JPS6161047A - Temperature measuring oscillation circuit - Google Patents

Temperature measuring oscillation circuit

Info

Publication number
JPS6161047A
JPS6161047A JP18257084A JP18257084A JPS6161047A JP S6161047 A JPS6161047 A JP S6161047A JP 18257084 A JP18257084 A JP 18257084A JP 18257084 A JP18257084 A JP 18257084A JP S6161047 A JPS6161047 A JP S6161047A
Authority
JP
Japan
Prior art keywords
sensing element
temperature
reference potential
output
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18257084A
Other languages
Japanese (ja)
Inventor
Nobuo Takeuchi
武内 伸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP18257084A priority Critical patent/JPS6161047A/en
Publication of JPS6161047A publication Critical patent/JPS6161047A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/045Circuits
    • G01N27/046Circuits provided with temperature compensation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To perform temperature compensation and to make an oscillation period accurate, and to improve the measurement precision of an oscillation element by connecting a temperature sensing element to a circuit formed by connecting a humidity sensing element, differential amplifiers, a complementary push-pull amplifier, etc. CONSTITUTION:The voltage of a plus power source VDD is divided by resistors R1 and R2 to obtain a reference potential VS2. This reference potential VS2 is inputted to the humidity sensing element CT, two differential amplifiers A1 and A2, and push-pull amplifier [composed of capacitors C1 and C2, resistors R7 and R8, and transistors (TR) Q2 and Q3]. The reference potential VS2 inputted to the humidity sensing element CT is inverted by the amplifiers A1 and A2 and TRs Q2 and Q3 to cause oscillation about the reference potential VS2. The temperature sensing element RT is connected to the circuit to compensate the influence of a temperature rise due to the heat generation of respective circuit elements, making the oscillation period accurate. Thus, the temperature sensing element is connected to the circuit including the humidity sensing element to perform temperature compensation, so the self-heating of the humidity sensing element is reduced to take measurement with high precision.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、湿度に応じた周期のパルス状信号を発生する
湿度計測用の発振回路に関するものでるる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an oscillation circuit for humidity measurement that generates a pulse-like signal with a period corresponding to humidity.

〔従来技術〕[Prior art]

従来は、本出願人の別途出願による[温湿度検出装置−
I(実公昭54−32954 )に開示さゎているとお
p1第】のインバータとi2のインバータと全縦続接続
し、第1のインバータの入力へ第2のインバータの出力
からコンデンサと抵抗器との直列回路全弁して正帰還を
施したうえ、第1のインバータの出力とコンデンサおよ
び抵抗器の共通接続点との間へ検出端とし1塩化リチウ
ム式の湿度検出素子を接続し、湿度検l+1素子の湿度
に応する抵抗値変化によV発振周波数を制御するものと
しており、これによって湿度に反比例した関係の周波数
金有するパルス信号を得ている。
Conventionally, the present applicant's separate application [Temperature and Humidity Detection Device]
I (Utility Model Publication No. 54-32954) discloses that the inverter p1 and the inverter i2 are all connected in cascade, and the input of the first inverter is connected to the output of the second inverter to the capacitor and resistor. After performing positive feedback with all valves in the series circuit, a lithium monochloride type humidity sensing element was connected as a sensing end between the output of the first inverter and the common connection point of the capacitor and resistor, and the humidity sensing element was connected to the humidity sensing element L+1. The V oscillation frequency is controlled by a resistance value change corresponding to the humidity of the element, thereby obtaining a pulse signal having a frequency inversely proportional to the humidity.

しかし、この手段による場合には、各インバータの出力
インピーダンスか発振周波数の決定に関与するため、各
インバータの出力インピーダンス偏差により発振周波数
に誤差金生じ、高確度の計測上調整に手間′f:要す2
)と共に、連続的な発振を行なっており、回路素子およ
び湿度検出素子自身の通電による発熱等により、計測上
の誤差が発生し易く、かつ、塩化リチウム式の検出素子
は、対向する電極間へ塩化リチウムを塗布したものであ
り、高師なうλ不安定でろる等の欠点金主じている。
However, when using this method, since the output impedance of each inverter or the oscillation frequency is involved in determining the oscillation frequency, an error margin is generated in the oscillation frequency due to the output impedance deviation of each inverter. 2
), continuous oscillation is performed, and measurement errors are likely to occur due to heat generated by energization of the circuit element and humidity sensing element itself. It is coated with lithium chloride, and has many disadvantages such as unstable λ and dullness.

