JPS616315A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPS616315A
JPS616315A JP12509684A JP12509684A JPS616315A JP S616315 A JPS616315 A JP S616315A JP 12509684 A JP12509684 A JP 12509684A JP 12509684 A JP12509684 A JP 12509684A JP S616315 A JPS616315 A JP S616315A
Authority
JP
Japan
Prior art keywords
fibers
pitch
ionizing radiation
raw material
resultant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12509684A
Other languages
Japanese (ja)
Inventor
Mitsuru Uchiyama
充 内山
Shiro Higashimori
東森 史良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP12509684A priority Critical patent/JPS616315A/en
Publication of JPS616315A publication Critical patent/JPS616315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain carbon fibers efficiently without causing fiber breakage, etc., by melt spinning raw material pitch, irradiating the resultant pitch fibers with ionizing radiation, and carbonizing the resultant infusible fibers in an inert gas atmosphere under heating. CONSTITUTION:Raw material pitch, e.g. petroleum or coal based pitch, is melted and spun through a spinneret 1 to form filaments 2, which are then collected to give pitch fibers 4. The resultant pitch fibers 4 are irradiated with ionizing radiation 5, infusibilized and then carbonized under heating at 700-1,700 deg.C in an inert gas atmosphere, e.g. nitrogen or helium gas, to afford the aimed carbon fibers. The dose of the ionizing radiation is preferably 0.5-30Mrad.

Description

【発明の詳細な説明】 本発明は炭素繊維の製造方法に関し、詳しくはピンチを
紡糸して得られるピッチ繊維をイオン化放射線により短
時間で確実に不融化することを特徴とする炭素繊維の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing carbon fibers, and more specifically, a method for producing carbon fibers, which is characterized in that pitch fibers obtained by spinning pinch are reliably rendered infusible in a short period of time using ionizing radiation. Regarding.

従来、炭素繊維は大別してポリアクリロニトリル繊維か
ら製造する方法および石油系あるいは石炭系のピッチを
原料とする方法がある。前者は高強度の製品が得られる
が、原料が高価であるうえ、焼成時の炭化収率が低いと
いう問題があるため、近年は後者のピッチを原料とする
方法が主に行なわれている。ピッチを原料とする場合、
紡糸、不融化、焼成の各処理を行なうことにより炭素繊
維が製造される。不融化処理については酸化雰囲気下で
加熱することにより行なわれていた。しかしながら、熱
不融化処理は処理速度が遅いため、紡糸の速度と一致せ
ず、製造工程上問題があった。
Conventionally, carbon fibers can be roughly divided into two methods: one is to manufacture them from polyacrylonitrile fibers, and the other is to manufacture them from petroleum-based or coal-based pitch. The former method produces products with high strength, but the raw materials are expensive and the carbonization yield during firing is low, so in recent years the latter method using pitch as the raw material has been mainly used. When using pitch as raw material,
Carbon fibers are manufactured by performing spinning, infusibility, and firing processes. The infusibility treatment was performed by heating in an oxidizing atmosphere. However, since the heat infusibility treatment has a slow processing speed, it does not match the spinning speed, causing problems in the manufacturing process.

そのため、紡糸した糸を一度巻き取りあるいはケンスな
どに収納した後、引き出して不融化工程にかける方法が
採用されているが、固化した状態のピッチ繊維がもろく
、しばしば糸切れを起こすという欠点があった。
For this reason, methods have been adopted in which the spun yarn is wound or stored in a can, then pulled out and subjected to an infusible process, but this method has the disadvantage that the solidified pitch fibers are brittle and often break. Ta.

そこで、本発明者らはこれら従来方法の欠点を解消し、
短時間に効率良く糸切れ等の発生もない炭素繊維の製造
方法を開発すべく鋭意研究した結果、不融化を放射線照
射により行なうことにより目的が達成されることを見出
し、本発明を完成した。
Therefore, the present inventors solved the drawbacks of these conventional methods,
As a result of intensive research to develop a method for producing carbon fibers in a short time, efficiently, and without the occurrence of yarn breakage, the inventors discovered that the objective could be achieved by making the fibers infusible by irradiating them with radiation, and completed the present invention.

