JPS6162017A - Controlling method of illumination distribution - Google Patents

Controlling method of illumination distribution

Info

Publication number
JPS6162017A
JPS6162017A JP18367484A JP18367484A JPS6162017A JP S6162017 A JPS6162017 A JP S6162017A JP 18367484 A JP18367484 A JP 18367484A JP 18367484 A JP18367484 A JP 18367484A JP S6162017 A JPS6162017 A JP S6162017A
Authority
JP
Japan
Prior art keywords
lens
distribution
distance
light
uniform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18367484A
Other languages
Japanese (ja)
Inventor
Osamu Osawa
大沢 理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP18367484A priority Critical patent/JPS6162017A/en
Publication of JPS6162017A publication Critical patent/JPS6162017A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain uniform illumination distribution in accordance with a distance between a lens and a substance to be irradiated even if the distance is restricted by designing the lens for a shape corresponding to an irradiation distance by pending. CONSTITUTION:Light from a lamp 3 is reflected by a condenser 4, condensed on a lens 1, transmitted through a lens 2, and irradiated to a wafer as parallel light. The lens 2 shown in Fig. (d) is a lens having convex surfaces on both the sides and forms ununiform distribution increasing illumination on its center part and reducing it on its peripheral part at a position of a distance L1 and its uniform distribution is obtained at a far position. When the lens 2 is replaced by a meniscus lens shown in the Fig. (b), (f), uniform illumination distribution can be obtained and the lens 2 can be designed for the shape. Consequently, the illumination distribution on the exposed surface can be restricted within + or -2.5% only by said lens system.

Description

【発明の詳細な説明】 本発明は照度分布コントロール方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an illuminance distribution control method.

ランプから照射される光は各種の産業分野において巾広
く利用されているが、その一つに半導体製造工程がある
。そ[、て、この半導体製造工程においても光が欅々に
利用されるが、例えば、アライナ−やステッパーといっ
た半導体製造装置では波長が365.405,4360
mなどの超高圧水銀灯の光がウェハー上に露光されるが
、露光面の照度分布はできるだけ均一になるようにしな
ければならない。ことに、最近はウェハーが5インチ、
6インチと大面積化L1アライナ−では照度分布の均一
度は±3π以内、又、ステッパーのような115.1/
10といった縮小露光装置では±2.5%以内が必要と
されている。今迄均−な照度分布を得るための手段と1
−て均−変補正板が使用されていたが、均−変補正板は
製作が#L<光吠が約30にも失われるので、高照度を
必要とI−るこれら半導体露光装置では、光験を低下さ
せずに均一な照度分布を得ることが必要となってきた。
Light emitted from lamps is widely used in various industrial fields, one of which is the semiconductor manufacturing process. Light is also extensively used in this semiconductor manufacturing process, but for example, in semiconductor manufacturing equipment such as aligners and steppers, the wavelength is 365.405, 4360.
The wafer is exposed to light from an ultra-high-pressure mercury lamp such as a mercury lamp, but the illuminance distribution on the exposed surface must be made as uniform as possible. In particular, these days wafers are 5 inches,
The uniformity of the illuminance distribution is within ±3π for the 6-inch large area L1 aligner, and the uniformity of the illuminance distribution is within ±3π, and the uniformity of the illuminance distribution is within ±3π, and
In a reduction exposure apparatus such as No. 10, a value within ±2.5% is required. Methods for obtaining a uniform illuminance distribution and 1
However, since the uniformity correction plate has a loss of light intensity of about 30, it is difficult to manufacture it in these semiconductor exposure devices that require high illuminance. It has become necessary to obtain a uniform illuminance distribution without deteriorating the light experience.

ところで、普通、レンズは球面収差などの諸収差を小さ
くして光学性能が向上するように設計されるが、これら
の収差を無くす事は不可能である。
Incidentally, lenses are usually designed to improve optical performance by reducing various aberrations such as spherical aberration, but it is impossible to eliminate these aberrations.

