
化させるためと、ガラス母体を結晶性に本質的に騒人に
変化させるために行っており、析出結晶は機械的強度の
観点から限定されたものと考えられ、むしろメタ珪酸リ
チウム結晶は除外されている。また結晶化温度は890
℃であるが、このような高温で熱処理された結晶化ガラ
スでは、メタおよび硅酸リチウム、α−石英の結晶共存
はもはや起りえず、このために熱膨張係数は110X 
10−1/’C以下となってしまうであろう。紫外線露
光条件については詳細な記載はないが、通常析出結晶を
微細にし、高強度を得るための露光伍は多く、このよう
な条件で露光された結晶化ガラスは、上記熱処理温度の
場合と同様に3結晶の共存が起りにくくなるため、やは
り熱膨張係数は110X 10’/ ’C以下となって
しまう。
[Problems to be Solved by the Invention] Although the above-mentioned Japanese Patent Publication No. 32-5080 obtains crystallized glass with high mechanical strength, the crystallization heat treatment essentially converts crystalline lithium metasilicate into crystals. This is done to change the glass matrix into crystalline lithium disilicate, and to change the glass matrix into crystallinity, and the precipitated crystals are thought to be limited from the viewpoint of mechanical strength, and are rather metastatic. Lithium silicate crystals are excluded. Also, the crystallization temperature is 890
℃, but in crystallized glass heat-treated at such a high temperature, crystal coexistence of meta, lithium silicate, and α-quartz can no longer occur, and therefore the thermal expansion coefficient is 110X.
It would be less than 10-1/'C. Although there are no detailed descriptions of the ultraviolet exposure conditions, there are usually many exposure steps to make the precipitated crystals fine and to obtain high strength, and the crystallized glass exposed under these conditions is similar to the heat treatment temperature mentioned above. Since the coexistence of three crystals becomes difficult to occur, the coefficient of thermal expansion becomes 110×10'/'C or less.

上記の点に鑑み、本発明は薄膜磁気ヘッド用基板材料の
ごとき化学切削用ガラスとして好適な結晶化ガラス、特
に熱膨張係数が110〜145X 1o−7/’Cの結
晶化ガラスを提供すること、並びにその結晶化ガラスを
容易に製造する方法を提供することを目的とするもので
ある。
In view of the above points, the present invention provides a crystallized glass suitable as a chemical cutting glass such as a substrate material for a thin film magnetic head, particularly a crystallized glass having a coefficient of thermal expansion of 110 to 145X 1o-7/'C. The object of the present invention is to provide a method for easily manufacturing the crystallized glass.

L問題点を解決するための手段] 上記の目的を達成することは、次のような要素を持つこ
とを意味する。すなわち、 イ、非磁性体であること。
Means for Solving Problem L] Achieving the above objective means having the following elements. In other words, a. It must be a non-magnetic material.

口、磁性薄膜との熱膨張係数の一致性が良好で、膜付は
後にそりが生じないこと。
The coefficient of thermal expansion should match well with the magnetic thin film, and no warping will occur after the film is attached.

ハ、磁性薄膜と相性が良く耐着強度が十分であること。C. It must be compatible with magnetic thin films and have sufficient adhesion resistance.

ニ、磁性a膜との反応がないこと。D. There should be no reaction with the magnetic a film.

ホ、気孔がないこと。Ho, there are no pores.

へ1強度が大きいこと。To1: High strength.

ト、耐摩耗性が磁気材料と同等であること。and wear resistance equivalent to that of magnetic materials.

チ、良好な平面性と面粗さが得られること。H. Good flatness and surface roughness can be obtained.

す、切断工程でチッピングが起りにくいこと。- Chipping is less likely to occur during the cutting process.

等を満足することである。etc. is to be satisfied.

