JPS6161642A - Monolithic catalyst for purifying exhaust gas - Google Patents

Monolithic catalyst for purifying exhaust gas

Info

Publication number
JPS6161642A
JPS6161642A JP59183373A JP18337384A JPS6161642A JP S6161642 A JPS6161642 A JP S6161642A JP 59183373 A JP59183373 A JP 59183373A JP 18337384 A JP18337384 A JP 18337384A JP S6161642 A JPS6161642 A JP S6161642A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
monolithic
monolithic catalyst
catalytic components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59183373A
Other languages
Japanese (ja)
Inventor
Shinichi Matsumoto
伸一 松本
Naoto Miyoshi
直人 三好
Kazuaki Sofue
祖父江 和昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59183373A priority Critical patent/JPS6161642A/en
Publication of JPS6161642A publication Critical patent/JPS6161642A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To keep the high activity of a monolithic catalyst and to enhance the durability by providing the part carrying rich catalytic components on the upstream side of exhaust gas as long as the catalyst is not poisoned by lead, etc. CONSTITUTION:As for the monolithic catalyst, an appropriate position 1/10-1/3 of the total length of the monolithic catalyst distant from the end surface on the inlet side of exhaust gas is used as a cardinal point, and the part carrying rich catalytic components is formed in the range 1/5-1/3 of the total length of the catalyst from said cardinal point to the outlet side of exhaust gas. Consequently, the part carrying rich catalytic components keeps high activity without being poisoned, and has excellent activity even at low temps., because the catalyst is preignited at low temps. Besides, catalytic reaction is carried out with comparative easiness on the downstream side of the part carrying rich catalytic components as a consequence of the reaction heat of the catalytic reaction by the catalytic components of the part carrying rich catalytic components.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自IJs車等の排気ガス中に含まれる炭化水素
(HC)、−酸化炭素(CO)、窒素酸化物(NOx)
等の有害物質を除去するための排気ガス浄化用モノリス
触媒に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the treatment of hydrocarbons (HC), -carbon oxides (CO), and nitrogen oxides (NOx) contained in the exhaust gas of private IJs vehicles, etc.
This invention relates to a monolithic catalyst for exhaust gas purification to remove harmful substances such as.

(従来の技術〕 モノリス触媒は排気ガスの流れ方向に沿って多数のセル
(細孔)が設けられた一体成形構造のモノリス担体に、
活性アルミナをコーティングした後、触媒作用のある活
性成分(通常は貴会B)を担持したものである。このモ
ノリス触媒は、粒状触媒に比べ熱容量が小さく、暖機性
に優れ、更に背圧が小さいという利点を有し、このため
自動車排気ガス浄化用モノリス触媒として広く利用され
ている。
(Prior art) A monolithic catalyst is a monolithic carrier with an integrally molded structure in which a large number of cells (pores) are provided along the flow direction of exhaust gas.
After coating with activated alumina, an active component with catalytic action (usually Kikai B) is supported. This monolithic catalyst has the advantage of having a smaller heat capacity than a granular catalyst, excellent warm-up performance, and low back pressure, and is therefore widely used as a monolithic catalyst for purifying automobile exhaust gas.

ところで、一般に、モノリス触媒は低温時には触媒の反
応速度が遅いため、高活性を維持するためには多くの触
媒成分が必要とされるが、温度が上昇すれば反応速度が
増加し、触媒成分が少なくても高活性を維持できるよう
になる。また、触媒反応は発熱反応であり、触媒反応が
始まると反応熱により排気ガス温度は上昇する。従って
、モノリス触媒の排気ガスに対し入口側近傍にのみ触媒
成分を多く担持すれば、低温で着火し、かつその反応熱
によりモノリス触媒の後半部は低い触媒担持量で高い活
性を維持することができると考えられる。
By the way, in general, monolith catalysts have a slow reaction rate at low temperatures, so a large amount of catalyst components are required to maintain high activity, but as the temperature rises, the reaction rate increases and the catalyst components decrease. Even if it is less, high activity can be maintained. Further, the catalytic reaction is an exothermic reaction, and when the catalytic reaction starts, the exhaust gas temperature increases due to the reaction heat. Therefore, if a large amount of catalyst component is supported only near the inlet side of the exhaust gas of a monolithic catalyst, ignition will occur at a low temperature, and due to the reaction heat, the latter half of the monolithic catalyst will be able to maintain high activity with a low amount of catalyst supported. It seems possible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記の如く、モノリス触媒の人口側近傍
に触媒成分を多(担持した場合には、初期には高活性を
維持できるものの、リン(P)、鉛(Pb)等による被
毒を強く受け、耐久性に劣るという問題がある。
However, as mentioned above, if a large number of catalyst components are supported near the artificial side of the monolith catalyst, although high activity can be maintained initially, it is highly susceptible to poisoning by phosphorus (P), lead (Pb), etc. , there is a problem of poor durability.