〔発明の概要〕[Summary of the invention]

本発明は、従来のか\る欠点を根本的に解決する目的を
有し、差動増幅器の一方の入力と基準電位との間へ湿度
に応じて静電容量値の変化する感湿素子を接続すると共
に、他方の入力と基準電位との間へ抵抗器を接続し、差
動増幅器の一方の入力と逆相の出力を有し2かり低出力
インピーダンス?呈すると共に、基準電位に対し正およ
び負の電源に↓9動作する相補形ブツシユブル増幅器に
より差動増幅器の出力を増幅し、これの出力を温度に応
じて抵抗値の変化する感温素子を介して差動増幅器の一
方の入力へ与えると共に、他方の入力には抵抗器を介し
て与え、Cれらによって発振回路全構成のうえ、差動増
幅器の一方の入力へ与えられる信号を制御信号に応じて
制御する手段を設け、これによって発振の開始および停
止全制御するものとした極めて効果的な、湿度計測発振
回路全提供するものでめる。
The present invention has the purpose of fundamentally solving the conventional drawbacks, and connects a humidity sensing element whose capacitance value changes depending on humidity between one input of a differential amplifier and a reference potential. At the same time, a resistor is connected between the other input and the reference potential, and the output is in opposite phase to one input of the differential amplifier, resulting in a low output impedance. At the same time, the output of the differential amplifier is amplified by a complementary push-pull amplifier that operates on positive and negative power supplies with respect to the reference potential, and the output of this is passed through a temperature-sensitive element whose resistance value changes depending on the temperature. It is applied to one input of the differential amplifier, and is applied to the other input through a resistor, and in addition to the entire configuration of the oscillation circuit, the signal applied to one input of the differential amplifier is controlled according to the control signal. The present invention provides an extremely effective humidity measurement oscillation circuit which completely controls the start and stop of oscillation.

〔実施例〕〔Example〕

以下、実施例を示す南によって本発明の詳細な説明する
Hereinafter, the present invention will be described in detail by way of examples.

第1図は回路図でめり、正極性の電IjjvDD  を
抵抗器R+、Rzにより分圧し、各々の端子電圧iVs
+ 、  Vsz  としており、■ntk基準電位と
して差動増幅器AI、A鵞の動作状況全規制するため、
差動増幅器A、においては、一方の入力としての反転入
力と基準電位Vs2との間へ、フィリップス社$1!H
1形等の湿度に応じて静電容量値の変化する感湿素子C
Tが接続されていると共に、他方の入力としての非反転
入力と基準電位VI12との間には抵抗器Rsが接続さ
れていZ、。
Figure 1 is a circuit diagram in which the positive polarity voltage IjjvDD is divided by resistors R+ and Rz, and each terminal voltage iVs
+, Vsz, ■ntk reference potential to fully regulate the operating status of differential amplifiers AI and A.
In the differential amplifier A, between the inverting input as one input and the reference potential Vs2, the Philips $1! H
Moisture-sensitive element C whose capacitance value changes depending on humidity, such as type 1
T is connected, and a resistor Rs is connected between the non-inverting input as the other input and the reference potential VI12.

