JPS6161521B2 - - Google Patents

Info

Publication number
JPS6161521B2
JPS6161521B2 JP55115174A JP11517480A JPS6161521B2 JP S6161521 B2 JPS6161521 B2 JP S6161521B2 JP 55115174 A JP55115174 A JP 55115174A JP 11517480 A JP11517480 A JP 11517480A JP S6161521 B2 JPS6161521 B2 JP S6161521B2
Authority
JP
Japan
Prior art keywords
humidity
resistance
mol
present
alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55115174A
Other languages
Japanese (ja)
Other versions
JPS5739502A (en
Inventor
Hideaki Yagi
Tetsuo Hishiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP55115174A priority Critical patent/JPS5739502A/en
Publication of JPS5739502A publication Critical patent/JPS5739502A/en
Publication of JPS6161521B2 publication Critical patent/JPS6161521B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は感湿抵抗素子に用いる感度の優れた抵
抗体の混合成分に関するものである。 従来よりAl2O3粉未の成形体の電気抵抗が湿度
に依存することから、粒径1〜5μの高純度の
Al2O3粉末に水を加えて撹拌し、泥漿にし、平衡
電極のついたガラス板等の絶縁基板の表面に薄く
塗布し自然乾燥した後、100℃で乾燥して酸化物
の薄膜を造つた湿度センサーが知られていた。又
これを更に改良して、粒径1〜5μのAl2O3粉末
60〜90重量%と遷移金属元素を含むガラス40〜10
重量%との混合物をプレス成形し、焼成したもの
が特公昭53−10677号に述べられている。併し前
者は機械強度が小さく、感湿抵抗体が剥れ易く50
%の相対湿度(以下「RH」を略す)で104MΩと
電気抵抗が高く、低湿度では測定不可能であつ
た。又後者も結合剤としてガラス分が入つている
ため、90%RHというような高湿度側でも5×105
Ωと電気抵抗が高く、又実用的な機械強度を有す
る抵抗体としては、ガラス分を多く加えなければ
ならず、必然的に湿度による抵抗率の変化が小さ
いものとなり、且つ応答性も遅いものとならざる
を得ず、更に高湿から低湿にした時ヒステリシス
が残るという難点があつた。 本発明はこれらを改善するためになされたもの
で、Alアルコキシド及びTiアルコキシドを加水
分解して得られた酸化物微粉末の混合物を成形
し、800〜1300℃で焼成することを特徴とする感
湿抵抗素子を提供するものであり、その感湿抵抗
体成分として、Al2O35〜99モル%TiO21〜95モル
%よりなるものである。本発明は結合剤を用い
ず、又結晶成長が進行する前に焼成を終つている
ため微結晶で均一な多孔質体が得られ、高感度で
応答性の速い感湿抵抗素子を得ることが出来る。 Al2O3にTiO2の添加は、素子の抵抗を下げ変化
巾を更に大きくするのに寄与することから、実用
上、より優れたものとなる。 AlアルコキシドとTiアルコキシドの加水分解
による酸化物微粉末を得て混合物とする方法の等
徴として、製造プロセスから不純物が入ることな
く高純度であること、約100Åの均一な超微粒子
が得られることから800〜1300℃というような比
較的低温で焼結できる。又共通溶媒を使用しアル
コキシド混合溶液を同時に加水分解することによ
り極めて均質な任意の組成比のものが容易に得ら
れ、高感度で変化巾の大きいものの再現性が高
い。それに加え、結合剤としてのガラス分を含ま
ない微粒子であるため比表面積が大きく、活性で
あり高感度で脱湿の時、ヒステリシスがなくなつ
たのもこの方法に依るものである。 焼成温度を800〜1300℃と限定した理由は、800
℃以下では、TiO2が1モル%以上になるように
した組成物においてルチル型TiO2が形成できず
アモルフアス又はアナターゼ型構造であり、又
Al2O3も殆んどアモルフアスであり、強度が低く
不安定である。1300℃以上では結晶が粒成長し大
きくなり湿度変化に対して鈍感となり湿度と抵抗
変化の直線性がなくなるためである。 また感湿抵抗体成分として、Al2O35〜99モル
%とTiO21〜95モル%に限定した理由は、
Al2O399モル%以上(TiO21モル%以下)では、
焼成体の抵抗の変化巾が小さくAl2O35モル%以
下(TiO295モル%以上)では、焼成体の抵抗の
直線性がくずれて実用性にとぼしいためである。 以下実施例により一そう具体的に説明する。 実施例 Al(isoOC3H73とTi(nOC4H94を下記第1表
に示すモル%になるように秤量し、エタノールに
溶解し、温度60℃以上に加熱した溶液にAl
(isoOC3H73及びTi(nOC4H94との等モル以上
の純水を加え、撹拌しながら1時間反応させる。
任意の組成のものが共通溶媒を使用して、Al及
びTiアルコキシド混合溶液を同時に簡単に加水
分解出来る。加水分解を終えた酸化物微粉末を分
離し乾燥すると粒径は約100Åで均一で比表面積
280〜350m2/gのものが得られる。この微粉末を
結合剤なしで厚さ0.5mm、直径1.0mmの寸法にプレ
ス成形し、温度1100℃にて2時間焼成した。
The present invention relates to a mixed component of a resistor with excellent sensitivity for use in a moisture-sensitive resistance element. Conventionally, the electrical resistance of molded bodies without Al 2 O 3 powder depends on humidity, so high purity powder with a particle size of 1 to 5 μm is used.
Water is added to the Al 2 O 3 powder and stirred to form a slurry, which is applied thinly to the surface of an insulating substrate such as a glass plate with a balanced electrode, air dried, and then dried at 100°C to form a thin oxide film. The ivy humidity sensor was known. This was further improved to produce Al 2 O 3 powder with a particle size of 1 to 5μ.
Glass containing 60-90% by weight and transition metal elements 40-10
Japanese Patent Publication No. 10677/1983 describes a mixture prepared by press-molding and firing a mixture with % by weight. However, the former has low mechanical strength and the moisture-sensitive resistor easily peels50.
% relative humidity (hereinafter abbreviated as "RH"), the electrical resistance was as high as 10 4 MΩ, and it was impossible to measure at low humidity. The latter also contains glass as a binder, so even at high humidity levels such as 90% RH, it is 5 x 10 5