本発明は、上記従来技術の問題を解決するためになされ
たもので、本発明の技術的課題は、被毒による劣化を極
力さけながら触媒成分の反応熱の有9)J利用を図るこ
とにより、モノリス触媒の高活性を維持し、耐久性を向
上することにある。
The present invention has been made to solve the problems of the prior art described above, and the technical problem of the present invention is to utilize the reaction heat of the catalyst components while avoiding deterioration due to poisoning as much as possible. The goal is to maintain high activity and improve durability of monolithic catalysts.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記曲頭点は、次の排気ガス浄化用モノリス触媒によっ
て解決される。
The above problem is solved by the following monolithic catalyst for exhaust gas purification.

即ち、本発明の排気ガス浄化用モノリス触媒は、柱状を
なし、内部に排気ガスの入口側から出口側に向けて多数
のセルが設けられており、このセル内壁面にアルミナ層
が担持され、このアルミナ層に触媒成分が担持されてい
る排気ガス浄化用モノリス触媒であって、 このモノリス触媒の排気ガスの入口側端面から、モノリ
ス触媒全長の1/10〜1/3の範囲の適宜位置を基点
として、この基点から排気ガスの出口側に向かってモノ
リス触媒全長の115〜l/3の長さの範囲には、その
他の部分より触媒成分が多く担持されていることを特徴
としている。
That is, the monolithic catalyst for exhaust gas purification of the present invention has a columnar shape, and a large number of cells are provided inside from the exhaust gas inlet side to the outlet side, and an alumina layer is supported on the inner wall surface of the cells. This is a monolithic catalyst for exhaust gas purification in which a catalyst component is supported on the alumina layer. As a base point, a range of 115 to 1/3 of the total length of the monolith catalyst from this base point toward the exhaust gas outlet side is characterized in that more catalyst components are supported than other parts.

〔作用〕[Effect]

本発明の排気ガス浄化用モノリス触媒によれば、触媒成
分の高担持部を、鉛等の被毒の影響をほとんど受けない
範囲で可能な限り排気ガスの上流側に設けたため、この
触媒成分の高担持部は被毒の影響を受けず高活性を維持
しつづけると共に、低温時にはこの高担持部の触媒成分
により早期に着火するため低温活性もよく、またこの高
担持部より下流域は、高担持部の触媒成分の触媒反応に
よる反応熱で比鮫的容易に触媒反応を生じる。
According to the monolithic catalyst for exhaust gas purification of the present invention, the highly loaded portion of the catalyst component is provided as far upstream of the exhaust gas as possible without being affected by poisoning by lead, etc. The highly loaded area continues to maintain high activity without being affected by poisoning, and at low temperatures, the catalyst components in this highly loaded area ignite early, resulting in good low-temperature activity. The catalytic reaction occurs comparatively easily with the reaction heat generated by the catalytic reaction of the catalytic component of the supporting part.

〔発明の効果〕〔Effect of the invention〕

以上より、本発明の排気ガス浄化用モノリス触媒によれ
ば、触媒成分の高担持部における被毒の影響が少ないた
め耐久性が向上し、高活性な状態が長期にわたり維持で
きるという優れた効果を奏する。
From the above, the monolithic catalyst for exhaust gas purification of the present invention has excellent effects such as improved durability and ability to maintain a highly active state for a long period of time due to less influence of poisoning in areas with high catalyst component loading. play.

〔実施例〕〔Example〕

次に、本発明の実施例を図面を参考にして説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

アルミナ含有量10重量%(以下、%はすべて重量%を
示す)のアルミナシルア00gに、40%硝酸アルミニ
ウム水溶液150gを加え、更に蒸留水450mlを加
えて撹拌し、混合!!!!濁液を得た。その中へアルミ
ナ粉末tooogを加え、撹拌してスラリーを調整した
。このスラリーに直i蚤93龍、長さ100關で、1平
方インチ当り400個のセルが設けられたコージェライ
ト質モノリス担体を1分間?、% ?fiし、引き上げ
て気流でセル(細孔)内のスラリーを吹きとばした。そ
の後、200℃で1時間乾燥し、続いて700 ”Cで
2時間焼成することによりモノリス担体全体に110g
の活性アルミナ層(ウォッシュコート)を形成 ・した
Add 150 g of a 40% aluminum nitrate aqueous solution to 00 g of alumina silica with an alumina content of 10% by weight (all percentages indicate weight%), and then add 450 ml of distilled water and stir to mix! ! ! ! A cloudy liquid was obtained. Alumina powder tooog was added thereto and stirred to prepare a slurry. A cordierite monolith carrier with a length of 100 mm and 400 cells per square inch was added to this slurry for 1 minute. ,%? The slurry in the cells (pores) was blown away by air flow. Thereafter, 110 g of
An activated alumina layer (wash coat) was formed.