そしてこの収差のために、レンズを透過した光の照龍分
布は、レンズから荷電の位1λにおいては均一となるが
、この位置と異る位置では均一なものは得らね々い。こ
ねを第1図で説明すると、インチグレーターレンズ1よ
り出た光はコリメーターレンズ2を透憫1.て平行光と
なるが、ランプ2カ・らの距離Ll l TJI + 
LMにおける照度分布はそれぞれ1’)、 、 1)、
 、 I)sとなる。即も、距離I7.における照度分
布り、は均一となるが、こhよりレンズ2にJtい距1
1:1e T、1の照1f′分布■)1け、中央部が照
度が大きくて周辺部が小さいものとなり、逆に、レンズ
2より遠い距mL8の照度分布1)、は、中央部が照度
が小さくて周辺部が大きいものとなって、いずtlにし
て本物−ではなくなって1.まり。1tEって、このレ
ンズ2により被照射物であるウェハ〜を照射するには、
ウェハーの位置をレンズ2からの距離I7.の点に選べ
ば]交い1.1−か1ながら、半導体製潰裂Uのように
ウェハーの焼付を行う精密露光装置はクリーンルーム内
で使用されることが多く、小ハ11化の要請が大きい。
Due to this aberration, the light distribution of the light transmitted through the lens is uniform at a charge level of 1λ from the lens, but it cannot be uniform at positions different from this position. To explain this process with reference to FIG. 1, the light emitted from the inch grater lens 1 passes through the collimator lens 2. However, the distance between the lamps 2 and 2 is Ll TJI +
The illuminance distribution in LM is 1'), , 1), respectively.
, I)s. Immediately, the distance I7. The illuminance distribution at is uniform, but from this point, the distance 1 to the lens 2 is Jt.
1:1e T, 1 illuminance 1f' distribution ■) 1) The central part has a large illuminance and the peripheral part has a small illuminance. Conversely, the illuminance distribution 1) at a distance mL8, which is farther than the lens 2, has a central part. The illuminance is low and the peripheral area is large, so it no longer looks like the real thing when it comes to TL.1. ball. 1tE, in order to irradiate the wafer which is the object to be irradiated with this lens 2,
The position of the wafer is set at a distance I7. from lens 2. [Choose based on the point of intersection] 1.1- or 1 However, precision exposure equipment that bakes wafers, such as the semiconductor crush U, is often used in a clean room, and there is a demand for a smaller size 11. big.

このため、レンズと被照射物との距離も制約を受け、照
度分布が均一となる位置よりもランプに近いところで照
射しなければならないことが多く、照IW分布が不均一
となる問題点があった。
For this reason, the distance between the lens and the object to be irradiated is also restricted, and it is often necessary to irradiate at a location closer to the lamp than at a location where the illuminance distribution is uniform, resulting in the problem of uneven illumination IW distribution. Ta.

そこで本発明は、レンズと被照射物との距離が制約を受
ける場合にも、その距離に応じて照1f分布を均一にす
ることが可能な照度分布コントロール方法を提供するこ
とを目的とする。そして、光源ランプの光をレンズから
所定の位置にjlかれる被照射物に対(、て照射するに
際し、レンズの焦点距離を変えずに形状のみを変えるペ
ンディングというレンズ設計を行う墨によりレンズの収
差を利用して被照射物上の照度分布を均一にする。すな
わち、不発明の照度分布コンi・ロール方法はペンディ
ングによって、照射距離に応じた形状にレンズを設計す
る単により照射能において均一な照度分布を得る墨を%
徴とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an illuminance distribution control method that can make the illuminance 1f distribution uniform according to the distance even when the distance between the lens and the object to be illuminated is restricted. When the light from the light source lamp is irradiated from the lens to the object to be irradiated at a predetermined position, the aberrations of the lens are reduced by using a lens design called pending, which changes only the shape without changing the focal length of the lens. In other words, the uninvented illuminance distribution control method uses pending methods to make the illuminance distribution uniform on the irradiated object. % ink to obtain illuminance distribution
be a sign.

以下に図面に基いて本発明の実施例を具体的に説明する
Embodiments of the present invention will be specifically described below based on the drawings.