In order to create a resistor that has high electrical resistance (Ω) and practical mechanical strength, a large amount of glass must be added, which inevitably results in small changes in resistivity due to humidity and slow response. In addition, there was the problem that hysteresis remained when changing from high humidity to low humidity. The present invention has been made to improve these problems, and is characterized by molding a mixture of oxide fine powder obtained by hydrolyzing Al alkoxide and Ti alkoxide, and calcining it at 800 to 1300°C. The present invention provides a humidity resistance element, and the humidity sensitive resistor component thereof is comprised of 5 to 99 mol% Al2O3 and 1 to 95 mol% TiO2. Since the present invention does not use a binder and the firing is completed before crystal growth progresses, a microcrystalline and uniform porous body can be obtained, and a moisture-sensitive resistance element with high sensitivity and quick response can be obtained. I can do it. Addition of TiO 2 to Al 2 O 3 contributes to lowering the resistance of the element and further increasing the range of change, which makes it more superior in practice. The method of obtaining fine oxide powder and making a mixture by hydrolyzing Al alkoxide and Ti alkoxide has the following characteristics: high purity with no impurities introduced during the manufacturing process, and uniform ultrafine particles of approximately 100 Å in size. It can be sintered at relatively low temperatures, from 800 to 1,300 degrees Celsius. Furthermore, by simultaneously hydrolyzing the alkoxide mixed solution using a common solvent, an extremely homogeneous composition having an arbitrary composition ratio can be easily obtained, and the reproducibility is high even though the composition ratio is high and the range of variation is high. In addition, because the particles are fine particles that do not contain glass as a binder, they have a large specific surface area, are active, have high sensitivity, and are free from hysteresis during dehumidification, which is also due to this method. The reason why we limited the firing temperature to 800 to 1300℃ is that
℃ or below, rutile type TiO 2 cannot be formed in a composition containing 1 mol% or more of TiO 2 and an amorphous or anatase type structure is formed.
Al 2 O 3 is also mostly amorphous and has low strength and is unstable. This is because at temperatures above 1300°C, crystals grow and become larger, becoming insensitive to humidity changes and losing linearity between humidity and resistance changes. In addition, the reason for limiting the moisture-sensitive resistor components to 5 to 99 mol% of Al 2 O 3 and 1 to 95 mol% of TiO 2 is as follows.
At Al 2 O 3 99 mol% or more (TiO 2 1 mol% or less),
This is because the range of change in resistance of the fired body is small, and if Al 2 O 3 is less than 5 mol % (TiO 2 is more than 95 mol %), the linearity of the resistance of the fired body is lost, making it impractical. A more specific explanation will be given below with reference to Examples. Example Al(isoOC 3 H 7 ) 3 and Ti(nOC 4 H 9 ) 4 were weighed to have the mol% shown in Table 1 below, dissolved in ethanol, and added to a solution heated to a temperature of 60°C or higher.
(isoOC 3 H 7 ) 3 and Ti(nOC 4 H 9 ) 4 are added in a molar amount or more of pure water, and the mixture is allowed to react for 1 hour while stirring.
A mixed solution of Al and Ti alkoxides of any composition can be easily hydrolyzed simultaneously using a common solvent. After the hydrolyzed oxide fine powder is separated and dried, the particle size is approximately 100 Å, uniform, and the specific surface area is small.
280 to 350 m 2 /g can be obtained. This fine powder was press-molded without a binder into a size of 0.5 mm in thickness and 1.0 mm in diameter, and fired at a temperature of 1100° C. for 2 hours.