すなわち、本発明は原料ピッチから炭素繊維を製造する
方法において、原料ピンチを溶融紡糸して得られるピン
チ繊維にイオン化放射線を照射し不融化した後、不活性
ガス雰囲気中で加熱炭化せしめることを特徴とする炭素
繊維の製造方法を提供するものである。
That is, the present invention is a method for producing carbon fibers from raw material pitch, and is characterized in that pinched fibers obtained by melt-spinning raw material pinches are irradiated with ionizing radiation to make them infusible, and then heated and carbonized in an inert gas atmosphere. The present invention provides a method for manufacturing carbon fiber.

本発明において原料のピンチとしては石油系ピッチ、石
炭系ピッチなどの種々のピッチを用いることができるが
、光学的異方性相の含有量が80%以上、好ましくは実
質的に100%のものが好適に用いられる。ピッチの軟
化点は250〜380℃のものが好ましい。
In the present invention, various pitches such as petroleum-based pitch and coal-based pitch can be used as the raw material pinch, but pitches with an optically anisotropic phase content of 80% or more, preferably substantially 100% are used. is preferably used. The pitch preferably has a softening point of 250 to 380°C.

このような原料ピンチを溶融紡糸してピンチ繊維を得る
にあたり、必要により原料に増悪剤を加えるかあるいは
ピッチ繊維に塗布することができる。この増感剤は後に
不融化のために照射するイオン化放射線の効果を向上す
る役割を果すものである。ここで、増感剤としては種々
のものが挙げられ、具体的にはベンゾフェノン系化合物
、例えばベンゾフェノン、4−クロロベンゾフェノンな
ど;ベンゾインエーテル系化合物、例えばベンゾインイ
ソプロピルエーテル、ベンゾインイソブチルエーテルな
ど;アセトフェノン系化合物、例えば(α、α−ジメト
キシ)−(α−フェニル)アセトフェノン、 (α、α
−ジメチル)−(α−ヒドロキシ)アセトフェノン、 
(α、α−ジメチル)−(α−ヒドロキシ)−4−イソ
プロピルアセトフェノン、 (α5 α−ジクロル>(
4−tert−ブチル)アセトフェノン、 (α、α−
ジクロル)−(4−フェノキシ)−アセトフェノンなど
;チオキサントン系化合物、例えばα−クロルチオキサ
ントン、α−メチルチオキサントンなど;ジアゾニウム
系化合物、例えば塩化ベンゼンジアゾニウム、過臭化ベ
ンゼンジアゾニウムなど;p−キノンジアジド系化合物
、例えばp−キノンジアジド、p−イミノキノンジアジ
ドなど;0−キノンジアジド系化合物、例えば0−キノ
ンジアジド。
When melt-spinning such a raw material pinch to obtain pinch fibers, an aggravating agent may be added to the raw material or applied to the pitch fibers, if necessary. This sensitizer plays the role of improving the effect of ionizing radiation that is irradiated later for infusibility. Here, there are various sensitizers, including benzophenone compounds such as benzophenone and 4-chlorobenzophenone; benzoin ether compounds such as benzoin isopropyl ether and benzoin isobutyl ether; and acetophenone compounds. , for example (α,α-dimethoxy)-(α-phenyl)acetophenone, (α,α
-dimethyl)-(α-hydroxy)acetophenone,
(α, α-dimethyl)-(α-hydroxy)-4-isopropylacetophenone, (α5 α-dichlor>(
4-tert-butyl)acetophenone, (α, α-
dichloro)-(4-phenoxy)-acetophenone, etc.; thioxanthone compounds, such as α-chlorothioxanthone, α-methylthioxanthone, etc.; diazonium compounds, such as benzenediazonium chloride, benzenediazonium perbromide, etc.; p-quinonediazide compounds, For example, p-quinonediazide, p-iminoquinonediazide, etc.; 0-quinonediazide type compounds, such as 0-quinonediazide.

0−イミノキノンジアジドなど;重クロム酸化合物、例
えば重クロム酸カリウム、重クロム酸ナトリウム、重ク
ロム酸アンモニウムなど;その他アジド系化合物、有機
ハロゲン化物等が挙げられる。
Examples include 0-iminoquinone diazide, etc.; dichromic acid compounds, such as potassium dichromate, sodium dichromate, and ammonium dichromate; other azide compounds, organic halides, and the like.