第3図は本レンズの使用される基本光学系であるが、ラ
ンプ3の光は集光鯨4で反射されてインチグレーターレ
ンズ1に曝光さね、こn上り出た光はレンズ2を透過し
て平行光となってウェハーに照射される。そして、第2
図は、レンズ2からの距離が第1図の距M I、+に等
りい位置において、レンズ2の焦点距離ン変えずに形状
のみを変えてペンディング操作を行った場合の照度分布
を示したものである。ここで、中央の(d)で示すレン
ズ2は、第1図で示1−たものと同じ両凸レンズであっ
て、距@L1の位16′では中央部の照度が人きくて周
辺部が小さくて不均一な分布をなL、均一な分布はもっ
と遠い位(ηで得られる形状である。これに対して、(
C)と(e)の様に平凸レンズとすると照度分布はかな
り改#されるが、Lかしまだ中央部のIj[I尻が周辺
部より大さくて均一な分布ではない。そしてこの形状変
更を更に進めて、(1))と(f)に示すようにメニス
カスレンズとすると分布は改善されて均一な照度分布を
得る事ができるようになり、この形状は設計すればよい
。なお、レンズの曲率を更に小さくして、(a)と(g
)に示す形状とすると、逆に中快部の照度が周辺部より
不均一な分布となってしまう。
Figure 3 shows the basic optical system used in this lens.The light from the lamp 3 is reflected by the condenser 4 and exposed to the inch greater lens 1, and the emitted light is transmitted through the lens 2. The wafer is irradiated with parallel light. And the second
The figure shows the illuminance distribution when a pending operation is performed by changing only the shape of lens 2 without changing its focal length at a position where the distance from lens 2 is equal to the distance M I,+ in Figure 1. It is something that Here, the lens 2 shown in the center (d) is the same biconvex lens as the one shown in FIG. A small, non-uniform distribution is obtained by L, and a uniform distribution is obtained by a further distance (η.On the other hand, (
If a plano-convex lens is used as shown in C) and (e), the illuminance distribution will be considerably improved, but the distribution is not uniform as the Ij [I tail at the center of the lens is still larger than the periphery. If we proceed with this shape change and create a meniscus lens as shown in (1)) and (f), the distribution will be improved and a uniform illuminance distribution can be obtained, and this shape can be designed. . In addition, by further reducing the curvature of the lens, (a) and (g
), on the other hand, the illuminance in the central part becomes more unevenly distributed than in the peripheral part.

この様に、レンズと被照射物との距離が予め定められて
いる場合でも、ペンディング操作によりその距離におけ
る民度分布を均一とすることが町l?Hな形状のレンズ
を設dfすることができる。そして、この結果均一補正
板を使用せずに、レンズ系のみで魔光面の照)W分布を
±2.5%以内にすることができる。なお、本実施例で
はランプの光を一枚のレンズを透過させてその平行光を
被照射物上に照射する例を示1−だが、例えば数枚のレ
ンズを組合せてコンデンサーレンズとし、光を集光させ
て被照射物上に照射する場合であっても事情は同じであ
る。
In this way, even if the distance between the lens and the object to be irradiated is predetermined, it is possible to make the population distribution at that distance uniform by the pending operation. An H-shaped lens can be provided. As a result, the light distribution on the magic light surface can be made within ±2.5% using only the lens system without using a uniform correction plate. In this example, an example is shown in which the light from a lamp is transmitted through one lens and the parallel light is irradiated onto the irradiated object. However, for example, it is possible to combine several lenses to form a condenser lens and transmit the light The situation is the same even when the light is focused and irradiated onto the object to be irradiated.

以上説明1−だように、本発明は、レンズの焦点距離を
変えずに形状のみを変えるペンディンブトψf’pKよ
り照度分布を均一にするようにしたので、レンズと被照
射物との距離が制約を受りる揚台にも、その距離に応じ
て照度分布を」ターとすることが町吐となる。
As explained in Explanation 1 above, the present invention makes the illuminance distribution more uniform than the pendimbutton ψf'pK that changes only the shape without changing the focal length of the lens, so the distance between the lens and the object to be irradiated is limited. The illuminance distribution at the platform that receives the light should also be adjusted according to the distance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図はレンズの形状とM変分布の関係説明図
、第3図は杢しンズヶ)使用さねる基本光学系である。 1・・・インチグレーターレンズ 2・・・レンズ3・
・・ランプ  4・・・j&光光 重出願人ウシオ軍機株式会社 代ド11人 升理十 FB伸寅之助 −〜       n OOO
Figures 1 and 2 are explanatory diagrams of the relationship between lens shape and M variation distribution, and Figure 3 is the basic optical system used. 1... Inch Greater Lens 2... Lens 3.
・・Lamp 4・・J & Mitsumitsu Ju Applicant Ushio Gunki Co., Ltd. 11 people Masu Riju FB Shintoranosuke - ~ n OOO