この発明は上記目的を達成する為には結晶化ガラスが最
適であり、かつ結晶核物質含有ガラス原料を溶融、成形
してなるガラスを特定の温度域で熱処理結晶化すること
によって熱膨張係数が異常に大きくなること、並びにこ
の熱膨張係数が紫外線の露光Rによっても変化すること
を見出して完成したものである。すなわち、重a%で、
5i0276〜84%、Al12031〜7%、Li0
28〜13%、 Na2o 0〜3%、K2O0〜6%
、MOOCaOlSrO,Bad、ZnO及びPbOの
一種又は合量0〜5%、B2O:10〜3%からなる基
礎ガマラス1(10重量部に対してC8020,003
〜0.05%、 A U 0.0005〜0.03%お
よび/またはAg  0.001〜0.20%および5
b2030〜0.5%を加えてなるガラスを熱処理して
ガラス中に微結晶を析出さけた結晶化ガラスで析出した
主結晶がメタ珪酸リチウム、ジ珪酸リチウム及びα−石
英で、かつその熱膨張係数が110X 10  /’C
から148X 10−7/”Cであることを特徴とする
結晶化ガラスに関するものである。
In order to achieve the above object, this invention finds that crystallized glass is most suitable, and that the coefficient of thermal expansion is improved by heat-treating and crystallizing glass made by melting and forming a glass raw material containing a crystal nucleus substance in a specific temperature range. This was completed after discovering that the thermal expansion coefficient becomes abnormally large and that this coefficient of thermal expansion also changes depending on the exposure R of ultraviolet rays. That is, in weight a%,
5i0276~84%, Al12031~7%, Li0
28-13%, Na2O 0-3%, K2O 0-6%
, MOOCaOlSrO, Bad, ZnO and PbO or a total amount of 0 to 5%, B2O: 10 to 3%.
~0.05%, A U 0.0005-0.03% and/or Ag 0.001-0.20% and 5
The main crystals precipitated in the crystallized glass produced by heat-treating the glass with 0.5% b2030 to precipitate microcrystals in the glass are lithium metasilicate, lithium disilicate, and α-quartz, and their thermal expansion The coefficient is 110X 10 /'C
The present invention relates to a crystallized glass characterized in that the temperature is 148×10 −7 /”C.

更にこの結晶化ガラスの熱膨張係数の調節をガラスへの
紫外線露光量調節と昇温中ガラスの転移点以上の温度で
析出したメタ珪酸リチウム結晶がジ珪酸リチウム結晶に
変る温度域780〜840″C間における結晶化温度の
調節によって行うことを特徴とする熱膨張係数の大きな
結晶化ガラスの製造法に関する。
Furthermore, the coefficient of thermal expansion of this crystallized glass is adjusted by adjusting the amount of ultraviolet rays exposed to the glass and by adjusting the temperature range of 780 to 840'' in which lithium metasilicate crystals precipitated at a temperature higher than the transition point of the glass change to lithium disilicate crystals during heating. The present invention relates to a method for producing crystallized glass having a large coefficient of thermal expansion, which is carried out by adjusting the crystallization temperature between C and C.

次に本発明の限定理由について述べる。Next, the reasons for the limitations of the present invention will be described.

本発明によるガラスは、いわゆる化学切削用は感光性ガ
ラスに屈するガラスで増感剤としてCeO2を、そして
核形成剤とし、AUおよび/またはAgを含むリチウム
珪酸リチウム塩ガラスである。CeO2は0.003%
以下では増感効果が乏しく、o、osx以上では感度が
よすざる。また核形成剤のAUとAgは単独又は1緒に
加えることがテキルが、A u カO,0O05%以下
、或イLt A Qがo、oo1%以下では核形成が不
十分となり、またA u  0.03X、 A go、
20%以上の添加ハカラスニ溶は込まないので無駄であ
る。
The glass according to the invention is a so-called photosensitive glass for chemical cutting and is a lithium lithium silicate glass containing CeO2 as a sensitizer and AU and/or Ag as a nucleating agent. CeO2 is 0.003%
Below, the sensitizing effect is poor, and above o, osx, the sensitivity is poor. In addition, the nucleating agents AU and Ag should be added alone or together; if the nucleating agent is less than 5% of Au, O, 00, or less than 1% of O, oo, nucleation will be insufficient; u 0.03X, A go,
Addition of more than 20% of the Hakarasuni solution is wasteful as it will not be incorporated.