これらの増感剤を使用する場合、添加量は原料ピンチに
対して通常0.01〜0.1重量%程度であ本発明の方
法を第1図に基いて説明する。第1図は本発明の方法を
実施するためのフローの1例を示す説明図である。
When these sensitizers are used, the amount added is usually about 0.01 to 0.1% by weight based on the raw material pinch.The method of the present invention will be explained with reference to FIG. FIG. 1 is an explanatory diagram showing an example of a flow for implementing the method of the present invention.

まず、上述の如き原料を溶融し、紡糸口金1から紡糸し
てフィラメント2とする。溶融紡糸の条件は、原料とす
るピッチの種類や製造すべき炭素繊維の所望性状などに
より異なり、一義的には決定できないが、従来行なわれ
ている条件とすれば良い。具体的には紡糸温度250〜
400℃、好ましくは260〜380℃、紡糸速度10
0〜1500 m/min 、好ましくは200〜10
00m/min、フィラメント径5〜30 、CI、好
ましくは5〜20μである。
First, the raw materials as described above are melted and spun from a spinneret 1 to form filaments 2. The conditions for melt spinning vary depending on the type of pitch used as a raw material, the desired properties of the carbon fiber to be produced, etc., and cannot be unambiguously determined, but they may be the conditions conventionally used. Specifically, the spinning temperature is 250~
400°C, preferably 260-380°C, spinning speed 10
0-1500 m/min, preferably 200-10
00 m/min, filament diameter 5-30 m, CI preferably 5-20 m.

このような条件で紡出されたフィラメント2を集束する
ことによりピンチ繊維4が得られる。集束は通常、図示
した如きエアーサンカー3により行なわれる。また、集
束性を一層向上させるために、集束剤を付与しても良い
。ここで集束剤としては水あるいは水に高級アルコール
のエチレンオキサイド付加物、高級アルコールリン酸エ
ステル@3高級脂肪酸のアルキルエステル類などの化合
物を乳化した油剤などが挙げられる。上記高級アルコー
ル、高級アルコールリン酸エステル類、高級脂肪酸等は
通常炭素数12〜18程度のものである。また、上記水
あるいは油剤に帯電防糸剤を添加したものであっても良
い、この集束剤の付与はフィラメント2において行なっ
ても良く、またエアーサンカー3により集束後のピッチ
繊維4に対して行なっても良い。また、付与方法は特に
制限はないが、フィラメントもしくは繊維に噴霧する方
法が良い。
Pinch fibers 4 are obtained by converging the filaments 2 spun under these conditions. Focusing is usually performed by an air sunker 3 as shown. Further, a sizing agent may be added to further improve the sizing property. Examples of the sizing agent include water or an oil agent prepared by emulsifying a compound such as an ethylene oxide adduct of a higher alcohol or an alkyl ester of a higher alcohol phosphoric acid ester@3 higher fatty acid in water. The above-mentioned higher alcohols, higher alcohol phosphates, higher fatty acids, etc. usually have about 12 to 18 carbon atoms. Further, an antistatic agent may be added to the above water or oil agent. This sizing agent may be applied to the filament 2, and the air thunker 3 may be used to apply the sizing agent to the pitch fibers 4 after sizing. You can do it. There are no particular restrictions on the method of application, but a method of spraying onto filaments or fibers is preferred.

次いで、ピンチ繊維4にイオン化放射線5を照射して不
融化を行なう。本発明は不融化処理をイオン化放射線照
射により、短時間で確実に行なうことを特徴としている
。ここで、イオン化放射線とは電子線、中性子線、α線
、γ線、X線、紫外線等を意味する。イオン化放射線の
照射は通常、空気中で行なうが、その他水素ガス、メタ
ンガス。
Next, the pinched fibers 4 are irradiated with ionizing radiation 5 to make them infusible. The present invention is characterized in that the infusibility treatment is performed reliably in a short time by irradiation with ionizing radiation. Here, ionizing radiation means electron beams, neutron beams, alpha rays, gamma rays, X-rays, ultraviolet rays, and the like. Ionizing radiation is usually irradiated in the air, but other sources include hydrogen gas and methane gas.

