JPS6161008A - Differential pressure generator - Google Patents

Differential pressure generator

Info

Publication number
JPS6161008A
JPS6161008A JP59184206A JP18420684A JPS6161008A JP S6161008 A JPS6161008 A JP S6161008A JP 59184206 A JP59184206 A JP 59184206A JP 18420684 A JP18420684 A JP 18420684A JP S6161008 A JPS6161008 A JP S6161008A
Authority
JP
Japan
Prior art keywords
differential pressure
pressure generator
scale
flow rate
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59184206A
Other languages
Japanese (ja)
Other versions
JPH0215806B2 (en
Inventor
Toshihiko Harashima
敏彦 原嶋
Yoshiyuki Nagasawa
長沢 嘉幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59184206A priority Critical patent/JPS6161008A/en
Publication of JPS6161008A publication Critical patent/JPS6161008A/en
Publication of JPH0215806B2 publication Critical patent/JPH0215806B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/42Orifices or nozzles

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To measure exactly a flow rate by eliminating an adhesion of a scale as an insulator from the surface of a reducing mechanism to be inserted into a passage, so that a correct differential pressure to the flow rate is generated. CONSTITUTION:As for a differential pressure generator, generally, an orifice plate 1, a flow nozzle 2, etc. are given, but with respect to each of them, an adhesion of a scale is observed in case of a feed water flow meter, etc. of a boiler. This cause is due to an electrical interaction of the potential of the surface of a metal of the differential pressure generator contacting to a fluid, and an ionized scale component in the fluid. In order to eliminate this action, the differential pressure generator itself is constituted of insulating ceramics, or there is a method for adopting a system for covering the surface with an insulator by using a metallic material such as stainless steel, etc. as a base material, but it is practical that a metallic base material manufactured with a high accuracy is covered with ceramics of about several micra - scores of micra thick by means of vapor-deposition or ion plating, etc. In this way, a thermal expansion is determined by a quality of the metallic base material, and the measurement can be executed with a high accuracy.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、流量計測における差圧発生器に係り特に高温
高圧水の流量計測を必要とするボイラあるいは原子炉ま
わりの給水、スプレ水、再循環水の計測に好適な差圧発
生器に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a differential pressure generator for flow measurement, and is particularly applicable to feed water, spray water, and recirculation around boilers or nuclear reactors that require flow measurement of high-temperature, high-pressure water. This invention relates to a differential pressure generator suitable for measuring water.

〔発明の背景〕[Background of the invention]

従来、給水系などの流量計測の為には絞り機構を有する
差圧発生器を用いている。この差圧発生器は例えば材質
は5O8304で構成していた為酸化鉄のイオン化から
生ずる電気的現象による差圧発生器へのスケール付着が
避けられず、開口面積、開口形状の変化による流量計測
への誤差が生じるといった問題があった。
Conventionally, a differential pressure generator with a throttle mechanism has been used to measure the flow rate of water supply systems, etc. For example, since this differential pressure generator was made of 5O8304, scale adhesion to the differential pressure generator due to electrical phenomena caused by ionization of iron oxide was unavoidable, and flow rate measurement due to changes in opening area and opening shape was inevitable. There was a problem that an error occurred.

しかしながら、スケール付着は知られてはいても、その
原因がイオン化鉄にあることについて言及した論文等は
皆無といってよい状況であった。
However, although scale adhesion is known, there are no papers that mention that the cause is ionized iron.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、スケールの付着を無くシ、流量に対す
る正しい差圧を発生する差圧発生器を実現することによ
り、正確な流量計測を行なう計測器を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a measuring instrument that accurately measures a flow rate by realizing a differential pressure generator that generates a correct differential pressure with respect to the flow rate while eliminating scale adhesion.

〔発明の概要〕[Summary of the invention]

