JPS6140553A - Temperature measurement oscillation circuit - Google Patents

Temperature measurement oscillation circuit

Info

Publication number
JPS6140553A
JPS6140553A JP16161184A JP16161184A JPS6140553A JP S6140553 A JPS6140553 A JP S6140553A JP 16161184 A JP16161184 A JP 16161184A JP 16161184 A JP16161184 A JP 16161184A JP S6140553 A JPS6140553 A JP S6140553A
Authority
JP
Japan
Prior art keywords
output
humidity
circuit
feedback
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16161184A
Other languages
Japanese (ja)
Inventor
Nobuo Takeuchi
武内 伸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP16161184A priority Critical patent/JPS6140553A/en
Publication of JPS6140553A publication Critical patent/JPS6140553A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • G01N27/225Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity by using hygroscopic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To obtain a synchronous pulse-like signal according to humidity, by providing a moisture-sensitive element in a feedback circuit of a feedback amplifier having on OR circuit, into which a control signal is inputted to control the oscillation of a feedback amplification circuit. CONSTITUTION:A feedback signalis applied into one input of an NAND gate G of an OR circuit through a resistor R1 and when a control signal Sc of 'H' is applied into the other input thereof from an input IN, the NAND gate G is turned ON to perform a oscillating operation while when that of 'L' is applied, the operation is stopped. The output of the NAND gate G is amplified inversely with a first complimentary push-pull amplifier while done so with a second complimentary push-pull amplifier through an inverter IN. A thermistor TH and a moisture-sensitive element CH varying in the electrostatic capacitance with the humidity are connected to feedback circuits from these outputs opposite in the phase to each other respectively. Thus, a pulse is outputted from an output OUT according to the charge and discharge of the moisture-sensitive element CH.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、湿度に応じた周期のパルス状信号を発生する
湿度計測用の発振回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an oscillation circuit for humidity measurement that generates a pulse-like signal with a period corresponding to humidity.

〔従来技術〕[Prior art]

従来は、本出願人の別途出願による「温湿度検出装置」
(実公昭54−32954 ’)に開示されているとお
シ、第1のインバータと第2のインバータとを縦続接続
し、第1のインバータの入力へ第2のインバータの出力
からコンデンサと抵抗器との直列回路を介して正帰還を
施したうえ、第1のインバータの出力とコンデンサおよ
び抵抗器の共握接続点との間へ、□対向する電極間に塩
化リチウム等を塗布した湿度検出素子を接続し、温度検
出素子の湿度に応する抵抗値変化によシ発振周波数を制
御するものとしておシ、これによって湿度と対応した関
係の周波数を有するパルス信号を得ている0 しかし、との手段による場合には、湿度計測上高精度を
要する際に発振周波数を高く設定しまければならず、プ
四セッサ等のディジタル回路によシパルス信号を処理す
るには、分局器によって分周することを要し、装置とし
ての構成が複離化するため高価になると共に、連続的な
発振を行なっておシ、回路素子の温度上昇および湿度検
出素子自身の通電による発熱等によシ、計測上の誤差が
発生し易い等の欠点を生じている。
Previously, the "Temperature and Humidity Detection Device" was filed separately by the applicant.
(Utility Model Publication No. 54-32954'), a first inverter and a second inverter are connected in cascade, and a capacitor and a resistor are connected from the input of the first inverter to the output of the second inverter. After applying positive feedback through a series circuit of However, the oscillation frequency is controlled by a change in the resistance value of the temperature detection element according to the humidity, thereby obtaining a pulse signal having a frequency corresponding to the humidity. In this case, when high precision is required for humidity measurement, the oscillation frequency must be set high, and in order to process the sipulse signal by a digital circuit such as a processor, it is necessary to divide the frequency using a divider. In short, the configuration of the device becomes complex, which makes it expensive, and continuous oscillation causes problems such as temperature rise in the circuit elements and heat generation due to energization of the humidity detection element itself, which causes problems in measurement. This method has drawbacks such as the tendency for errors to occur.

