JPS61100615A - Differential pressure generator - Google Patents

Differential pressure generator

Info

Publication number
JPS61100615A
JPS61100615A JP59222117A JP22211784A JPS61100615A JP S61100615 A JPS61100615 A JP S61100615A JP 59222117 A JP59222117 A JP 59222117A JP 22211784 A JP22211784 A JP 22211784A JP S61100615 A JPS61100615 A JP S61100615A
Authority
JP
Japan
Prior art keywords
differential pressure
scale
pressure generator
metal material
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59222117A
Other languages
Japanese (ja)
Inventor
Toshihiko Harashima
敏彦 原嶋
Yoshiyuki Nagasawa
長沢 嘉幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59222117A priority Critical patent/JPS61100615A/en
Publication of JPS61100615A publication Critical patent/JPS61100615A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/42Orifices or nozzles

Abstract

PURPOSE:To prevent the adhesion of scale to a differential pressure generator for measuring a flowmeter, by applying insulating ceramic to the surface of a metal material by coating or vapor deposition. CONSTITUTION:The surface of an orifice plate 1 or a float nozzle 2 is constituted of an insulating material. For example, as a mean for constituting the surface shown by the oblique line part 5 of the drawing from the insulating material, there is a system for constituting a differential pressure generator from insulating ceramic or a system for covering a surface with the insulating material by using a metal material such as stainless steel as a base material. As mentioned above, by applying the ion plating of ceramics having non-affinity to scale to the surface of the metal material, the densification of the surface of the metal material is attained and the adhesion of scale thereto can be prevented.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、流量計測における差圧発生器に係り特に高温
高圧水の流量計測を必要とするボイラあるいは原子炉ま
わシの給水、スプレ水、再循環水の計測に好適な差圧発
生器に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a differential pressure generator for flow measurement, and is particularly applicable to feed water, spray water, and recycle water for boilers or nuclear reactors that require flow measurement of high-temperature, high-pressure water. This invention relates to a differential pressure generator suitable for measuring circulating water.

〔発明の背景〕[Background of the invention]

従来、給水系などの流量計測の為には絞り機構を有する
差圧発生器を用いている。この差圧発生器は例えば材質
は5US304で構成していた為酸化鉄のイオン化から
生ずる電気的現象あるいは母材に対するスケールの親和
性による差圧発生器へのスケール付着が避けられず、開
口面積、開口形状の変化による流量計測への誤差が生じ
るといった問題があった。
Conventionally, a differential pressure generator with a throttle mechanism has been used to measure the flow rate of water supply systems, etc. Since this differential pressure generator was made of 5US304, for example, scale adhesion to the differential pressure generator due to electrical phenomena caused by ionization of iron oxide or the affinity of scale to the base material was unavoidable, and the opening area There was a problem in that errors in flow rate measurement occurred due to changes in the opening shape.

しかしながら、スケール付着については、火力原子力協
会発行の雑誌「火力原子力発電JVoA35゜厘7 、
 Jut1984 、第43頁よシ同48頁の「火力プ
ラントの給水系統機器へのスケール付着」によっである
程度は知られてはいても、その原因がイオン化鉄にある
ことについて言及した論文等は皆無といってよい状況で
あった。
However, regarding scale adhesion, the magazine "Thermal Power and Nuclear Power Generation JVoA35゜厘7" published by The Thermal Power and Nuclear Power Association,
Jut 1984, pp. 43 to 48, ``Scale adhesion to water supply system equipment in thermal power plants'' is known to some extent, but there are no papers that mention that the cause is ionized iron. It was a good situation.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、スケールの付着を無くシ、流量に対す
る正しい差圧を発生する差圧発生器と実現することによ
り、正確な流量計測を行なう計測器を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a measuring instrument that accurately measures a flow rate by eliminating scale adhesion and realizing a differential pressure generator that generates a correct differential pressure for the flow rate.

〔発明の概要〕[Summary of the invention]

スケールの付着は、流体中のイオンが差圧発生器の金属
表面電位の作用で引き付けられること、更に金属材料の
スケールとの親和性、また表面粗さにより付着するとい
うことが判った。ここに着目して、本発明では差圧発生
器自体を絶縁物にすることによシ付着を防ぐもので、よ
り具体的には本発明は金属表面に、絶縁性のセラミック
をコーティングまたは蒸着することにより実現する。
It has been found that scale adhesion occurs because ions in the fluid are attracted by the effect of the metal surface potential of the differential pressure generator, and also because of the affinity of the metal material for scale and the surface roughness. Focusing on this, the present invention prevents adhesion by making the differential pressure generator itself an insulator. More specifically, the present invention coats or deposits an insulating ceramic on the metal surface. This is achieved by