Claims (1)

【特許請求の範囲】[Claims] 光源ランプの光をレンズから所定の位置に置かれる被照
射物に対して照射するに際し、レンズの焦点距離を変え
ずに形状のみを変えるペンディングという設計を行なっ
たレンズにより被照射物上の照度分布を均一にすること
を特徴とする照度分布コントロール方法。
When the light from the light source lamp is irradiated from the lens to the irradiated object placed at a predetermined position, the illuminance distribution on the irradiated object is achieved by a lens designed with a pending design that changes only the shape without changing the focal length of the lens. An illuminance distribution control method characterized by making the brightness uniform.
JP18367484A 1984-09-04 1984-09-04 Controlling method of illumination distribution Pending JPS6162017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18367484A JPS6162017A (en) 1984-09-04 1984-09-04 Controlling method of illumination distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18367484A JPS6162017A (en) 1984-09-04 1984-09-04 Controlling method of illumination distribution

Publications (1)

Publication Number Publication Date
JPS6162017A true JPS6162017A (en) 1986-03-29

Family

ID=16139939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18367484A Pending JPS6162017A (en) 1984-09-04 1984-09-04 Controlling method of illumination distribution

Country Status (1)

Country Link
JP (1) JPS6162017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170358446A1 (en) * 2016-06-13 2017-12-14 Taiwan Semiconductor Manufacturing Co., Ltd. Wafer processing apparatus and wafer processing method using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575026A (en) * 1980-06-13 1982-01-11 Ricoh Co Ltd Light beam scanner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575026A (en) * 1980-06-13 1982-01-11 Ricoh Co Ltd Light beam scanner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170358446A1 (en) * 2016-06-13 2017-12-14 Taiwan Semiconductor Manufacturing Co., Ltd. Wafer processing apparatus and wafer processing method using the same

Similar Documents

Publication Publication Date Title
US20040174512A1 (en) Illumination optical apparatus, exposure apparatus and method of exposure
WO2001059502A1 (en) Reflection/refraction optical system
JPS60218635A (en) Lighting device
WO2006043458A1 (en) Lighting optical device, exposure system, and exposure method
TW201017342A (en) Exposure method and memory medium storing computer program
JPH10275771A (en) Lighting optical system
TW200804959A (en) Exposure apparatus and device manufacturing method
JPH09325275A (en) Illuminator and projection exposure device using the same
KR100518586B1 (en) Diffractive optical element, illumination system comprising same, and method for fabricating semiconductor device using same
JP3008744B2 (en) Projection exposure apparatus and semiconductor device manufacturing method using the same
JPS6162017A (en) Controlling method of illumination distribution
JP2003015314A (en) Illumination optical device and exposure device provided with the same
JP2002057081A (en) Illumination optical apparatus, exposure apparatus and exposure method
JP2005310942A (en) Aligner, exposure method, and device manufacturing method using it
KR102612692B1 (en) Illumination optical system, exposure apparatus, and method of manufacturing article
KR101999553B1 (en) Illumination optical device, exposure apparatus, and method of manufacturing article
JP3376043B2 (en) Illumination device and projection exposure apparatus using the same
JPH11224853A (en) Lighting optical device, aligner, exposure method, and semiconductor device manufacturing method
JP2003068607A (en) Aligner and exposure method
JPS637628A (en) Integrator and exposure apparatus using same
JP6598833B2 (en) Illumination optical system, exposure apparatus, and article manufacturing method
JPWO2004112107A1 (en) Illumination optical apparatus, exposure apparatus, and exposure method
JP2020021084A (en) Illumination optical system, exposure apparatus and method for manufacturing article
KR100722672B1 (en) Exposure apparatus capable of adjusting the magnification of lens
JP2697264B2 (en) Exposure processing equipment