差動増幅器AIの出力は、非反転入力全基準電位vs雪
へ接続した差動増幅器A20反転入力へ与えられ、こ\
において反転増幅されたうえ、抵抗aRy 、Rs 、
コンデンサC+、C鵞およびトランジスタ(h、Qsか
ら彦る相補形ブツシユブル増幅器(以下、CPA )へ
与えられ、こ\においても更に反転増幅孕むるものとな
っており、差動増幅器A+ の反転入力に対し、CPA
の出力は逆相の関係VCなっていると共VC、トランジ
スタQ1のエミッタ1よ電源VDDへ、トランジスタQ
sのエミッタは電源帰路OVへ接続され、CPAは基準
電位V82  に対し正および負の電揮により動作する
ものとなっている。
The output of differential amplifier AI is applied to the inverting input of differential amplifier A20, which is connected to the non-inverting input full reference potential vs.
In addition, the resistors aRy, Rs,
The capacitors C+, C and transistors (h and Qs) are applied to a complementary push-pull amplifier (hereinafter referred to as CPA), which also contains inverting amplification, and is applied to the inverting input of the differential amplifier A+. On the other hand, CPA
The outputs of VC and emitter 1 of transistor Q1 go to power supply VDD, and transistor Q
The emitter of s is connected to the power supply return path OV, and the CPA is operated by positive and negative voltages with respect to the reference potential V82.

CPAの出力に、抵抗器R9およびR+o  k介して
i・ランジスタQ4に励動し、抵抗器R++’rlてN
08 Vo oの印加されているトランジスタQ4のコ
レクタ電圧を変化させ、これ全出力OUTとして送出さ
せるものとなっているが、CPAの出力と差動増幅器A
1の反転入力および非反転入力との間にQよ、温度に応
じて抵抗値の変化するサーミスタ等會用いた感温素子R
Tと、これに対し並列の抵抗器Ruならびに、これらと
直列の抵抗器R1g  とによる温度補償(ロ)路、お
よび抵抗器Rφが各個に挿入されており、CPAの出力
変化により感温素子RTk介して感湿素子CTの充電お
よび逆方向充電會反復し、これによって発振を行なうと
共に、抵抗器Rs、Rsにより、差動増幅器AI のス
レシホールド電圧VTHk定めている。
The output of CPA is energized through resistor R9 and R+ok to i-transistor Q4, and resistor R++'rl to N
The collector voltage of the transistor Q4 to which 08 Vo o is applied is changed, and this is sent out as the full output OUT, but the output of the CPA and the differential amplifier A
Between the inverting input and the non-inverting input of 1, Q is a temperature sensing element R using a thermistor or the like whose resistance value changes depending on the temperature.
A temperature compensation (b) path consisting of a resistor Ru parallel to this, a resistor R1g in series with these, and a resistor Rφ is inserted respectively, and the temperature sensing element RTk is Through this, charging and reverse charging of the humidity sensing element CT are repeated, thereby causing oscillation, and the threshold voltage VTHk of the differential amplifier AI is determined by the resistors Rs and Rs.

ガお、CPAの出力インピーダンスは十分に低く、感温
素子CTの充電に必要とする十分な電圧および電流の供
給ならびに電源帰路Ovへの短絡的な接続が可能となっ
ている。
The output impedance of the CPA is sufficiently low, and it is possible to supply sufficient voltage and current necessary for charging the temperature sensing element CT, and to connect it to the power supply return path Ov in a short-circuit manner.

また、差動増幅器A1の反転入力と電源帰路Ovとの間
には、抵抗器R3およびトランジスタQ。
Further, a resistor R3 and a transistor Q are connected between the inverting input of the differential amplifier A1 and the power return path Ov.

のコレクタ會エミッタ間が接続され、抵抗器R4を介す
るベースへの制御信号Sc印加に応じてトランジスタQ
、がオン、オフ全行ない、電源帰路0Vt−基準として
制御信号Scが1H#(高レベル)のトキハトランジス
タQ1がオンとなり、反転入力への信号全阻止して発振
を停止させるが、制御信号Scが%L″(低レベル)と
々わばトランジスタQ1がオフへ転じ、反転入力への信
号を通過させるため、発振全開始させるものとなってい
る。
The collector and emitter of the transistor Q are connected, and the transistor Q
, is turned on and turned off completely, and the control signal Sc is set to 1H# (high level) as a power supply return path 0Vt-reference, and the transistor Q1 is turned on, blocking all signals to the inverting input and stopping the oscillation, but the control signal Sc %L'' (low level), the transistor Q1 turns off and passes the signal to the inverting input, causing full oscillation to begin.