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例をgx図に示す。差圧発生器としては一
般に、同図(a)のオリフィスプレート1、同図(b)
のフローノズル2、同図(C)のペアfユリ10などが
あげられるがいずれもボイラの給水流量針などではスケ
ールの付着が認められる。このスケールの付着は、流体
と接する差圧発生器の金属表面の電位と、流体中のイオ
ン化されたスケール成分の電気的相互作用と金属材料と
スケールとの親和性、金属材料の表面粗さなどの複合作
用であるということが新たに判った。この電気的相互作
用を排除するため、本発明ではオリフィスプレートやフ
ローノズルに対し、絶縁物で表面を構成する。例えば、
第1図の斜線部を絶縁物とするこの絶縁物で表面を構成
する手段としては、差圧発生器自体を絶縁性のセラミッ
クなどで構成したり、ステンレスなどの金属材料を母材
として、絶縁物で表面を覆う方式にしたシする方法があ
る。実現の可能性としては、直径600IDI以上のも
のをセラミックで精度よく製作するのは現状では難しい
ことと、配管側との温度膨張率の差から測定誤差を生じ
ることがあることから、高精度で製作した金属の母材に
、蒸着やイオンブレーティングなどの手段で数ミクロン
から数10ミクロン程度のセラミック厚さで覆う方が実
用的である。これによシ、熱膨張は金属の母材の性質で
決まシ、高精度の計測が可能となる。
An example of the present invention is shown in the gx diagram. Generally, the differential pressure generator is the orifice plate 1 shown in the figure (a) and the orifice plate 1 shown in the figure (b).
Examples include the flow nozzle 2 shown in Fig. 2, and the pair F lily 10 shown in Fig. 3(C), but in both cases, scale adhesion is observed on the boiler water supply flow rate needle. This scale adhesion is caused by the potential of the metal surface of the differential pressure generator in contact with the fluid, the electrical interaction of ionized scale components in the fluid, the affinity between the metal material and scale, and the surface roughness of the metal material. It has been newly discovered that this is a complex effect of In order to eliminate this electrical interaction, in the present invention, the surfaces of the orifice plate and flow nozzle are made of an insulating material. for example,
The shaded area in Figure 1 is an insulator.As a means of constructing the surface with this insulator, the differential pressure generator itself can be constructed of an insulating ceramic, or a metallic material such as stainless steel can be used as a base material. There is a method of covering the surface with something. The possibility of realization is that it is currently difficult to accurately manufacture ceramics with a diameter of 600 IDI or more, and measurement errors may occur due to the difference in temperature expansion coefficient with the piping side. It is more practical to cover the manufactured metal base material with a ceramic thickness of several microns to several tens of microns by means such as vapor deposition or ion blating. As a result, thermal expansion is determined by the properties of the metal base material, making it possible to measure with high precision.

本発明はスケールとの非親和性をもつセラミクスのイオ
ンブレーティングを金属材料の表面に施すことによシ、
表面のち密化を図9、スケールの付着を防止するもので
ある。
The present invention achieves this by applying ion blasting of ceramics that have no affinity with scale to the surface of metal materials.
The densification of the surface is shown in Figure 9 to prevent scale adhesion.

またセラミクスとして非導電性で、スケールとの非親和
性表面のち密化を図れる材料を適用することによシ、ス
ケールの電気的性質による付着も防止できることになり
大きな効果が期待できる。
Furthermore, by applying a ceramic material that is non-conductive and has no affinity for scale, and which can densify the surface, it is possible to prevent scale from adhering due to its electrical properties, and a great effect can be expected.

第2図は、第1図(a)のオリフィスプレートlを例に
あげて、配管3への布設状態(同図(a))とスケール
の付着例(同図−))を示す。オリフィスプレート1は
図の様に、ドーナツ状に穴のあいたプレートでこれが7
ランジその他により、配管3へ固定される。配管内径に
応じた流速で流れてきた流体は、このオリフィスプレー
ト1により縮流され、これによって発生する。差圧を、
差圧検出器6で検出し、信号処理して流量が検出される
。このときよく知られているようにオリフィスプレート
1の開口面積比が変わると、同一流量でも発生差圧が異
な)、流量計測上誤差が生じることになる。
Taking the orifice plate l of FIG. 1(a) as an example, FIG. 2 shows the installation state of the pipe 3 (FIG. 1(a)) and an example of scale adhesion (FIG. 1-)). Orifice plate 1 is a donut-shaped plate with holes as shown in the figure.
It is fixed to the piping 3 by a lunge or the like. The fluid flowing at a flow rate depending on the inner diameter of the pipe is constricted by the orifice plate 1, and is thereby generated. Differential pressure,
The flow rate is detected by the differential pressure detector 6 and subjected to signal processing. At this time, as is well known, if the opening area ratio of the orifice plate 1 changes, the differential pressure generated will differ even if the flow rate is the same), which will cause an error in flow rate measurement.