基板ガラスはメタ珪酸リチウム、ジ珪酸リチウムおよび
α−石英の結晶が生成しやすい組成からなっており、5
i0276%以下、L!0213%以上では熱膨張係数
を大きくする効果の大きいα−石英の析出段が少なくり
 110X 10−7/ ’C以上の熱膨張係数は得ら
れなくなり、5iOz  84%以上、LiO28%以
上では珪酸塩結晶G)が少なくなりすぎると共に、ガラ
スの溶融が困■となる。
The substrate glass has a composition that facilitates the formation of crystals of lithium metasilicate, lithium disilicate, and α-quartz.
i0276% or less, L! At 0213% or more, the number of precipitation stages of α-quartz, which has a large effect of increasing the thermal expansion coefficient, decreases, making it impossible to obtain a thermal expansion coefficient of 110X 10-7/'C or more. As crystals G) become too small, it becomes difficult to melt the glass.

また、Al1203はガラスの化学耐久性をよくするた
めに、1%以上加えるが7%以上ではベータ鋤輝石結晶
が析出し、熱膨張係数を小さくしてしまう。Na2Oお
よびに20は、ガラスの溶融性をよく、又に20はメタ
珪酸リチウム結晶の析出を促進するので加えられるが、
6%以上では結晶が析出しにくくなる。
Further, Al1203 is added in an amount of 1% or more to improve the chemical durability of the glass, but if it is more than 7%, beta-vopyroxene crystals will precipitate, reducing the coefficient of thermal expansion. Na2O and 20 are added because they improve the melting properties of the glass, and 20 promotes the precipitation of lithium metasilicate crystals.
If it is 6% or more, crystals will be difficult to precipitate.

MQO,caolSrO,Bad、ZnOおよびPbO
の二価金属酸化物は熱膨張曲線で200℃附近に比較的
顕著な屈曲をもたらすクリストバライト結晶の析出を防
止する効果があるので、加えても良いが5%以上では結
晶が析出しにくくなり耐酸性を劣化させる。B203は
ガラスの溶融性の改善に効果があるが、3%以上では結
晶の析出を妨げる。5b201はガラスの溶解時111
2泡剤として加えられるが、0.5%以下が好ましい。
MQO, caolSrO, Bad, ZnO and PbO
The divalent metal oxide has the effect of preventing the precipitation of cristobalite crystals that cause a relatively noticeable bend in the thermal expansion curve around 200°C, so it may be added, but if it exceeds 5%, it will be difficult for the crystals to precipitate, resulting in acid resistance. degrade sexuality. B203 is effective in improving the meltability of glass, but if it exceeds 3%, it prevents crystal precipitation. 5b201 is 111 when melting glass
2. It is added as a foaming agent, but preferably 0.5% or less.

結晶化前のガラスの熱膨張係数は80〜90X 10’
/ ’Cであり、メタ珪酸リチウム結晶のみが析出した
結晶化ガラスの熱膨張係数はガラスと同等である。
The coefficient of thermal expansion of glass before crystallization is 80-90X 10'
/'C, and the thermal expansion coefficient of crystallized glass in which only lithium metasilicate crystals are precipitated is equivalent to that of glass.