第2図は、第1図における各部の波形全示し、差動増幅
器Asおよび応答時間短縮用のコンデンサC+、Cat
有するCPAにより波形整形が行なわれるため、感g1
1A子CTの端子電圧による信号値)が上昇中はCPA
の出力(b)が% H#、信号(a)が下降中は出力(
b)がSL″へ転するものになっていると共に、出力(
b)が抵抗器R,,R−により分圧されてスレシホール
ド電圧vtn  となり、これに応じて出力(b)の変
化点が定まるものとなっており、基準電位Vsm  k
中心として信号(a)および出力か)か便化し、この出
力(b)と同一鼓形のパルス信号が出力OUTから送出
される。
Figure 2 shows all the waveforms of each part in Figure 1, including the differential amplifier As and capacitors C+ and Cat for reducing response time.
Waveform shaping is performed by the CPA, so the sensitivity g1
When the signal value (signal value due to the terminal voltage of 1A CT) is rising, CPA
Output (b) is %H#, while signal (a) is falling, output (
b) is to be transferred to SL'', and the output (
b) is divided by resistors R, , R- to become a threshold voltage vtn, and the changing point of the output (b) is determined accordingly, and the reference potential Vsm k
The signal (a) and the output ?) are centered, and a pulse signal having the same drum shape as the output (b) is sent out from the output OUT.

すなわち、CPAのトランジスタQ3がオン。In other words, transistor Q3 of CPA is turned on.

トランジスタQmUオフとなったとき、出力(b)か1
H″となり、感温系子RT k含む温度補償回路全弁し
て感温系子〇Tの充電がなされ、信号(a)が上昇する
一方、スレシホールド電圧が+vrtt  となってお
り、信号(a)が+VTNへ達すると、差動増幅器A、
の出力が反転するのに応じて出力(b)が1LNへ転じ
、このとき、CPAのトランジスタChがオフ、トラン
ジスタQsEtオンとなる。
When transistor QmU turns off, output (b) or 1
H'', the temperature compensation circuit including the temperature sensing element RTk is all valved, and the temperature sensing element 〇T is charged, and while the signal (a) rises, the threshold voltage becomes +vrtt, and the signal When (a) reaches +VTN, the differential amplifier A,
In response to the inversion of the output, the output (b) changes to 1LN, and at this time, the transistor Ch of the CPA is turned off and the transistor QsEt is turned on.

すると、こねVc応じ、II&湿素子CTに対し温度補
償口j8全弁する逆方向の充電が開始される一方、スレ
シホールド電圧が−VTHとなるため、信号(a)が−
VTHまで低下するのに応じて差動増幅器Aの出力か反
転し、これVこしたかつて出力(b)がIH’へ転じ、
前述と同様の充11L’に開始し、以上の動作?没後す
る。
Then, in response to the kneading Vc, charging in the opposite direction is started in which the temperature compensation port j8 is fully valved for the II & wet element CT, and since the threshold voltage becomes -VTH, the signal (a) becomes -
As the voltage drops to VTH, the output of the differential amplifier A is inverted, and the output (b) that was once above V changes to IH'.
The above operation starts at 11L' in the same manner as above? To be done after death.

したがって、出ツバb)に、基1111位Vsx 全中
心とし、はソ、VDD乃至OVの振幅により変化するも
のとなり、Vs+ = VB2 = Vs  とすれけ
、±Vmの波高値1に有するパルス信ぢとなる。
Therefore, in the output b), the base 1111 position Vsx is all centered, and it changes depending on the amplitude of VDD to OV, and Vs+ = VB2 = Vs. becomes.

こ\において、発振内KATは、Vs+ = Vs鵞 
としたとき、一般に次式によジ与えられる。
In this case, the oscillation KAT is Vs+ = Vs+
In general, it is given by the following equation.