また、一般に、湿度検出素子へ電流を通じ、湿度検出素
子の抵抗値変化による端子電圧変化を検出する手段も採
用されているが、この場合は、検出出力をディジタル回
路によシ処理する際、アナログ・ディジタル変換器(以
下、ADC)を必要とし、前述と同様に高価となる欠点
を生ずる。
In addition, a method is generally adopted in which a current is passed through the humidity detection element to detect a change in terminal voltage due to a change in the resistance value of the humidity detection element.In this case, when the detection output is processed by a digital circuit, analog - Requires a digital converter (hereinafter referred to as ADC), which has the same disadvantage of being expensive as described above.

〔発明の概要〕[Summary of the invention]

本発明は、従来のかかる欠点を根本的に解決する目的を
有し、論理積回路の一方の入力へ帰還信号を与えると共
に、他方の入力へ制御信号を与えるものとし、論理積回
路の出力を各々が反転増幅を行なうと共に低出力インピ
ーダンスを呈し、かつ、互いに逆相の出力を有する第1
および第2の相補形プッシュプル増幅器により増幅し、
各増幅器の出力から論理積回路の一方の入力へ各個に第
るものとしたうえ、各帰還回路中のいずれか一方へ湿度
に応じて静電容量値の変化する感湿素子を直列に挿入し
、かつ、いずれか他方の帰還回路中へ温度に応じて抵抗
値の変化する感温素子を直列に挿入し、制御信号によっ
て発振動作の開始と停止とを制御すると共に、湿度に応
じた周期のパルス状信号を得るものとした極めて効果的
な、湿度計測発振回路を提供するものである。
The present invention has the purpose of fundamentally solving such drawbacks of the conventional art, and provides a feedback signal to one input of an AND circuit, and a control signal to the other input, thereby controlling the output of the AND circuit. each performs inverting amplification, exhibits low output impedance, and has outputs in opposite phases to each other;
and a second complementary push-pull amplifier,
The output of each amplifier is connected individually to one input of the AND circuit, and a humidity sensing element whose capacitance value changes depending on the humidity is inserted in series to either side of each feedback circuit. , and a temperature sensing element whose resistance value changes depending on the temperature is inserted in series into one of the other feedback circuits, and the start and stop of the oscillation operation is controlled by a control signal, and the periodicity is controlled according to the humidity. The present invention provides an extremely effective humidity measurement oscillation circuit that obtains a pulsed signal.

〔実施例〕〔Example〕

以下、実施例を示す図によって本発明の詳細な説明する
Hereinafter, the present invention will be explained in detail with reference to figures showing examples.

第1図は、基本的な回路図であシ、論理積回路としての
NANDゲートGの一方の入力には、抵抗器R1を介し
帰還信号が与えられるものと々っておシ、他方の入力に
は、入力INから@H#(高レベル)の制御信号Saが
与えられ、これが′H#の間のみNANDゲートGがオ
ンと々シ、発振動作を行危う一方、これが1L”(低レ
ベル)となれば、NANDゲートGがオフとなるため、
発振動作を停止するものとなっている。
Figure 1 is a basic circuit diagram.One input of a NAND gate G as an AND circuit is supplied with a feedback signal via a resistor R1, and the other input is supplied with a feedback signal via a resistor R1. is given a control signal Sa of @H# (high level) from the input IN, and the NAND gate G is turned on only during 'H#', threatening to perform oscillation operation, while this is 1L'' (low level). ), the NAND gate G is turned off, so
It is designed to stop the oscillation operation.