【表】 以上の第1表に示した特徴は温度1100℃にて2
時間焼成したものであり、組成により異なるが結
晶粒径は0.1〜1.0μで気化率は30〜40の多孔質体
である。 この上下面に銀電極を700℃の温度で焼付け、
リード線を付けて感湿抵抗素子とした。その側面
図を第1図に示す。図中1は感湿抵抗体、2は銀
電極、3はリード線である。上記各試料にAC1V
を印加した時の湿度と抵抗との関係変化を第2図
及び第3図に示し、第2図中の直線は左端上から
順にNo.5,4,3,2,1であり、第3図中の曲
線及び直線は右端上から順にNo.10,9,8,7,
6である。尚No.1とNo.10を除いた本発明の試料は
90%RHで104Ωであり、20%RHで108Ωであり、
実用性の高い抵抗域で大きな変化巾と直線性があ
り、脱湿の時におけるヒステリシスはみられなか
つた。併し本発明範囲外のNo.1及び10は90%RH
で105Ωあり、20%RHで107Ωとなり、小さな抵
抗変化巾を示し、特にNo.10は直線性がなくなる。
気温30℃における応答性については、第4図に示
す如く試料No.2〜9は、ほぼ同様な値を示し20〜
30秒以内に安定した速いものとなつたが、これは
結合剤を含まず、均一な微粒子多孔質体の効果が
現われたものと考えられる。図中破線はRH90%
より50%に変化させた場合、実線はRH20%より
50%へと変化させた場合の相対指示湿度である。
第5図には温度20℃、湿度70%中の経時変化を示
したものであり、本発明試料No.2〜9では殆んど
変りなく実線で示してあり、感湿抵抗体表面の有
機物付着等からくる汚れが遅く、400時間経過し
た時点での抵抗の変化は、初期抵抗の約1.5倍で
あり安定したものであつた。これに対し破線は従
来品の電気抵抗であり、本発明品の優れているこ
とを、はつきりと示している。 尚本実施例では原料としてAl(isoOC3H73
Ti(nOC4H94を用いたが、Al(OCH33、Al
(OC2H53、Al(nOC4H93、Ti(OC2H54、Ti
(isoOC3H94、Ti〔OCH2CH(C2H5)C4H94
アルミニウム又はチタニウムアルコキシドであれ
ば当然使用可能である。
[Table] The characteristics shown in Table 1 above are 2 at a temperature of 1100℃.
It is a porous material that has been fired for hours and has a crystal grain size of 0.1 to 1.0μ and a vaporization rate of 30 to 40, although it varies depending on the composition. Silver electrodes are baked on the top and bottom surfaces at a temperature of 700℃,
A lead wire was attached to create a moisture-sensitive resistance element. Its side view is shown in FIG. In the figure, 1 is a humidity sensitive resistor, 2 is a silver electrode, and 3 is a lead wire. AC1V for each sample above
Figures 2 and 3 show the changes in the relationship between humidity and resistance when applying The curves and straight lines in the figure are No. 10, 9, 8, 7,
It is 6. The samples of the present invention excluding No. 1 and No. 10 are
10 4 Ω at 90%RH, 10 8 Ω at 20%RH,
It had a large range of variation and linearity in a highly practical resistance range, and no hysteresis was observed during dehumidification. However, No. 1 and 10, which are outside the scope of the present invention, are 90%RH.
It is 10 5 Ω at 20% RH, and 10 7 Ω at 20%RH, showing a small resistance change range, and especially No. 10 has no linearity.
Regarding the responsiveness at an air temperature of 30℃, as shown in Figure 4, samples Nos. 2 to 9 showed almost the same values.
It became stable and fast within 30 seconds, which is thought to be due to the effect of the homogeneous fine particle porous material, which does not contain a binder. The broken line in the figure is RH90%
If the RH is changed to 50%, the solid line will change from RH20%.
This is the relative indicated humidity when changing to 50%.
Figure 5 shows the change over time at a temperature of 20°C and a humidity of 70%. Samples Nos. 2 to 9 of the present invention show almost no change, and are shown as solid lines, indicating that organic matter on the surface of the humidity-sensitive resistor. Contamination caused by adhesion was slow, and the change in resistance after 400 hours was approximately 1.5 times the initial resistance and stable. In contrast, the broken line represents the electrical resistance of the conventional product, clearly demonstrating the superiority of the product of the present invention. In this example, the raw materials were Al(isoOC 3 H 7 ) 3 ,
Ti (nOC4H9)4 was used , but Al( OCH3 ) 3 , Al
( OC2H5 ) 3 , Al ( nOC4H9 ) 3 , Ti( OC2H5 ) 4 , Ti
(isoOC 3 H 9 ) 4 , Ti [OCH 2 CH (C 2 H 5 ) C 4 H 9 ] 4 , or other aluminum or titanium alkoxides can of course be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は感湿抵抗素子の側面図、第2図及び第
3図は本発明実施例及び比較例の湿度と抵抗との
関係、第4図は本発明の応答性の経過時間と湿度
との関係、第5図は本発明品と従来品との経時変
化の時間と抵抗との関係を示したものである。
Figure 1 is a side view of a humidity-sensitive resistance element, Figures 2 and 3 are the relationship between humidity and resistance in the examples and comparative examples of the present invention, and Figure 4 is the relationship between elapsed time and humidity in response of the present invention. FIG. 5 shows the relationship between the time of change over time and the resistance of the product of the present invention and the conventional product.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化物モル換算で、Al2O35〜99%とTiO21〜
95%とでなるようにAlアルコキシド及びTiアル
コキシドを混合し、加水分解し、成形後、800〜
1300℃で焼成することを特徴とする感湿抵抗素子
の製造法。
1 In terms of oxide moles, Al 2 O 3 5~99% and TiO 2 1~
Mix Al alkoxide and Ti alkoxide so that it is 95%, hydrolyze it, and after molding, 800~
A method for manufacturing a moisture-sensitive resistance element characterized by firing at 1300°C.
JP55115174A 1980-08-21 1980-08-21 Moisture sensitive resistance element Granted JPS5739502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55115174A JPS5739502A (en) 1980-08-21 1980-08-21 Moisture sensitive resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55115174A JPS5739502A (en) 1980-08-21 1980-08-21 Moisture sensitive resistance element