本発明の結晶化温度より高温で熱処理された結晶化ガラ
スは主結晶がジ珪酸リチウムとなり、熱膨張係数は10
0X 10’/ ’C前後となる。したがって、110
〜145X 10’/’Cの大きな熱膨張係数をもつ結
晶化ガラスはガラス組成によって多少異なるが、メタ珪
酸リチウム結晶がジ珪酸リチウム結晶に変化する温度域
、すなわち780℃から840℃の温度で結晶化され、
析出主結晶がメタ珪酸リチウム、ジ珪酸リチウムおよび
α−石英である場合に得られる。
In the crystallized glass heat-treated at a temperature higher than the crystallization temperature of the present invention, the main crystals become lithium disilicate, and the coefficient of thermal expansion is 10.
It will be around 0X 10'/'C. Therefore, 110
Crystallized glass with a large coefficient of thermal expansion of ~145X 10'/'C varies somewhat depending on the glass composition, but it crystallizes in the temperature range where lithium metasilicate crystals change to lithium disilicate crystals, that is, at temperatures from 780°C to 840°C. became
It is obtained when the precipitated main crystals are lithium metasilicate, lithium disilicate, and α-quartz.

紫外線の露光迅については、ガラスの感光波長が約25
0〜400nlで広域であり、また光源によって分光エ
ネルギー分布が異なるので、桓的に限定することはでき
ないが、ジ珪酸すヂウム結晶の析出を促進させるために
行なわれる通常の発光量より少ない場合に大きな熱膨張
係数の大きな結晶化ガラスが得られる。
Regarding the exposure speed of ultraviolet rays, the sensitivity wavelength of glass is approximately 25
Since the range is 0 to 400 nl and the spectral energy distribution differs depending on the light source, it cannot be strictly limited, but if the amount of light emitted is lower than the normal amount of light emitted to promote the precipitation of sodium disilicate crystals. Crystallized glass with a large coefficient of thermal expansion can be obtained.

[実施例] 下記組成のガラスを溶融成形し、紫外線露光したうえ熱
処理した結果を表に示す。(以下余白)表中の露光時間
は600w X e −HQ灯光を光学系を通して得ら
れる放射照度的76mw/cm2(ドブコン紫外線強度
計による測定値)の平行光線で肉厚2.5m1llのガ
ラス板の両面から均等に露光した合計時間を示しである
。また熱処理において昇温速度は核形成を十分にするた
めに、300℃/時間以下が好ましいが本実施例では昇
温速度は100℃/時間で行っている。保持@間は結晶
を充分に析出させるために1〜3時間が適している。冷
却速度は特に限定されず割れなければ良いが、本実施例
では断電してそのまま炉内で放冷した。熱膨張係数は示
差熱膨張計によって測定、計算された100〜300℃
間の平均熱膨張係数値である。
[Example] Glass having the following composition was melt-molded, exposed to ultraviolet light, and then heat treated. The results are shown in the table. (Margin below) The exposure time in the table is a parallel beam of irradiance of 76 mw/cm2 (measured by Dobcon ultraviolet intensity meter) obtained by passing 600w This shows the total time for equal exposure from both sides. Further, in the heat treatment, the heating rate is preferably 300° C./hour or less in order to ensure sufficient nucleation, but in this example, the heating rate is 100° C./hour. A suitable holding time is 1 to 3 hours in order to sufficiently precipitate crystals. The cooling rate is not particularly limited as long as it does not cause cracking, but in this example, the power was cut off and the material was left to cool in the furnace. Thermal expansion coefficient is measured and calculated by differential thermal dilatometer from 100 to 300℃
The average coefficient of thermal expansion between

実施例N095は露光時間が長すぎるために、そしてN
o、17は結晶化温度が高すぎるために、それぞれ熱膨
張係数がll0X 10−7/’C以丁となる例を示し
たものである。
Example No. 095 is due to the exposure time being too long, and
Samples No. 0 and No. 17 show examples in which the crystallization temperature is too high, so that the coefficient of thermal expansion is 110X 10-7/'C.