スケールの付着は、流体中のイオンが差圧発生器の金属
表面電位の作用で引き付けられ、付着するということが
判った。ここに着目して、本発明では差圧発生器自体を
絶縁物にすることにより付着を防ぐことができる。本発
明は金属表面に、絶縁性のセラミックをコーティングま
たは蒸着することにより例えば実現できる。
It has been found that scale adhesion is caused by ions in the fluid being attracted by the metal surface potential of the differential pressure generator. Focusing on this, in the present invention, adhesion can be prevented by making the differential pressure generator itself an insulator. The present invention can be realized, for example, by coating or vapor depositing an insulating ceramic on a metal surface.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第1図に示す。差圧発生器としては一
般罠、同図(a)のオリフィスプレート1、同図伽)の
フローノズル2、同図(C)のベンチュリ10などがあ
げられるがいずれもボイラの給水流量計などではスケー
ルの付着が認められる。このスケールの付着は、流体と
接する差圧発生器の金属表面の電位と、流体中のイオン
化されたスケール成分の電気的相互作用であるというこ
とが新たに判った。この電気的相互作用を排除するため
、本発明ではオリフィスプレートやフローノズルに対し
、絶縁物で表面を構成する。例えば、第1図の斜線部を
絶縁物とするこの絶縁物で表面を構成する手段としては
、差圧発生器自体を絶縁性のセラミックなどで構成した
り、ステンレスなどの金属材料を母材として、絶縁物で
表面を覆う方式にしたりする方法がある。実現の可能性
としては、直径600f1以上のものをセラミックで精
度よく製作するのは現状では難しいことと、配管側との
温度膨張率の差から測定誤差を生じることがあることか
ら、高精度で製作した金属の母材に、蒸着やイオンブレ
ーティングなどの手段で数ミクロンから数10ミクロン
程度のセラミック厚さで覆う方が実用的である。これに
より、熱膨張は金属の母材の性質で決まり、高精度の計
測が可能となる。
An embodiment of the invention is shown in FIG. Examples of differential pressure generators include general traps, orifice plate 1 in the same figure (a), flow nozzle 2 in the same figure (Fig. Adhesion of scale is observed. It has been newly found that this scale adhesion is due to the electrical interaction between the potential of the metal surface of the differential pressure generator that comes into contact with the fluid and the ionized scale components in the fluid. In order to eliminate this electrical interaction, in the present invention, the surfaces of the orifice plate and flow nozzle are made of an insulating material. For example, the shaded area in Figure 1 is an insulator.As a means of constructing the surface with this insulator, the differential pressure generator itself may be constructed of insulating ceramic, or a metal material such as stainless steel may be used as the base material. Another method is to cover the surface with an insulating material. The possibility of realization is that it is currently difficult to accurately manufacture ceramics with a diameter of 600 f1 or more, and measurement errors may occur due to the difference in temperature expansion coefficient with the piping side. It is more practical to cover the manufactured metal base material with a ceramic thickness of several microns to several tens of microns by means such as vapor deposition or ion blating. As a result, thermal expansion is determined by the properties of the metal base material, allowing highly accurate measurement.

第2図は、第1図(a)のオリフィスプレート1を例に
あげて、配管3への布設状態(同図(a))とスケール
の付着例(同図(b))’を示す。オリフィスプレート
1は図の様に、ドーナツ状に穴のあいたプレートでこれ
がフランジその他により、配管3へ固定される。配管内
径に応じた流速で流れてきた流体は、このオリフィスプ
レート1により縮流され、これによって発生する差圧を
、差圧検出器6で検出し、信号処理して流量が検出され
る。このときよく知られているようにオリフィスプレー
ト1の開口面積比が変わると、同一流量でも発生差圧が
異なり、流量計測上誤差が生じることになる。
Taking the orifice plate 1 of FIG. 1(a) as an example, FIG. 2 shows the installation state of the pipe 3 (FIG. 1(a)) and an example of scale adhesion (FIG. 1(b))'. As shown in the figure, the orifice plate 1 is a donut-shaped plate with holes and is fixed to the pipe 3 by a flange or the like. The fluid flowing at a flow rate corresponding to the inner diameter of the pipe is constricted by the orifice plate 1, and the differential pressure generated thereby is detected by the differential pressure detector 6, and the flow rate is detected by signal processing. At this time, as is well known, if the opening area ratio of the orifice plate 1 changes, the differential pressure generated will differ even with the same flow rate, resulting in an error in flow rate measurement.

従来の例でいくと、スケール4は図の様に付着するケー
スが多く、これがオリフィスプレート1の開口面積を見
かけ上小さくする結果となり、同一流量での発生差圧は
大きくなって、計測流量は大きな誤差を含むことになる
In the conventional example, the scale 4 is often attached as shown in the figure, which results in the apparent opening area of the orifice plate 1 becoming smaller, the differential pressure generated at the same flow rate increases, and the measured flow rate decreases. This will include a large error.

第3図により、このスケール付着のメカニズムを説明す
る。一般には、差圧発生器などの金属表面にプラス電荷
があり、静止水中ではこの表面にマイナス電荷をもった
イオンが付着してバランスを保っている。流体の流速が
速くなると、このマイナスイオンが強制的に取り除かれ
、金属表面のプラス電荷の影響が遠くまで及びこれに、
マイナス電荷をもったスケール成分が金属表面に付着す
るというメカニズムで説明される。したがってこの金属
(差圧発生器の母材に当る)表面の電荷の影響を取り去
れば、スケールの付着は削減されることになる。
The mechanism of scale adhesion will be explained with reference to FIG. Generally, the metal surface of a differential pressure generator or the like has a positive charge, and in still water, negatively charged ions adhere to this surface to maintain balance. When the flow rate of the fluid increases, these negative ions are forcibly removed, and the positive charge on the metal surface spreads over a long distance.
The mechanism is explained by the fact that negatively charged scale components adhere to metal surfaces. Therefore, if the influence of the charge on the surface of this metal (corresponding to the base material of the differential pressure generator) is removed, scale adhesion will be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、流量計測用差圧発生器へのスケール付
着が除かれ、流量計測の精度を高く保つことができる。
According to the present invention, scale adhesion to the differential pressure generator for flow rate measurement is removed, and the accuracy of flow rate measurement can be maintained at a high level.