たソし、0丁に湿度に応じて変化すると共に、温度にも
依存しており、次式により示されるものとなっている。
It changes depending on the humidity and temperature, and is expressed by the following equation.

CT = KI I H+に宜(θ−θo))2+  
Kt  (H+Kt  (θ−θo)l+Km・・・・
 (2) KI HKt + k3 :係数 H: 湿度 θ : 現在の温度 θ0 = 基準温度 このため、温度に応するCTの変1+21補償する必要
がめシ、この目的上感温素子R丁および抵抗器RIl、
 R+s が設けられており、これらの合成抵抗値Rは
、次式により与えられるものとなる。
CT = KI I H+ (θ-θo))2+
Kt (H+Kt (θ-θo)l+Km...
(2) KI HKt + k3: Coefficient H: Humidity θ: Current temperature θ0 = Reference temperature Therefore, it is necessary to compensate for the change in CT according to the temperature by 1+21.For this purpose, the temperature sensing element R and the resistor RI ,
R+s is provided, and their combined resistance value R is given by the following equation.

・・・・ (3) R−ro:  基準温度における感温系子の抵抗値 F : 係数 //  :  Rnとの並列合成ケ示す(2) 、 (
3)式から(1)式はつぎのものとなる。
...... (3) R-ro: Resistance value of the temperature sensing element at reference temperature F: Coefficient //: Parallel composition with Rn (2), (
From equation 3), equation (1) becomes as follows.

T=2[KI (H+Kt(θ−θo))2+Kt  
(H十に黛(θ−θo)l+Ks〕・ ・・ ・ (4
) したがって、感温素子R↑の特性および抵抗器R1意、
R13の[tMA湿累子CTの温度特性に応じて足めた
うえ、鳩期T’frクロックパルスのカウント吟に工っ
て計測することにより、測定すべき湿#L′Jk求める
ことかできる。
T=2[KI (H+Kt(θ-θo))2+Kt
(H 10 (θ-θo)l+Ks) ・ ・ ・ ・ (4
) Therefore, the characteristics of the temperature sensing element R↑ and the resistor R1,
The humidity to be measured #L'Jk can be obtained by adding R13 according to the temperature characteristics of the tMA moisture collector CT and by measuring it by counting the clock pulses T'fr during the pigeon period. .

なお、(4)式に対し、感湿素子CTおよび感温素子R
T等と直列に挿入されるCPAの出力インピーダンス、
および、抵抗器Rl + R2等か計測饋差の原因とな
るか、CPAの出力づンビー〆ンスは上述のとおり十分
に低く、誤差の原因とはならない。
In addition, for equation (4), the humidity sensing element CT and the temperature sensing element R
Output impedance of CPA inserted in series with T etc.
Also, the resistor Rl + R2 etc. may cause a measurement error, but the output resistance of the CPA is sufficiently low as described above and does not cause an error.

このほか、計測誤差音生ずる原因としては、la、  
感温系子CTの非1M414I性lb、  差動増幅器
A1の入力オフセット電圧温度ドリフト lc、  差動増幅器A1の動作遅延時間Id、   
      の出力電圧温度ドリフト等であるが、こむ
らは、つぎの対策または理由によジ排除できる。
In addition, causes of measurement error noise include la,
Non-1M414I characteristic lb of temperature sensitive element CT, input offset voltage temperature drift lc of differential amplifier A1, operation delay time Id of differential amplifier A1,
However, the unevenness can be eliminated by the following countermeasures or reasons.

2a、  プロセツザ処理または補正回路により補正す
る。
2a. Correct by processor processing or correction circuit.

2 b、R8: R11−20: 1程度とし、スレシ
ホールド電圧VTHk入力オフセット電圧より大とすれ
ば、これの温度ドリフト全無視できる。
2b, R8: R11-20: If it is about 1 and the threshold voltage VTHk is larger than the input offset voltage, the temperature drift thereof can be completely ignored.

20、8期T′に大とすることrCより無視できる。20. The increase in the 8th period T' can be ignored compared to rC.