ヘリウムガス、アルゴンガス、キセノンガス、クリプト
ンガス等の雰囲気下で行なうこともでき、いずれも常法
により行なえばよい。イオン化放射線の照射線量は原料
ピッチの種類、ピンチ繊維径。
It can also be carried out in an atmosphere of helium gas, argon gas, xenon gas, krypton gas, etc., and any conventional method may be used. The irradiation dose of ionizing radiation depends on the type of raw material pitch and the pinch fiber diameter.

増感剤の有無などにより異なり、一義的に決定されない
が、通常は0.05〜30メガラド(Mrad)、好ま
しくは0.1〜20メガラド程度である。イオン化放射
線の照射方法は特に制限なく種々の方法で行なえるが、
第1図に示す如く、ピンチ繊維をボビン6に巻取る前に
均一に照射する方法が一般的である。そのほかピンチ繊
維をケンス等に収納あるいはボビンに巻き取った後でこ
れらを回転させながら均一に照射する方法なども可能で
ある。
Although it varies depending on the presence or absence of a sensitizer and is not uniquely determined, it is usually about 0.05 to 30 megarads, preferably about 0.1 to 20 megarads. Ionizing radiation can be irradiated in various ways without particular restrictions, but
As shown in FIG. 1, a common method is to uniformly irradiate pinched fibers before winding them onto a bobbin 6. In addition, it is also possible to store the pinched fibers in a can or the like or wind them up on a bobbin, and then rotate the fibers to uniformly irradiate the fibers.

不融化前のピッチ繊維は非常に脆く切断しやすいので、
第1図に示す如く、ボビンに巻取る前に行なう方法が特
に好適である。不融化処理を従来の加熱方法で行なった
場合には、不融化処理に比較的長時間を必要とするため
、集束したビ、7チ繊維を巻取り速度に合せて連続的に
不融化処理することは困難であったが、本発明の方法で
は不融化処理を短時間で行なえるため、連続処理が可能
となり、しかもケンスへの収納あるいはボビンへの巻取
りなどの段階におけるピッチ繊維の切断という事態も防
止できる。
Before being infusible, pitch fibers are very brittle and easy to cut.
As shown in FIG. 1, a method performed before winding onto a bobbin is particularly suitable. When the infusibility treatment is carried out using a conventional heating method, it takes a relatively long time for the infusibility treatment, so the bundled bi- and 7-chi fibers are infusible continuously in accordance with the winding speed. However, with the method of the present invention, since the infusibility treatment can be carried out in a short time, continuous treatment is possible, and there is no need to cut the pitch fibers at the stage of storing them in a can or winding them onto a bobbin. Situations can also be prevented.

不融化処理を行ない、ボビンに巻取ったビ・ノチ繊維は
次いで焼成処理を行なう。焼成処理は従来行なわれてい
る方法で良く、特別な条件はない。
The Bi-Noti fibers that have been subjected to infusibility treatment and wound onto a bobbin are then subjected to firing treatment. The firing treatment may be performed by a conventional method, and there are no special conditions.

通常、不活性ガス雰囲気下で加熱して炭化せしめること
により行なわれる。ここで、不活性ガスとしては窒素ガ
ス、ヘリウムガス、アルゴンガスなどが用いられる。な
お、焼成は真空下で行なっても良い。加熱温度は通常、
700〜1700℃、好ましくは800〜1500℃で
あるが、所望により2500〜3000℃に加熱して黒
鉛化しても良い。なお、集束剤を用いた場合は、焼成前
に余剰の集束剤を除くことが好ましい。
Usually, carbonization is carried out by heating under an inert gas atmosphere. Here, nitrogen gas, helium gas, argon gas, etc. are used as the inert gas. Note that the firing may be performed under vacuum. The heating temperature is usually
The temperature is 700 to 1,700°C, preferably 800 to 1,500°C, but it may be graphitized by heating to 2,500 to 3,000°C if desired. In addition, when a sizing agent is used, it is preferable to remove excess sizing agent before firing.

このようにして得られた炭素繊維はケンスに収納あるい
はボビンに巻き取り各種の用途に供される。
The carbon fiber thus obtained is stored in a can or wound on a bobbin and used for various purposes.