この活性アルミナ層を形成したモノリス担体を蒸留水に
7i 79して十分吸水させた後、引き上げて余分な水
分を吹き払い、塩化パラジウム、ジニトロジアンミン白
金および塩化ロジウムを含む水溶液に浸漬した。このと
き、モノリス担体の軸方向長さの80%を浸漬し、1分
間隔で浸漬と引き上げを30分間繰り返した後、乾燥し
た。この結果、モノリス担体の80%の部分にモノリス
担体11固当りパラジウム(Pd)0.23g、白金(
Pt)0、23 g、ロジウム(Rh)0.046gが
担持された。この段階では、モノリス担体の人口側の2
01の部分は触媒成分が担持されていない。
The monolithic carrier on which the activated alumina layer had been formed was thoroughly soaked in distilled water to absorb water, then pulled out, the excess moisture was blown off, and the carrier was immersed in an aqueous solution containing palladium chloride, dinitrodiammine platinum, and rhodium chloride. At this time, 80% of the axial length of the monolithic carrier was immersed, and immersion and lifting were repeated at 1 minute intervals for 30 minutes, followed by drying. As a result, 80% of the monolith carrier contained 0.23 g of palladium (Pd) and platinum (Pd) per 11 monolith carriers.
0.23 g of Pt) and 0.046 g of rhodium (Rh) were supported. At this stage, the two on the population side of the monolithic carrier
In the portion 01, no catalyst component is supported.

次いで、このモノリス担体の上下方向を逆にして、即ち
、モノリス担体の入口側を下にして塩化パラジウムとジ
ニトロジアンミン白金と塩化ロジウムの混合水溶液に軸
方向で4Q+uを浸漬し、1分間隔で浸漬と引き上げを
30分間繰り返してモノリス触媒を得た。この結果、新
たにモノリス担体の人口側から40mmの部分に、モノ
リス担体1個当りパラジウム0.11 g、白金0.1
1g、ロジウム0.022 gが担持された。従って、
モノリス担体全体としては、モノリス担体1 (11i
1当りパラジウム0.34 g、白金0.34g、ロジ
ウム0.068gが担持された。
Next, the monolithic carrier was turned upside down, that is, with the inlet side of the monolithic carrier facing down, 4Q+u was immersed in the mixed aqueous solution of palladium chloride, dinitrodiammine platinum, and rhodium chloride in the axial direction, and the 4Q+u was immersed at intervals of 1 minute. This process was repeated for 30 minutes to obtain a monolithic catalyst. As a result, 0.11 g of palladium and 0.1 g of platinum were added per monolith carrier to a portion 40 mm from the artificial side of the monolith carrier.
1 g and 0.022 g of rhodium were supported. Therefore,
As for the monolith carrier as a whole, monolith carrier 1 (11i
0.34 g of palladium, 0.34 g of platinum, and 0.068 g of rhodium were supported per unit.

また、触媒成分の担持密度は、第1図に示すように、モ
ノリス触媒の入口側端面から出口側に向かって2011
〜40龍の範囲(説明の便宜上、該当部分をハ・ノチン
グで示す)は、その他の部分の2倍であった。即ち、モ
ノリス触媒の入口側端面から20朋〜40鰭の部分には
モノリス担体の容積12当りパラジウム0.83 g、
白金0.83 g、ロジウム0.17 gが担持され、
その他の部分にはパラジウム0.42 g、白金0.4
2 g、ロジウム0゜083gが担持されていた。この
結果得られたモノリス触媒を触媒Aとする。
In addition, as shown in Fig. 1, the supporting density of the catalyst components is 2011 from the inlet side end face to the outlet side of the monolithic catalyst.
The range of ~40 dragons (for convenience of explanation, the corresponding part is indicated with a notch) was twice as large as the other parts. That is, 0.83 g of palladium per 12 volumes of the monolithic carrier was added to the portion 20 to 40 fins from the inlet side end face of the monolithic catalyst.
0.83 g of platinum and 0.17 g of rhodium are supported,
Other parts contain 0.42 g of palladium and 0.4 g of platinum.
2 g and 0.083 g of rhodium were supported. The monolithic catalyst obtained as a result is designated as catalyst A.