2d、  出力(b)によりスレシホールド電圧Vtu
を与λれば、出力(b)の電圧は[iMVDDの電圧に
より定められるため、電源VDDの電圧とスレシホール
ド電圧VT、との比率が常に一定でるり、出力電圧温度
ドリフトの影響が軽減される。
2d, threshold voltage Vtu due to output (b)
If λ is given, the voltage of output (b) is determined by the voltage of iMVDD, so the ratio between the voltage of power supply VDD and threshold voltage VT is always constant, and the influence of output voltage temperature drift is reduced. be done.

また、電源vDDの電圧変動も、2d と同様の理由に
より影響が排除される。
Further, the influence of voltage fluctuations of the power supply vDD is also eliminated for the same reason as 2d.

したがって、(4)式により示される周期Tの発振出力
が正確に得られると共に、ポーリング信号等全制御信号
Sc として用い、このときにのみ発振動作を行なわせ
ることにより、電源消費量、各回路素子の温度上昇、お
よび、感温索子CTの自己発熱等が低減され、経済的に
高確度かつ高精度の温度計測が行なわれる。
Therefore, the oscillation output with the period T shown by equation (4) can be accurately obtained, and by using it as a polling signal and other control signals Sc and performing the oscillation operation only at this time, the power consumption and each circuit element can be reduced. temperature rise, self-heating of the temperature sensitive cable CT, etc. are reduced, and temperature measurement can be performed economically with high accuracy and precision.

たソし、感温索子CTおよび感温素子Rt Kは、同等
の他の累子會用いてもよく、基準電位V+s倉を共通電
位とし、正および負極性の電源を電源VDDおよび電源
帰路0■の代9に用い、抵抗器R+ 、Rt ’c省略
しても同様でめジ、差動増幅器A2 k用いず、インバ
ータ等金用いてもよいと共に、トランジスタ9重の代り
にゲート回路等全挿入してもよく、条件に応じて差動増
幅器A1の反転入力と非反転入力との使用状況全反対と
してもよい等、種々の変形が自在でわる。
However, the temperature sensing element CT and the temperature sensing element RtK may be used in other equivalent combinations, with the reference potential V+s being a common potential, and the positive and negative polarity power supplies being connected to the power supply VDD and the power supply return path. It is the same even if the resistors R+ and Rt'c are omitted, and the differential amplifier A2 may be omitted, and an inverter, etc., may be used instead of the transistor 9, and a gate circuit, etc. can be used instead of the transistor 9. Various modifications are possible, such as completely inserting the inverting input and non-inverting input of the differential amplifier A1 depending on the conditions.

し発明の効果〕 以上の説明により明らかなとお9本発明によれば、発振
出力の周期が正確となり、かつ必要なときにのみ動作さ
せることが自任でめジ、各回路素子の温度上昇および感
湿素子の自己発熱が低減され、計測状況が高n度かつ高
確度となるうえ、感温索子が安価でおると共に安定でめ
ジ、各種の湿度計測において顕著な効果が得られる。
[Effects of the Invention] As is clear from the above explanation, according to the present invention, the period of the oscillation output is accurate, and it is possible to operate the oscillation output only when necessary, thereby reducing the temperature rise of each circuit element and sensitivity. The self-heating of the humidity element is reduced, the measurement situation becomes high degree and highly accurate, and the temperature sensitive cable is inexpensive and stable, and a remarkable effect can be obtained in various humidity measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の冥施例會示す回路図、第2図は第1図
における谷部の波形紮示す商でるる。 Al + Am−ψ・・差動増幅器、CT・・・・感温
索子、RT  ・・・・感温索子、R1−R13・・・
・抵抗器、Q+ ”−Q4 ・・φ・トランジスタ、V
I!2  ・・・・基準電位、V D T)・・・・電
源、tlV・・・・電源帰路、Sc・・・・制御信号。
FIG. 1 is a circuit diagram showing an example of the present invention, and FIG. 2 is a circuit diagram showing the waveforms of the valleys in FIG. Al + Am-ψ... Differential amplifier, CT... Temperature sensitive cable, RT... Temperature sensitive cable, R1-R13...
・Resistor, Q+ ”-Q4 ・φ・Transistor, V
I! 2...Reference potential, VDT)...Power supply, tlV...Power return path, Sc...Control signal.