本発明の製造方法によれば、不融化処理をイオン化放射
線照射により行なうため、不融化処理を短時間で、かつ
連続的に行なうことができる。そのため、引張強度等に
優れた炭素繊維の製造が可能である。さらに、製造工程
中巻きとった糸を引き出す必要がないため、ピンチ繊維
の切断も防止でき、炭素繊維の製造において極めて有用
であり、工業上の実用価値も高いものである。
According to the manufacturing method of the present invention, since the infusibility treatment is performed by irradiation with ionizing radiation, the infusibility treatment can be performed continuously in a short time. Therefore, it is possible to manufacture carbon fibers with excellent tensile strength and the like. Furthermore, since there is no need to pull out the wound yarn during the manufacturing process, it is possible to prevent pinch fibers from being cut, which is extremely useful in the production of carbon fibers, and has high practical industrial value.

次に、本発明を実施例により詳しく説明する。Next, the present invention will be explained in detail with reference to examples.

実施例1 第1図に示したフローにしたがいピンチ繊維を製造した
。すなわち、光学的異方性相100%の石油系ピッチ(
平均分子量1130.軟化点345℃、ピリジン不溶分
含有量52重量%)を360℃において紡糸速度550
m/分、フィラメント径10μにて紡糸口金1より溶融
紡糸を行なった。
Example 1 Pinch fibers were manufactured according to the flow shown in FIG. In other words, petroleum pitch with 100% optically anisotropic phase (
Average molecular weight 1130. Softening point: 345°C, pyridine insoluble content: 52% by weight) at 360°C, spinning speed: 550°C.
Melt spinning was performed from spinneret 1 at m/min and filament diameter of 10 μm.

得られたフィラメント2の約400本をエアーサンカー
3にて集束し、ピッチ繊維4を得た。このピンチ繊維に
空気中にて3 ’hrac3のコバルト60のγ線を連
続的に照射し、550m/分の速度でボビン6に巻取っ
た。このピッチ繊維の引張強度は25呟/112であっ
た・ 次いで、ボビンに巻取ったピッチ繊維を焼成炉(図示せ
ず)中アルゴンガス雰囲気下にて1500℃で10分間
焼成を行ない炭素繊維を得た。
Approximately 400 of the obtained filaments 2 were bundled using an air sunker 3 to obtain pitch fibers 4. The pinched fibers were continuously irradiated with cobalt 60 gamma rays of 3' hrac3 in air and wound onto a bobbin 6 at a speed of 550 m/min. The tensile strength of this pitch fiber was 25 m/112. Next, the pitch fiber wound around a bobbin was fired at 1500°C for 10 minutes in an argon gas atmosphere in a firing furnace (not shown) to form a carbon fiber. Obtained.

得られた炭素繊維は引張強度280 kg/ 重重2゜
弾性率25t/鶴2であった。
The obtained carbon fiber had a tensile strength of 280 kg/weight/weight 2° and an elastic modulus of 25 t/Tsuru 2.

実施例2 実施例1において、紡糸口金1から紡出したフィラメン
ト2に水を噴霧したこと以外は実施例】と同様にしてピ
ッチ繊維を得た。このものの引張強度は23kg/菖履
2であった。
Example 2 Pitch fibers were obtained in the same manner as in Example 1, except that water was sprayed onto the filaments 2 spun from the spinneret 1. The tensile strength of this product was 23 kg/Iris 2.

次いで、実施例1と同様にして炭素繊維を得た。Next, carbon fibers were obtained in the same manner as in Example 1.

この炭素繊維は集束性が良く引張強度280kg/11
22弾性率は25t/mm2であった。
This carbon fiber has good cohesiveness and tensile strength of 280 kg/11
22 elastic modulus was 25t/mm2.

実施例3 実施例1において石油系ピッチ(実施例1に同じ) 1
00重量部およびベンゾフェノン0.05重置部を混合
したものを原料として用いたことおよび放射線照射をア
ルゴンガス中にて行なったこと4以外は実施例1と同様
にしてピンチ繊維を得た。
Example 3 Petroleum pitch in Example 1 (same as Example 1) 1
Pinch fibers were obtained in the same manner as in Example 1, except that a mixture of 0.00 parts by weight and 0.05 parts by weight of benzophenone was used as the raw material, and the radiation irradiation was performed in argon gas.