(比較例) 実施例と同じモノリス担体を用いて実施例と同様な方法
で活性アルミナ層を形成した。次いで、塩化パラジウム
、ジニトロジアンミン白金、塩化ロジウムを含む水溶液
中にモノリス担体全体を30分間浸漬し、取り出して余
分な水分を吹き払った後、乾燥した。
(Comparative Example) An activated alumina layer was formed in the same manner as in the example using the same monolithic carrier as in the example. Next, the entire monolith carrier was immersed in an aqueous solution containing palladium chloride, dinitrodiammine platinum, and rhodium chloride for 30 minutes, taken out, excess moisture was blown off, and then dried.

この結果得られたモノリス触媒は、モノリス担体1(固
当りパラジウム0.34 g、白金0.34 g、ロジ
ウム0.068 gがモノリス担体全体に均一に担持さ
れていた。このモノリス触媒を触媒Bとする。
The resulting monolithic catalyst was monolithic carrier 1 (0.34 g of palladium, 0.34 g of platinum, and 0.068 g of rhodium were uniformly supported on the entire monolithic carrier). shall be.

(触媒性能試験) 上記実施例と比較例で得られたモノリス触媒について、
以下の触媒性能試験を実施し性能を評価した。
(Catalyst performance test) Regarding the monolithic catalysts obtained in the above examples and comparative examples,
The following catalyst performance test was conducted to evaluate the performance.

まず、触媒Aと触媒Bをそれぞれ金属容器に収納し、車
両のエンジン排気系に装着して市街地走行を模したパタ
ーンで200時間走行した。
First, Catalyst A and Catalyst B were each housed in a metal container, attached to the engine exhaust system of a vehicle, and driven for 200 hours in a pattern simulating city driving.

その後、触媒Aと触媒Bをそれぞれ排気量2.8βのエ
ンジンの排気系に装着し、2000 rpm /380
msHgの条件で運転して得た排気ガスを冷却器で一定
温度に調整してから触媒に導入し、炭化水素(HC)、
−酸化炭素(Co) 、窒素酸化物(NOx)の浄化率
を測定した。このうち、−酸化炭素の浄化率の結果を第
2図に示す。
After that, catalyst A and catalyst B were each installed in the exhaust system of an engine with a displacement of 2.8β, and the engine speed was 2000 rpm/380.
The exhaust gas obtained by operating under msHg conditions is adjusted to a constant temperature with a cooler and then introduced into the catalyst to produce hydrocarbons (HC),
- The purification rate of carbon oxide (Co) and nitrogen oxide (NOx) was measured. Among these, the results of the purification rate of -carbon oxide are shown in FIG.

第2図から明らかなように、実施例に係る触媒Aは、比
較例に係る触媒Bに比べ、触媒成分が同一量担持されて
いるにもかかわらず、より高い活性を示していることが
判る。これは、触媒Aの触媒成分の高担持部分で低温で
着火し、この反応熱を利用して触媒の下流域が十分な活
性を発揮するため、更には高担持部分を比較的被毒によ
る劣化が少ない部分に位置させたため、耐久試験後にお
いても高い活性を持つためと考えられる。
As is clear from FIG. 2, it can be seen that catalyst A according to the example exhibits higher activity than catalyst B according to the comparative example, even though the catalyst components are supported in the same amount. . This is due to the fact that ignition occurs at a low temperature in the highly loaded part of catalyst A, and the downstream area of the catalyst uses this reaction heat to exhibit sufficient activity. This is thought to be due to the fact that it was located in an area where there is little activity, so it had high activity even after the durability test.

なお、第2図には一酸化炭素の浄化率のみを示したが、
他の成分、即ち炭化水素、窒素酸化物についても第2図
とほぼ同様な結果が得られた。
Although Figure 2 only shows the purification rate of carbon monoxide,
Almost the same results as in FIG. 2 were obtained for other components, namely hydrocarbons and nitrogen oxides.