本発明によるガラスは、金の原料として塩化金酸を、銀
の原料として塩化銀、硝酸銀を用いるほかは、通常の光
学ガラスに用いられている酸化物、炭酸塩、硝酸塩、水
酸化物の原料を使用し、白金ルツボで1400〜150
0℃の温度で溶解し、徐冷されたガラスを研磨加工後、
所定の条件で露光し熱処理・結晶化することによって得
られる。
In addition to using chloroauric acid as a raw material for gold and silver chloride and silver nitrate as raw materials for silver, the glass according to the present invention uses oxides, carbonates, nitrates, and hydroxides as raw materials for ordinary optical glasses. 1,400 to 150 in a platinum crucible using
After polishing the glass that was melted at a temperature of 0℃ and slowly cooled,
It is obtained by exposure to light under predetermined conditions, heat treatment, and crystallization.

[発明の効果1 本発明の結晶化ガラスは、セメントやアモルファス金属
等の磁性材料の熱膨張係数に近い値を有し、また本発明
による製法によって同一組成ガラスから・、これらの磁
性材料の熱膨張係数に合致した結晶化ガラスを容易に製
作することができる。
[Effects of the Invention 1] The crystallized glass of the present invention has a coefficient of thermal expansion close to that of magnetic materials such as cement and amorphous metals. Crystallized glass that matches the expansion coefficient can be easily manufactured.

更に本発明結晶化ガラスでは、核形成によって析出結晶
を微細にしているので、研磨された表面の平面性および
面粗さは非常に良好であり、強度はガラスの約3倍と大
きく、硬皮も上記磁性材料に近いので、磁気ヘッドや磁
気ディスク用の基板材として適している。しかも化学切
削用感光性ガラスとしての特性も有するため、マスクパ
ターンに従ってガラスに孔や溝等の化学切削加工を施す
ことができ、磁気ヘッドの微細加工に利用することも可
能である。
Furthermore, in the crystallized glass of the present invention, the precipitated crystals are made fine by nucleation, so the polished surface has very good flatness and surface roughness, and the strength is about three times that of glass, and it has a hard surface. Since it is similar to the above-mentioned magnetic materials, it is suitable as a substrate material for magnetic heads and magnetic disks. Moreover, since it also has properties as a photosensitive glass for chemical cutting, chemical cutting processes such as holes and grooves can be applied to the glass according to mask patterns, and it can also be used for microfabrication of magnetic heads.

【図面の簡単な説明】 図面は本実施例No、16および17に示す結晶化ガラ
スの熱膨張曲線である。 出 願 人 株式会社保谷硝子 代理人     朝 禽 正 幸 温  度(°C)
BRIEF DESCRIPTION OF THE DRAWINGS The drawing shows thermal expansion curves of the crystallized glasses shown in Examples Nos. 16 and 17. Applicant Hoya Glass Co., Ltd. Agent Masayuki Asako Temperature (°C)

Claims (1)