このものの引張強度は32kg/m”であった。The tensile strength of this product was 32 kg/m''.

次いで、実施例1と同様にして炭素繊維を得た。Next, carbon fibers were obtained in the same manner as in Example 1.

得られた炭素繊維は引張強度280kg/mm” 、弾
性率は25t/龍2であった。
The obtained carbon fiber had a tensile strength of 280 kg/mm'' and an elastic modulus of 25 t/Ryu2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法においてピッチ繊維の製造に
使用される装置の一例の概略図を示す。 1・・紡糸口金、    2・・フィラメント。 3・・エアーサッカー、4・・ピンチ繊維。 5・・イオン化放射線56・・ボビン 第1図 96一
FIG. 1 shows a schematic diagram of an example of an apparatus used for producing pitch fibers in the production method of the present invention. 1. Spinneret, 2. Filament. 3. Air soccer, 4. Pinch fiber. 5... Ionizing radiation 56... Bobbin Figure 1 961

Claims (2)

【特許請求の範囲】[Claims] (1)原料ピッチから炭素繊維を製造する方法において
、原料ピッチを溶融紡糸して得られるピッチ繊維に、イ
オン化放射線を照射し不融化した後、不活性ガス雰囲気
中で加熱炭化せしめることを特徴とする炭素繊維の製造
方法。
(1) A method for producing carbon fibers from raw material pitch, characterized in that the pitch fibers obtained by melt-spinning raw material pitch are irradiated with ionizing radiation to make them infusible, and then heated and carbonized in an inert gas atmosphere. A method for manufacturing carbon fiber.
(2)イオン化放射線の線量が0.05ないし30メガ
ラドである特許請求の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the dose of ionizing radiation is 0.05 to 30 megarads.
JP12509684A 1984-06-20 1984-06-20 Production of carbon fiber Pending JPS616315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12509684A JPS616315A (en) 1984-06-20 1984-06-20 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12509684A JPS616315A (en) 1984-06-20 1984-06-20 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPS616315A true JPS616315A (en) 1986-01-13

Family

ID=14901748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12509684A Pending JPS616315A (en) 1984-06-20 1984-06-20 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPS616315A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956543B1 (en) 2008-01-28 2010-05-07 한국원자력연구원 Preparation method of carbon fiber using irradiation and carbon fiber using thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956543B1 (en) 2008-01-28 2010-05-07 한국원자력연구원 Preparation method of carbon fiber using irradiation and carbon fiber using thereof

Similar Documents

Publication Publication Date Title
US3716607A (en) Heat treatment of molten carbonaceous material prior to its conversion to carbon fibers and other shapes
US4284615A (en) Process for the production of carbon fibers
JPS59168126A (en) Production of pitch based carbon fiber
US3556729A (en) Process for oxidizing and carbonizing acrylic fibers
KR900004918B1 (en) Process for producing chopped strand of carbon fiber
US5283044A (en) Super heat-resistant silicon carbide fibers from poly-carbosilane
JPS616315A (en) Production of carbon fiber
US5308599A (en) Process for producing pitch-based carbon fiber
US4975263A (en) Process for producing mesophase pitch-based carbon fibers
JPS588124A (en) Production of carbon fiber
US4788050A (en) Process for producing pitch-based carbon fibers
JPS59223315A (en) Production of pitch based carbon fiber
JPS61252316A (en) Production of carbon fiber
JP3337043B2 (en) Pitch with improved spinning fuming properties and method for producing the same
JPS60252722A (en) Production of carbon fiber
JPS6127487B2 (en)
JP2961274B2 (en) High modulus pitch-based carbon fiber and method for producing the same
JP2930166B2 (en) Carbon fiber production method
JPS6278220A (en) Production of ribbon-like carbon fiber
JPS6257932A (en) Production of carbon fiber and graphite fiber
JPS58214529A (en) Production of carbon fiber
JPH08246250A (en) Production of carbon fiber
JPS6170016A (en) Production of carbon yarn
JPH06248520A (en) Production of carbon fiber
JPH06158433A (en) Production of carbon fiber