Publications (2)

Publication Number Publication Date
JPS5739502A JPS5739502A (en) 1982-03-04
JPS6161521B2 true JPS6161521B2 (en) 1986-12-26

Family

ID=14656171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55115174A Granted JPS5739502A (en) 1980-08-21 1980-08-21 Moisture sensitive resistance element

Country Status (1)

Country Link
JP (1) JPS5739502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212128U (en) * 1985-07-05 1987-01-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212128U (en) * 1985-07-05 1987-01-24

Also Published As

Publication number Publication date
JPS5739502A (en) 1982-03-04

Similar Documents

Publication Publication Date Title
JPS6161521B2 (en)
JPS622681B2 (en)
JPS6314483B2 (en)
JPS6243521B2 (en)
JPS6152422B2 (en)
JPS60200161A (en) Zirconia porcelain and its preparation
JPS59147402A (en) Moisture sensitive element and method of producing same
JPS6147548A (en) Gas detection element
JPS58161301A (en) Moisture sensitive element
JPH0122964B2 (en)
JPS6250432B2 (en)
JPS6030082B2 (en) Manufacturing method of moisture sensing element
JPS6227483B2 (en)
JPS5837901A (en) Moisture sensitive element
JPS60247901A (en) Moisture sensitive material
JPH03108650A (en) Manufacture of humidity sensor element
JPS6344703A (en) Moisture-sensitive device compound
JPH06219816A (en) Production of piezoelectric porcelain composition
JPS5835901A (en) Moisture sensitive element
JPH0915184A (en) Membrane humidity-sensitive element and production thereof
JPS5860501A (en) Moisture sensor
JPS58190001A (en) Moisture measuring element
JPS64347B2 (en)
JPS6390101A (en) Humidity sensor and manufacture of the same
JPS58200502A (en) Moisture measuring element