Claims (1)

【特許請求の範囲】[Claims] 差動増幅器の一方の入力と基準電位との間へ接続された
湿度に応じて静電容量値の変化する感湿素子と、前記差
動増幅器の他方の入力と前記基準電位との間へ接続され
た抵抗器と、前記差動増幅器の出力を増幅しかつ前記一
方の入力と逆相の出力を有すると共に低出力インピーダ
ンスを呈する前記基準電位に対し正および負の電源によ
り動作する相補形ブツシユブル増幅器と、該増幅器の出
力と前記一方の入力および他方の入力との間へ各個に挿
入された温度に応じて抵抗値の変化する感温素子および
抵抗器と、前記一方の入力へ与えられる信号を制御信号
に応じて制御する手段とを備えたことを特徴とする湿度
計測発振回路。
A humidity sensing element whose capacitance value changes depending on humidity is connected between one input of the differential amplifier and the reference potential, and a humidity sensing element is connected between the other input of the differential amplifier and the reference potential. a complementary push-pull amplifier that amplifies the output of the differential amplifier, has an output in reverse phase with the one input, and exhibits low output impedance, and is operated by power supplies positive and negative with respect to the reference potential. and a temperature sensing element and a resistor whose resistance value changes depending on the temperature, which are inserted between the output of the amplifier and the one input and the other input, respectively, and the signal applied to the one input. A humidity measurement oscillation circuit characterized by comprising means for controlling according to a control signal.
JP18257084A 1984-09-03 1984-09-03 Temperature measuring oscillation circuit Pending JPS6161047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18257084A JPS6161047A (en) 1984-09-03 1984-09-03 Temperature measuring oscillation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18257084A JPS6161047A (en) 1984-09-03 1984-09-03 Temperature measuring oscillation circuit

Publications (1)

Publication Number Publication Date
JPS6161047A true JPS6161047A (en) 1986-03-28

Family

ID=16120586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18257084A Pending JPS6161047A (en) 1984-09-03 1984-09-03 Temperature measuring oscillation circuit

Country Status (1)

Country Link
JP (1) JPS6161047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241155U (en) * 1988-09-12 1990-03-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241155U (en) * 1988-09-12 1990-03-22

Similar Documents

Publication Publication Date Title
EP0025680B1 (en) Auto-zero amplifier circuit
US4282480A (en) Apparatus for humidity detection
US6346812B1 (en) Conditioner circuit for magnetic field sensor
JPH071283B2 (en) Current measuring device
JPS6161047A (en) Temperature measuring oscillation circuit
JP3153729B2 (en) Non-contact sensor device
JPS5931119B2 (en) squaring circuit
JPS6161025A (en) Temperature measuring oscillation circuit
JP2000329513A (en) Driving circuit for physical quantity detecting element and rotation angle sensor
JPS6140553A (en) Temperature measurement oscillation circuit
JPS6023993Y2 (en) Hall element residual voltage adjustment circuit
JPH089618Y2 (en) Thermistor temperature conversion circuit
JPH0645853Y2 (en) Origin signal detector
JPH0663800B2 (en) Heater temperature control circuit
JPH074561Y2 (en) Humidity sensor
JP2000249572A (en) Displacement detector
JP3066921B2 (en) A gate oscillator that compensates for the effects of stray capacitance
JPS6111837Y2 (en)
JPS5834499Y2 (en) temperature compensation circuit
JP2566468B2 (en) Ambient temperature compensation method for humidity transmitter
JPS6312582Y2 (en)
JPS6014213Y2 (en) inductance measuring device
JPS5856818B2 (en) density and kay
JPS6014212Y2 (en) inductance measuring device
JPS629076A (en) Solenoid valve driving device