NANDゲートGの出力は、抵抗器R2+ R3、コン
デンサCI+C2およびトランジスタQl、Q2によ多
構成された第1の相補形プッシュプル増幅器(以下、C
PA)によシ反転増幅されると共に、インバータINを
介し、抵抗器R4+ R5、コンデンサC3+C4およ
びトランジスタQ3 、Q4からなる第2のCPAによ
シ反転増幅されるものとなっておυ、これらの互いに逆
相な各出力からは、抵抗器R1を介するNANDゲート
Gの入力に対し、各々、抵抗器R6が並列に接続された
感温素子としてのサーミスタTT(が抵抗器R7と共に
直列に挿入された第1の帰還回路を介し、かつ、フィリ
ップス社製H1形等の湿度に応じて静電容量値の変化す
る感湿素子cHが直列に挿入された第2の帰還回路を介
し、各個に帰還信号が与えられている。
The output of the NAND gate G is connected to a first complementary push-pull amplifier (hereinafter referred to as C
PA), and is also inverted and amplified by the second CPA, which consists of resistors R4+R5, capacitors C3+C4, and transistors Q3 and Q4, via inverter IN. From each output having a phase opposite to each other, a thermistor TT (as a temperature sensing element) with a resistor R6 connected in parallel is inserted in series with a resistor R7 to the input of a NAND gate G via a resistor R1. Feedback is sent to each individual through a first feedback circuit, and a second feedback circuit in which a humidity sensing element cH whose capacitance value changes depending on humidity, such as the H1 type manufactured by Philips, is inserted in series. A signal is given.

ただし、トランジスタQ1.Q2によるCPAの出力は
、NANDゲートGの入力と同相、トランジスタQ3.
Q4によるCPAの出力は、NANDゲートGの入力と
逆相であシ、サーミスタTHおよび抵抗器R6r R7
を介して感湿素子cHの容量に対する充放電が行なわれ
、感湿素子cHの端子電圧が帰還信号として与えられる
ものとなっておシ、各cpAの出力インピーダンスは十
分に低(、NANDゲ−)Gの入力駆動および感湿素子
cHの充放電駆動に必要とする十分な電圧および電流の
供給ならびに共通電位への地絡が可能と力っている。
However, transistor Q1. The output of CPA by Q2 is in phase with the input of NAND gate G, transistor Q3.
The output of CPA by Q4 is in opposite phase to the input of NAND gate G, and the thermistor TH and resistor R6r R7
The capacitance of the humidity sensing element cH is charged and discharged through the capacitor cpA, and the terminal voltage of the humidity sensing element cH is given as a feedback signal.The output impedance of each cpA is sufficiently low (NAND gate). ) It is possible to supply sufficient voltage and current necessary for input driving of G and charge/discharge driving of the humidity sensing element cH, as well as ground fault to a common potential.

このため、制御信号SoがH”となれば、感湿素子CH
の容量値およびサーミスタTHと抵抗器R6+ R7と
の合成抵抗値に応じた周期の発振を開始し、第1図にお
ける各部の波形を第2図に示すとおj9、NANDゲー
トGの入力へ与えられる帰還信号(!L)は、感湿素子
CHの充放電に応じて変化し、これがNANDゲー)G
において波形整形および反転を受けて出力(b)となシ
、これが更にインバータINによシ反転されて出力(C
)となったうえ、出力OUTから送出されるものとなる
Therefore, if the control signal So becomes H'', the humidity sensing element CH
The waveform of each part in FIG. 1 is shown in FIG. 2. The feedback signal (!L) changes according to the charging and discharging of the humidity sensing element CH, and this is the NAND game)
The waveform is shaped and inverted at the inverter IN to produce the output (b), which is further inverted by the inverter IN and becomes the output (C
) and is sent from the output OUT.

また、出力(b)および(e)に対し、トランジスタ(
h+Q2によるCPAの出力(a)およびトランジスタ
Qs+Q4によるCPAの出力(、)は各々反転状態と
なっておシ、出力(d)が@H#、出力C@)が″L”
のときには、出力(d)から感湿素子CHおよびサーミ
スタTHならびに抵抗器R6+ R7を介して出力(6
)へ充電電流が通じ、これによるサーミスタTHおよび
抵抗器R6r R7の端子電圧が帰還信号(a)として
NANDゲートGの入力へ与えられる。
Also, for the outputs (b) and (e), the transistor (
The output of CPA by h+Q2 (a) and the output of CPA by transistor Qs+Q4 (,) are each inverted, output (d) is @H#, and output C@) is "L".
At the time of , the output (6
), and the resulting terminal voltages of the thermistor TH and resistors R6r to R7 are applied to the input of the NAND gate G as a feedback signal (a).