以上、本発明の特定の実施例について説明したが、本発
明は、この実施例に限定されるものではなく、特許請求
の範囲に記載の範囲内で種々の実施態様が包含されるも
のである。
Although specific embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and includes various embodiments within the scope of the claims. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る排気ガス浄化用モノリス
触媒の概略構成図、 第2図は本発明の実施例に係る排気ガス浄化用モノリス
触媒と比較例に係る排気ガス浄化用モノリス触媒の一酸
化炭素の浄化率を示すグラフである。
FIG. 1 is a schematic configuration diagram of a monolithic catalyst for exhaust gas purification according to an example of the present invention, and FIG. 2 is a schematic diagram of a monolithic catalyst for purifying exhaust gas according to an example of the present invention and a monolithic catalyst for exhaust gas purification according to a comparative example. It is a graph showing the purification rate of carbon monoxide.

Claims (1)

【特許請求の範囲】[Claims] (1)柱状をなし、内部に排気ガスの入口側から出口側
に向けて多数のセルが設けられており、このセル内壁面
にアルミナ層が担持され、このアルミナ層に触媒成分が
担持されている排気ガス浄化用モノリス触媒であって、 このモノリス触媒の排気ガスの入口側端面から、モノリ
ス触媒全長の1/10〜1/3の範囲の適宜位置を基点
として、この基点から排気ガスの出口側に向かってモノ
リス触媒全長の1/5〜1/3の長さの範囲には、その
他の部分より触媒成分が多く担持されていることを特徴
とする排気ガス浄化用モノリス触媒。
(1) It has a columnar shape, and a large number of cells are provided inside from the exhaust gas inlet side to the outlet side, and an alumina layer is supported on the inner wall surface of the cell, and a catalyst component is supported on this alumina layer. A monolithic catalyst for exhaust gas purification, which is a monolithic catalyst for exhaust gas purification, with an appropriate position in the range of 1/10 to 1/3 of the total length of the monolithic catalyst from the end face of the exhaust gas inlet side of the monolithic catalyst as a base point, and an exhaust gas outlet from this base point. A monolithic catalyst for exhaust gas purification, characterized in that a larger amount of catalyst components is carried in a range of 1/5 to 1/3 of the total length of the monolithic catalyst than in other parts.
JP59183373A 1984-08-31 1984-08-31 Monolithic catalyst for purifying exhaust gas Pending JPS6161642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59183373A JPS6161642A (en) 1984-08-31 1984-08-31 Monolithic catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59183373A JPS6161642A (en) 1984-08-31 1984-08-31 Monolithic catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS6161642A true JPS6161642A (en) 1986-03-29

Family

ID=16134635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59183373A Pending JPS6161642A (en) 1984-08-31 1984-08-31 Monolithic catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS6161642A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203940A (en) * 1989-02-02 1990-08-13 Cataler Kogyo Kk Method for supporting catalytic metal on carrier
WO2006028028A1 (en) * 2004-09-09 2006-03-16 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203940A (en) * 1989-02-02 1990-08-13 Cataler Kogyo Kk Method for supporting catalytic metal on carrier
WO2006028028A1 (en) * 2004-09-09 2006-03-16 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases

Similar Documents

Publication Publication Date Title
CA2219367C (en) Catalyst for purifying exhaust gas from internal combustion engine and purifying method thereof
JP3391878B2 (en) Exhaust gas purification catalyst
JPH0760117A (en) Exhaust gas purifying catalyst
JPH07213902A (en) Exhaust gas purifying catalyst
JP3433956B2 (en) Exhaust gas purification method
JP3327054B2 (en) Exhaust gas purification catalyst
JP2003190790A (en) Catalyst for purifying exhaust gas and system therefor
JPS6384635A (en) Catalyst for purifying exhaust gas
JPH08299793A (en) Catalyst for purification of exhaust gas and its production
JPH0810573A (en) Exhaust gas purifying device
JPS6161642A (en) Monolithic catalyst for purifying exhaust gas
JP3551346B2 (en) Exhaust gas purification equipment
JP2598817B2 (en) Exhaust gas purification catalyst
JPH06165920A (en) Exhaust gas purifying method
JP3839860B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPS60238152A (en) Monolithic catalyst for purifying exhaust gas
JPS60225651A (en) Monolithic catalyst for purifying exhaust gas of car
JPH0871424A (en) Catalyst for purification of exhaust gas
JPH0522261Y2 (en)
JP2000246103A (en) Production of catalyst for cleaning exhaust gas
JPH08196870A (en) Exhaust gas purifying device
JP2002273226A (en) Catalyst for purifying exhaust gas and its manufacturing method
JPH03154619A (en) Catalytic converter device
JPH08281105A (en) Clarification catalyst for combustion exhaust gas
JPS598421B2 (en) Catalyst for exhaust gas purification