これによりボイラの性能管理などが正確にできる様にな
り、効率改善にも役に立つことになる。
This makes it possible to accurately manage boiler performance and improve efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る、絶縁材料による差圧発生器表面
のコーティング説明図、第2図はスケール付着状況説明
図、第3図はスケールの付着メカニズムの説明図。 1・・・オリフィスプレート、2・・・フローノズル、
3・・・配管、4・・・付着したスケール、5・・・表
面をコーティングした絶縁物、6・・・差圧検出器。 第1図 第1図 (C) 一〇 CC’@面     しC′ 52図 第3図 距離
FIG. 1 is an explanatory diagram of coating the surface of a differential pressure generator with an insulating material according to the present invention, FIG. 2 is an explanatory diagram of scale adhesion, and FIG. 3 is an explanatory diagram of the scale adhesion mechanism. 1... Orifice plate, 2... Flow nozzle,
3... Piping, 4... Adhering scale, 5... Insulating material coated on the surface, 6... Differential pressure detector. Figure 1 Figure 1 (C) 10CC'@plane ShiC' Figure 52 Figure 3 Distance

Claims (1)

【特許請求の範囲】[Claims] 1、流路に絞り機構を挿入してその上流側と下流側の差
圧を検出して流量計測を行なう差圧発生器において、絞
り機構の少なくとも表面を絶縁物とすることを特徴とす
る差圧発生器。
1. In a differential pressure generator that measures the flow rate by inserting a throttle mechanism into the flow path and detecting the differential pressure between the upstream and downstream sides thereof, at least the surface of the throttle mechanism is made of an insulator. pressure generator.
JP59184206A 1984-09-03 1984-09-03 Differential pressure generator Granted JPS6161008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59184206A JPS6161008A (en) 1984-09-03 1984-09-03 Differential pressure generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59184206A JPS6161008A (en) 1984-09-03 1984-09-03 Differential pressure generator

Publications (2)

Publication Number Publication Date
JPS6161008A true JPS6161008A (en) 1986-03-28
JPH0215806B2 JPH0215806B2 (en) 1990-04-13

Family

ID=16149211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59184206A Granted JPS6161008A (en) 1984-09-03 1984-09-03 Differential pressure generator

Country Status (1)

Country Link
JP (1) JPS6161008A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143914A (en) * 1980-04-11 1981-11-10 Hitachi Ltd Method for preventing scale sticking to orifice flowmeter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143914A (en) * 1980-04-11 1981-11-10 Hitachi Ltd Method for preventing scale sticking to orifice flowmeter

Also Published As

Publication number Publication date
JPH0215806B2 (en) 1990-04-13

Similar Documents

Publication Publication Date Title
US7654137B2 (en) Corrosion-resistant metal made sensor for fluid and a fluid supply device for which the sensor is employed
KR100714779B1 (en) Thermal type mass flow rate sensor made of corrosion resistant metal, and fluid supply equipment using the same
CN111919092B (en) Magnetic inductive flowmeter and measuring point with a magnetic inductive flowmeter of this type
GB2134266A (en) Thermal mass flow-meter
US4318042A (en) Electrometer probe
CN112368551B (en) Magnetic inductive flowmeter and method of manufacturing such a magnetic inductive flowmeter
CN113167613B (en) Magnetic inductive flowmeter
KR0158764B1 (en) Seal diaphragm structure for pressure measuring device
JPS6161008A (en) Differential pressure generator
JPS61100615A (en) Differential pressure generator
GB2292613A (en) Multiple electrode electromagnetic flowmeters
KR890000690B1 (en) Pie joelectric sensor
JP2009085814A (en) Flow-measuring device for fluid
CN219203102U (en) Semiconductor process equipment and baffle plate device thereof
JPH03205513A (en) Detector of electromagnetic flow meter
JPH0587510A (en) Method for measuring scale thickness
JPS587504A (en) Method and device for measuring thickness of non- magnetic film
Korpiola et al. Oxygen partial pressure measurement in the HVOF gun tail flame
JPH07306067A (en) Electrode of electromagnetic flowmeter
JPS6166122A (en) Electrode structure of electromagnetic flowmeter
Lepicovsky et al. Application of thin-film thermocouples to localized heat transfer measurements
JP2020136144A (en) Plasma state measuring device and film forming device
KR20230025715A (en) Microelectromechanical devices for use in flow control devices
JP3763225B2 (en) Ion drift type flow meter
US3670571A (en) Jet deflection vapor gage