この帰還信号(a)は、感湿素子cHの充電初期におい
て高く、充電の終了に応じて低下し、尚初は出力(b)
を@L”としているが、NANDゲートGの入力応答ス
レンホールド電圧VTI(まで低下すると、出力(b)
が1H”へ転じ、とれに応じて出力(d)が@L”、出
力(・)が′″H”へ反転し、このとき、感湿素子cH
へ充電電荷として残留した電圧は、@H#を電源電圧v
Dnに等しいとすればVDD −VTHとなシ、これが
出力(a)の@L”によシ正極側を基準電位とするため
、 (VDD −VTR)まで帰還信号(a)が負方向
へ変化し、これを基準として今度は出力(6)によシ逆
方向の充電がなされ、感湿素子C,の端子電圧が帰還信
号(a)となシ、尚初は出力(b)を″H”としている
が、帰還信号(、)が次第に上昇してVTRへ達すると
出力(b)が@L”、出力(e)は@H”と々るため、
出力(a)が″H#、出力(e)は′″L”へ転じ、こ
のときに感湿素子cHへ充電電荷として残留した電圧V
TRとVDDとの和により Vnn + VTHiで帰
還信号(a)が上昇し、これの後に放電および出方(d
)による充電が行なゎれ、以上の動作を反復する。
This feedback signal (a) is high at the beginning of charging the humidity sensing element cH, and decreases as the charging ends, and at the beginning, the output (b)
is @L'', but when the input response threshold voltage of NAND gate G decreases to VTI (output (b)
changes to 1H'', the output (d) changes to @L'' and the output (・) changes to ``H'', and at this time, the humidity sensing element cH
The voltage remaining as charge charge to @H# is the power supply voltage v
If it is equal to Dn, it becomes VDD -VTH, which causes the output (a) @L'' to use the positive side as the reference potential, so the feedback signal (a) changes in the negative direction until (VDD -VTR). Then, using this as a reference, the output (6) is charged in the opposite direction, and the terminal voltage of the humidity sensing element C becomes the feedback signal (a), and initially the output (b) becomes ``H''. "However, as the feedback signal (,) gradually rises and reaches the VTR, the output (b) reaches @L" and the output (e) reaches @H.
The output (a) changes to "H#" and the output (e) changes to "L", and at this time, the voltage V remaining as a charge on the humidity sensing element cH
The feedback signal (a) rises at Vnn + VTHi due to the sum of TR and VDD, and then the discharge and output (d
), the above operation is repeated.

ことにおいて、感湿素子cHの充電および逆方向充電に
よる帰還信号(a)の上昇および下降各期間をtll 
t、とすれば、周期Tは次式にょシ与えられる。
In particular, each period of rise and fall of the feedback signal (a) due to charging and reverse charging of the humidity sensing element cH is expressed as tll.
t, the period T is given by the following equation.

T=t、−1−t。T=t, -1-t.

ただし、RT:サーミスタTHおよび抵抗器R6+K7
の合成抵抗値 CT:感湿素子cHの容量値 VTH: NANDゲートGの入力応答スレンτ ホールド電圧               jVDD
 :電源電圧 コノため、vTH=1/2・vDDとすれば、(1)式
は、次式のものとなる。
However, RT: thermistor TH and resistor R6+K7
Combined resistance value CT: Capacitance value VTH of humidity sensing element cH: Input response slen τ of NAND gate G Hold voltage jVDD
: Since the power supply voltage is small, if vTH=1/2·vDD, equation (1) becomes the following equation.