【特許請求の範囲】 1 重量百分率でSiO_2 76〜84%、Al_2
O_3 1〜7%、Li_2O 8〜13%、Na_2
O 0〜3%、K_2O 0〜6%、MgO、CaO、
SrO、BaO、ZnOおよびPbOの1種または合量
0〜5%、B_2O_3 0〜3%からなる基礎ガラス
100重量部に対してCeO_2 0.003〜0.0
5%、Au 0.0005〜0.03%および/または
Ag 0.001〜0.20%、Sb_2O_3 0〜
0.5%を含み、主結晶がメタ珪酸リチウム、ジ珪酸リ
チウムおよびα−石英で、かつその熱膨脹係数が110
×10^−^7/℃から145×10/℃であることを
特徴とする結晶化ガラス。 2 重量百分率でSiO_2 76〜84%、Al_2
O_3 1〜7%、Li_2O 8〜13%、Na_2
O 0〜3%、K_2O 0〜6%、MgO、CaO、
SrO、BaO、ZnOおよびPbOの1種または含量
0〜5%、B_2O_3 0〜3%からなる基礎ガラス
100重量部に対してCeO_2 0.003〜0.0
5%、Au0.0005〜0.03%および/またはA
g 0.001〜0.20%、Sb_2O_3 0〜0
.5%を加えてなるガラスを溶融成形したのち紫外線を
露光し、熱処理してガラス中にメタ珪酸リチウム、ジ珪
酸リチウムおよびα−石英の微結晶を析出させるに当り
、紫外線露光量の調節および780℃から840℃間の
結晶化温度の調節によって110×10^−^7/℃か
ら145×10^−^7/℃の間の任意の熱膨脹係数の
結晶化ガラスとすることを特徴とする熱膨脹係数の大き
な結晶化ガラスの製法。
[Claims] 1 SiO_2 76-84% by weight percentage, Al_2
O_3 1-7%, Li_2O 8-13%, Na_2
O 0-3%, K_2O 0-6%, MgO, CaO,
CeO_2 0.003-0.0 per 100 parts by weight of base glass consisting of one or a total of 0-5% of SrO, BaO, ZnO and PbO, and 0-3% B_2O_3
5%, Au 0.0005-0.03% and/or Ag 0.001-0.20%, Sb_2O_3 0-
0.5%, the main crystals are lithium metasilicate, lithium disilicate, and α-quartz, and the coefficient of thermal expansion is 110.
A crystallized glass characterized in that the temperature is from ×10^-^7/°C to 145 × 10/°C. 2 SiO_2 76-84% by weight percentage, Al_2
O_3 1-7%, Li_2O 8-13%, Na_2
O 0-3%, K_2O 0-6%, MgO, CaO,
CeO_2 0.003-0.0 per 100 parts by weight of a base glass consisting of one of SrO, BaO, ZnO and PbO or a content of 0-5% and B_2O_3 0-3%
5%, Au0.0005-0.03% and/or A
g 0.001-0.20%, Sb_2O_3 0-0
.. After melting and forming glass with 5% added, it is exposed to ultraviolet rays and heat treated to precipitate microcrystals of lithium metasilicate, lithium disilicate and α-quartz in the glass. Thermal expansion characterized by adjusting the crystallization temperature between 110 x 10^-^7/°C and 145 x 10^-^7/°C by adjusting the crystallization temperature between 110 x 10^-^7/°C and 145 x 10^-^7/°C. A method for producing crystallized glass with a large coefficient.
JP18283484A 1984-09-03 1984-09-03 Crystallized glass having high thermal expansion coefficient and its preparation Granted JPS6163542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18283484A JPS6163542A (en) 1984-09-03 1984-09-03 Crystallized glass having high thermal expansion coefficient and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18283484A JPS6163542A (en) 1984-09-03 1984-09-03 Crystallized glass having high thermal expansion coefficient and its preparation

Publications (2)

Publication Number Publication Date
JPS6163542A true JPS6163542A (en) 1986-04-01
JPH0211538B2 JPH0211538B2 (en) 1990-03-14

Family

ID=16125278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18283484A Granted JPS6163542A (en) 1984-09-03 1984-09-03 Crystallized glass having high thermal expansion coefficient and its preparation

Country Status (1)

Country Link
JP (1) JPS6163542A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187922A (en) * 1989-01-13 1990-07-24 Hitachi Ltd Magnetic disk substrate and production thereof
JPH02196048A (en) * 1989-01-23 1990-08-02 Itochu Shoji Kk Photosensitive glass
EP0626353A1 (en) * 1993-05-19 1994-11-30 Kabushiki Kaisha Ohara Glass-ceramic for a magnetic disk substrate and method for manufacturing the same
EP0729924A2 (en) * 1993-05-19 1996-09-04 Kabushiki Kaisha Ohara Glass-ceramic for a magnetic disk substrate
KR100329001B1 (en) * 1998-02-26 2002-03-20 가지카와 히로시 High rigidity glass-ceramic substrate for a magnetic information storage medium
JP2009179518A (en) * 2008-01-30 2009-08-13 Hoya Corp Method of manufacturing crystalline glass substrate and method of manufacturing double-sieded wiring board
US7589038B2 (en) * 2005-10-07 2009-09-15 Ohara Inc. Inorganic composition
US7829489B2 (en) * 2007-05-31 2010-11-09 Corning Incorporated Low CTE photomachinable glass