T中1・IRT@C丁+1・IRT@CT=202RT
・CT  ・旧・・・・・由由・・・・・・川・・・ 
(2)したがって、CTが湿度に応じて一定の関係によ
シ変化すれば、周期Tをり四ツクパルスのカウント等に
よシ検出することにょシ、湿度を計測することができる
T middle 1・IRT@C ding+1・IRT@CT=202RT
・CT ・Old...Yuyu...River...
(2) Therefore, if CT changes according to a fixed relationship depending on the humidity, humidity can be measured by detecting the period T by counting four pulses or the like.

なお1CTは次式によシ示される。Note that 1CT is expressed by the following equation.

CT=Kt CH+Kz(θ−θo))”+K z (
H+K t (θ−06) )+Ks ・・・・・・・
・・(3)ただし、Kl、に2.に3:係数 H:湿度 θ :現在の温度 θ0:基準基準 中なわち、CTは、Hのほかθにも依存しておシ、温度
に応するcTの変動を補償する必要があシ、とれをサー
ミスタTHにょシ補償するものとしなければならない。
CT=Kt CH+Kz(θ−θo))”+Kz(
H+K t (θ-06) )+Ks ・・・・・・・・・
...(3) However, Kl, 2. 3: Coefficient H: Humidity θ: Current temperature θ0: Reference standard In other words, CT depends on θ as well as H, and it is necessary to compensate for the variation of cT in response to temperature. The loss must be compensated for by the thermistor TH.

このため、8丁を求めれば次式によ)与えられる。Therefore, if we find 8 guns, it is given by the following formula).

RT=(Ro−s叫−A7/Rs)+Rz mmmm 
(4)ただし、Ro:  基準温度におけるサーミスタ
1の抵抗値 F : 係数 /: 86との並列合成を示す (3) 、 (4)式から(2)式はっぎのものと々る
RT=(Ro-s scream-A7/Rs)+Rz mmmm
(4) However, Ro: Resistance value of thermistor 1 at reference temperature F: Coefficient/: (3) which shows parallel composition with 86, Equation (2) is taken from Equation (4).

・・・・・・・・・・・・・・・ (5)したがって、
サーミスタTHの特性および抵抗器R,、R,を感湿素
子cHの温度特性に応じて定めれば、正確に湿度の計測
を行なうことができる。
・・・・・・・・・・・・・・・ (5) Therefore,
If the characteristics of the thermistor TH and the resistors R, , R, are determined according to the temperature characteristics of the humidity sensing element cH, humidity can be measured accurately.

なお、第1図において、NANDゲー)Gの入力に対す
る帰還のために各CPAを設けたのは、NANDゲート
GおよびインバータINの出力インピーダンスがC−M
OS (Compl@mentary−Metal O
xideSem1conductor、 )の場合、5
000〜数XΩと高く、十分な出力電圧、電流および地
絡効果が得られず、感湿素子CHの充放電期間に誤差を
生じ、(5)式によシ示される条件が得られないためで
あシ、抵抗器R2〜R5と並列のコンデンサ01〜C4
は、トランジスタQ、〜Q4の応答時間を短縮し、波形
の変化を急峻とする目的のものである。
In Fig. 1, each CPA is provided for feedback to the input of the NAND gate G and the inverter IN because the output impedance of the NAND gate G and the inverter IN is C-M.
OS (Comp@mentary-Metal O
xideSem1conductor, ), then 5
000 to several XΩ, and sufficient output voltage, current, and ground fault effect cannot be obtained, causing an error in the charging and discharging period of the moisture sensitive element CH, and the condition shown by equation (5) cannot be obtained. Yes, capacitors 01-C4 in parallel with resistors R2-R5
The purpose of this is to shorten the response time of the transistors Q, to Q4 and make the change in waveform steep.

また、第1図において、計測誤差を生ずる原因としては
、 11L1  感湿素子の非直線特性 lb、  ゲート回路の温度によるVTHの変動16、
ptr  の応答遅延時間 1d、If/l  の温度による出力電圧の変動等であ
るが、これらは、つぎの対策または理由によシ排除でき
る。
In addition, in FIG. 1, the causes of measurement errors are: 11L1 Non-linear characteristic lb of the humidity sensing element, VTH variation due to gate circuit temperature 16,
The response delay time 1d of ptr, the fluctuation of the output voltage due to temperature of If/l, etc. can be eliminated by the following measures or reasons.

2&、プロセッサ処理または補正回路によシ補正する。2&, correction is performed by processor processing or correction circuit.

2bS2b5C−回路ではΔvTH/Δθ= −3m 
V/ ’Cであシ、020〜50℃では+0.06%F
S以下のため無視できる。
In the 2bS2b5C- circuit, ΔvTH/Δθ = -3m
At V/'C, +0.06%F at 020-50℃
Since it is less than S, it can be ignored.

20、  周期Tを犬とすることにより無視できる。20. By setting the period T to a dog, it can be ignored.

2d、  C−MO3回路の場合、特に大きな変動がな
く、無視できる。
In the case of the 2d, C-MO3 circuit, there is no particularly large variation and can be ignored.

したがって、NANDゲートG1インバータINにC−
MO8回路または相当品を使用し、かつ、2aの各条件
を適用すれば、十分に大きな周期Tとすることが可能と
な9.2eの条件も満足され、安定かつ高精度の温度計
測が実現する。
Therefore, C-
If you use the MO8 circuit or equivalent and apply each condition of 2a, it is possible to have a sufficiently large period T, and the condition of 9.2e is also satisfied, achieving stable and highly accurate temperature measurement. do.

また、ADCが不要であシ、かつ、周期Tを大とするこ
とによシ分周器等が不要となシ、全装置が安価になると
共に、計測時にのみポーリング信号等を制御信号Soと
して与え、このときにのみ発振動作を行なわせることが
自在であシ、電源消費量、各回路素子の温度上昇、およ
び、感湿素子の自己発熱等が低減され、計測確度が向上
する一方、塩化リチウム形感湿素子に比し、感湿素子C
Iが安価となる。
In addition, there is no need for an ADC, and by increasing the period T, there is no need for a frequency divider, etc., and the entire device is inexpensive, and the polling signal etc. can be used as the control signal So only during measurement. This reduces power consumption, temperature rise of each circuit element, self-heating of the humidity sensing element, etc., and improves measurement accuracy. Moisture sensing element C compared to lithium type humidity sensing element
I becomes cheaper.

第3図は、他の実施例を示す回路図であシ、この場合は
、抵抗器R11+R12、コンデンサC111012お
よびトランジスタQ111Q12による第1のCPAと
、抵抗器R13+ R14、コンデンサC13+ C1
4およびトランジスタQss + Q14による第2の
CPAとを縦続接続すると共に、各々と並列にインバー
タIN1゜IN2を各個に並列接続し、トランジスタQ
111Q12によるCPAの同相出力と、抵抗器R1を
介するNANDゲートGの入力との間の第1の帰還回路
中へ感湿素子CHを直列に挿入する一方、トランジスタ
Q13 + Q10によるCPAの逆相出力と、同様の
NANDゲートGの入力の間の第2の帰還回路中へサー
ミスタTHおよび抵抗器R6+ R7を直列に挿入して
おシ、第1図に対し、出力OUTからのパルス状信号は
位相が反転するものとなっているが、動作状況は第1図
と同様である。
FIG. 3 is a circuit diagram showing another embodiment; in this case, the first CPA includes resistors R11+R12, capacitor C111012 and transistor Q111Q12, resistor R13+R14, capacitor C13+C1
4 and a second CPA formed by transistors Qss + Q14 are connected in cascade, and inverters IN1 and IN2 are connected in parallel with each of them, and the transistor Q
Inserting a moisture sensitive element CH in series into the first feedback circuit between the in-phase output of the CPA by 111Q12 and the input of the NAND gate G via the resistor R1, while the anti-phase output of the CPA by the transistors Q13 + Q10. By inserting a thermistor TH and resistors R6+R7 in series into a second feedback circuit between the inputs of the NAND gate G and the input of a similar NAND gate G, the pulsed signal from the output OUT is The operation situation is the same as that shown in FIG.