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438665A (en) * 1990-05-31 1992-02-07 Nakamichi Corp Tray lock device for disk player
JPH0438666A (en) * 1990-05-31 1992-02-07 Nakamichi Corp Tray lock device for disk player
JPH04302847A (en) * 1991-03-29 1992-10-26 Sanyo Electric Co Ltd Tray mechanism for disk player

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187922A (en) * 1989-01-13 1990-07-24 Hitachi Ltd Magnetic disk substrate and production thereof
JPH02196048A (en) * 1989-01-23 1990-08-02 Itochu Shoji Kk Photosensitive glass
JPH0474294B2 (en) * 1989-01-23 1992-11-25
EP0626353A1 (en) * 1993-05-19 1994-11-30 Kabushiki Kaisha Ohara Glass-ceramic for a magnetic disk substrate and method for manufacturing the same
EP0729924A2 (en) * 1993-05-19 1996-09-04 Kabushiki Kaisha Ohara Glass-ceramic for a magnetic disk substrate
EP0729924A3 (en) * 1993-05-19 1996-09-25 Ohara Kk
US5567217A (en) * 1993-05-19 1996-10-22 Kabushiki Kaisya Ohara Method for manufacturing a crystalized glass magnetic disk substrate
KR100329001B1 (en) * 1998-02-26 2002-03-20 가지카와 히로시 High rigidity glass-ceramic substrate for a magnetic information storage medium
KR100329000B1 (en) * 1998-02-26 2002-04-10 가지카와 히로시 High rigidity glass-ceramic substrate for a magnetic information storage medium
US7589038B2 (en) * 2005-10-07 2009-09-15 Ohara Inc. Inorganic composition
US7829489B2 (en) * 2007-05-31 2010-11-09 Corning Incorporated Low CTE photomachinable glass
JP2009179518A (en) * 2008-01-30 2009-08-13 Hoya Corp Method of manufacturing crystalline glass substrate and method of manufacturing double-sieded wiring board

Also Published As

Publication number Publication date
JPH0211538B2 (en) 1990-03-14

Similar Documents

Publication Publication Date Title
US4480044A (en) High expansion glass-ceramic articles
JP5375608B2 (en) Glass for data storage medium substrate, glass substrate for data storage medium and magnetic disk
TW436469B (en) Glass-ceramic substrate for a magnetic information recording medium
TW498059B (en) High rigidity glass-ceramic substrate for a magnetic information storage medium, method for manufacturing the same, and magnetic information storage disk using the same
JP3219705B2 (en) Glass ceramic substrate for magnetic information storage media
JPH06295401A (en) Magnetic storage and disk used for it
JPH07300340A (en) Crystallized glass for information-recording disk
US5028567A (en) Glass-ceramics
US6593257B1 (en) Glass-ceramic composition for recording disk substrate
JPH10188260A (en) Crystallized glass for magnetic disk substrate, magnetic disk substrate and magnetic disk
JPH092838A (en) Optically active glass / ceramic article and its production
JPH06329440A (en) Crystallized glass for magnetic disk and its production
JPS6163542A (en) Crystallized glass having high thermal expansion coefficient and its preparation
JPH03164445A (en) Transparent crystallized glass
JPWO2020179872A1 (en) Inorganic composition articles and crystallized glass
US6524982B1 (en) Glass-ceramic composition for recording disk substrate
US3663193A (en) Strengthened photosensitive opal glass
TW202216626A (en) Crystallized glass and reinforced crystallized glass
US4047960A (en) Refractory partially crystalline materials with good visible transparency
JP7276645B2 (en) Glass substrate for magnetic recording media
JP4273620B2 (en) Substrate glass
JPS63210039A (en) Production of crystallized glass for substrate
JPH02196048A (en) Photosensitive glass
JP3144820B2 (en) Crystallized glass
JP2001097739A (en) Production method of crystallized glass

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term