ただし、各CPAの入カスレジホールド電圧はトランジ
スタQll〜Q14のベース・エミッタ間電圧vBic
によシ定まシ、これが約1.4vであるのに対し、C−
MO8回路の入カスレジホールド電圧は約2.5vであ
fi、”L’から″H#への立上シに対する応答は各C
PAO方が速くても、′H”から−L’への立下シに対
する応答はインバータIN1. IN2の方が速いため
、互いに速い方の応答動作によ多波形変化を急峻とする
目的上、各CPAとインバータIN、 、 IN2とを
各々並列としている。
However, the input threshold voltage of each CPA is the base-emitter voltage vBic of transistors Qll to Q14.
Well, this is about 1.4v, while C-
The input resistor voltage of the MO8 circuit is approximately 2.5V fi, and the response to the rise from "L" to "H#" is
Even though PAO is faster, inverters IN1 and IN2 respond faster to a fall from 'H' to -L, so for the purpose of making the multi-waveform change steeper by the faster response operation, Each CPA and inverters IN, IN2 are connected in parallel.

また、第3図においては、十分な駆動出力を有するCP
Aが縦続接続されておシ、第1図に比し、動作が安定と
なる。
In addition, in FIG. 3, a CP with sufficient drive output is
Since A is connected in cascade, the operation is more stable than in FIG.

なお、感湿素子および感温素子としては、条件に応じて
同等の他の素子を用いてもよ(、NANDゲートGの代
シに椰ゲート、インヒビットゲート等を用いても同様で
あシ、各CPAは、互いに逆相の出力を生ずるものとす
ればよく、状況にしたがってインバータ等を適宜入力側
へ挿入すればよい等、種々の変形が自在である。
Note that as the humidity sensing element and the temperature sensing element, other equivalent elements may be used depending on the conditions (it is also possible to use a palm gate, inhibit gate, etc. in place of the NAND gate G, It is sufficient that each CPA generates outputs having phases opposite to each other, and various modifications can be made, such as by appropriately inserting an inverter or the like on the input side depending on the situation.

〔発明の効果〕− 以上の説明によシ明らか外とおシ本発明によれば、湿度
に応じた周期のパルス状信号が直ちに得られ、特にAD
C、分周器等を要さず、全般的に安価な構成と々シ、か
つ、必要なときにのみ動作させることが自在でラシ、各
回路素子の温度上昇および感湿素子の自己発熱が低減さ
れるため、計測状況が安定かつ正確となシ、各種の湿度
計測において顕著な効果が得られる。
[Effects of the Invention] - From the above explanation, it is clear that according to the present invention, a pulse-like signal with a period corresponding to the humidity can be immediately obtained, and especially in AD.
C. It does not require a frequency divider, has a generally inexpensive structure, and can be operated only when necessary, reducing the temperature rise of each circuit element and the self-heating of the moisture-sensitive element. Since the humidity is reduced, the measurement situation is stable and accurate, and a remarkable effect can be obtained in various humidity measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示し、第1図は基本的な回路図、
第2図は第1図における各部の波形を示す図、第3図は
他の実施例を示す回路図である。 G・・・・NANDゲート(論理積回路)、IN。 IN、 、 IN2・・・・インパーク、Q1〜Q4 
、Cht〜Q14・・・・トランジスタ、TH・・・・
サーミスタ(感温素子)、CI(・・−・感湿素子、S
C・・・・制御信号。
The figure shows an embodiment of the present invention, and FIG. 1 is a basic circuit diagram;
FIG. 2 is a diagram showing waveforms of various parts in FIG. 1, and FIG. 3 is a circuit diagram showing another embodiment. G...NAND gate (logical product circuit), IN. IN, , IN2...Inpark, Q1~Q4
, Cht~Q14...transistor, TH...
Thermistor (temperature sensing element), CI (...moisture sensing element, S
C...Control signal.

Claims (1)

【特許請求の範囲】[Claims] 一方の入力へ帰還信号が与えられると共に他方の入力へ
制御信号の与えられる論理積回路と、該論理積回路の出
力を各々が反転増幅すると共に互いに逆相の出力を有し
かつ各々が低出力インピーダンスを呈する第1および第
2の相補形プッシュプル増幅器と、該各増幅器の各出力
から前記一方の入力へ各個に帰還信号を与える第1およ
び第2の帰還回路と、該各帰還回路中のいずれか一方へ
直列に挿入された湿度に応じて静電容量値の変化する感
湿素子と、前記各帰還回路中のいずれか他方へ直列に挿
入された温度に応じて抵抗値の変化する感温素子とを備
えたことを特徴とする湿度計測発振回路。
An AND circuit in which a feedback signal is given to one input and a control signal is given to the other input, and each of the AND circuits inverts and amplifies the output of the AND circuit, and has outputs that are in opposite phases to each other and each has a low output. first and second complementary push-pull amplifiers exhibiting an impedance; first and second feedback circuits each providing a feedback signal from each output of each amplifier to the one input; A humidity sensing element whose capacitance value changes depending on the humidity is inserted in series to one of the feedback circuits, and a humidity sensing element whose resistance value changes depending on the temperature is inserted in series to either one of the feedback circuits. A humidity measurement oscillation circuit characterized by comprising a temperature element.
JP16161184A 1984-08-02 1984-08-02 Temperature measurement oscillation circuit Pending JPS6140553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16161184A JPS6140553A (en) 1984-08-02 1984-08-02 Temperature measurement oscillation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16161184A JPS6140553A (en) 1984-08-02 1984-08-02 Temperature measurement oscillation circuit

Publications (1)

Publication Number Publication Date
JPS6140553A true JPS6140553A (en) 1986-02-26

Family

ID=15738451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16161184A Pending JPS6140553A (en) 1984-08-02 1984-08-02 Temperature measurement oscillation circuit

Country Status (1)

Country Link
JP (1) JPS6140553A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375546A (en) * 1986-09-18 1988-04-05 Soaa:Kk Electronic hydroscope
JP2016188807A (en) * 2015-03-30 2016-11-04 京セラドキュメントソリューションズ株式会社 Humidity sensor driving circuit and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375546A (en) * 1986-09-18 1988-04-05 Soaa:Kk Electronic hydroscope
JP2016188807A (en) * 2015-03-30 2016-11-04 京セラドキュメントソリューションズ株式会社 Humidity sensor driving circuit and image forming apparatus

Similar Documents

Publication Publication Date Title
EP0025680A1 (en) Auto-zero amplifier circuit
JPS5911997B2 (en) signal sampling circuit
US3942174A (en) Bipolar multiple ramp digitisers
US3944852A (en) Electrical switching device and modulator using same
JPS6140553A (en) Temperature measurement oscillation circuit
JPS59108418A (en) Signal generating circuit
JPS6363000B2 (en)
US3654494A (en) Capacitor type timing circuit utilizing energized voltage comparator
JPS584848B2 (en) A/D conversion circuit
JPS6140527A (en) Temperature measuring oscillation circuit
JPS6161047A (en) Temperature measuring oscillation circuit
JPH0356485B2 (en)
JPS61192116A (en) Hysteresis circuit
JP3066921B2 (en) A gate oscillator that compensates for the effects of stray capacitance
JPS6359106A (en) Pulse generating circuit
JPS5837898A (en) Peak holding circuit
JPS6312582Y2 (en)
USRE29079E (en) Multiplier, divider and wattmeter using a switching circuit and a pulse-width and frequency modulator
JPH0411409A (en) Data delay circuit
JPS6168604A (en) Temperature measuring instrument with setter
SU366542A1 (en) BROADBAND AMPLIFIER
JPS6014213Y2 (en) inductance measuring device
JP2573583B2 (en) Bridge excitation circuit and its driving method
JPH0753309Y2 (en) Timer IC operating time setting circuit
JPS60223226A (en) Camera