従来の例でいくど、スケール4は図の様に付着するケー
スが多く、これがオリフィスプレート1の開口面積を見
かけ上小さくする結果となシ、同一流量での発生差圧は
犬きくなって、計測流量はプラス誤差を含むことになる
In conventional examples, the scale 4 is often attached as shown in the figure, and this results in the apparent opening area of the orifice plate 1 becoming smaller, and the differential pressure generated at the same flow rate becomes smaller. The measured flow rate will include a plus error.

第3図にこのスケール付着のメカニズムを文献から引用
する。金属表面にプラス電荷がちシ、静止水中ではこの
表面にマイナス電荷をもったイオンが付着してバランス
を保っている。流体の流速が速くなると、このマイナス
イオンが強性的に取シ除かれ、金属表面のプラス電荷の
影響が遠くまで及びこれに、マイナス電荷をもつ九スケ
ール成分が金属表面に付着するというメカニズムで説明
されている。したがってこの金属(差圧発生器の母材に
当る)表面の電荷の影響を取り去れば、スケールの付着
は削減されることになる。
The mechanism of this scale adhesion is quoted from the literature in Figure 3. Metal surfaces tend to have positive charges, and in still water, negatively charged ions adhere to these surfaces to maintain balance. When the flow rate of the fluid increases, these negative ions are strongly removed, and the positive charge on the metal surface spreads over a long distance, and the nine-scale component with negative charge adheres to the metal surface. explained. Therefore, if the influence of the charge on the surface of this metal (corresponding to the base material of the differential pressure generator) is removed, scale adhesion will be reduced.

またスケールは金属材料との親和性(上記電気現象も含
)と表面の粗さにも付着のし易さの程匿が影響される。
In addition, the ease with which scale adheres is influenced by its affinity with metal materials (including the above-mentioned electrical phenomenon) and surface roughness.

即ちスケールとの1和性の低い材料で表面をち密にすれ
ばスケール付着は低減できることが実験的に確かめられ
ている。セラミクスのうちTiC(炭化チタン)、Ti
N(窒化チタンンなどを金属材料の全表面あるいはスケ
ールの付着し易い部分に、数ミクロンの厚さでPVD(
physical Vapour Deposisio
n )あるいはイオンブレーティングを施すことによシ
表面がち密化されスケールの付着が低減される。絶縁性
の材料を別の方法で金属の母材にコーティングを施して
もスケール付着は低減できるが、絶縁性材料をPVD、
 イオンブレーティングすることにより、更に低減効果
が期待できる。
That is, it has been experimentally confirmed that scale adhesion can be reduced by making the surface dense with a material that has low incompatibility with scale. Among ceramics, TiC (titanium carbide), Ti
Apply N (titanium nitride, etc.) to the entire surface of the metal material or areas where scale is likely to adhere to a thickness of several microns by PVD (
physical vapor deposition
n) Alternatively, by applying ion blasting, the surface is made dense and scale adhesion is reduced. Scale adhesion can be reduced by coating the metal base material with an insulating material using another method, but if the insulating material is coated with PVD,
Further reduction effects can be expected by performing ion blating.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、流量計測用差圧発生器へのスケール付
着が除かれ、計量計測の精度を高く保つことができる。
According to the present invention, scale adhesion to the differential pressure generator for flow rate measurement is removed, and the accuracy of metering measurement can be maintained at a high level.

これによりボイラの性能管理などが正確にできる様にな
シ、効率改善にも役に立つことになる。
This will enable accurate boiler performance management and will also help improve efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る、絶縁材料による差圧発生器表面
のコーティング説明図、第2図はスケール付着状況説明
図、第3図はスケールの付着メカニズムの説°明図。 l・・・オリフィスグレート、2・・・フローノズル、
3・・・配管、4・・・付着したスケール、5・・・表
面をコー粥1図 佑1図 (C) Q− 半2図 一釉
FIG. 1 is an explanatory diagram of coating the surface of a differential pressure generator with an insulating material according to the present invention, FIG. 2 is an explanatory diagram of scale adhesion, and FIG. 3 is an explanatory diagram of the scale adhesion mechanism. l...orifice grate, 2...flow nozzle,
3... Piping, 4... Adhering scale, 5... Surface porridge 1 figure and 1 figure (C) Q- Half 2 figures and 1 glaze

Claims (1)

【特許請求の範囲】[Claims] 1、流路に絞り機構を挿入して、その上流側と下流側の
差圧を検出して流量計測を行なう差圧発生器において、
差圧発生器の全表面あるいは表面の一部にセラミクスの
PVDあるいはイオンプレーティングを施し、皮膜また
はコーティングを構成することを特徴とする差圧発生器
1. In a differential pressure generator that measures the flow rate by inserting a throttle mechanism into the flow path and detecting the differential pressure between the upstream and downstream sides,
A differential pressure generator characterized in that the entire surface or a part of the surface of the differential pressure generator is subjected to ceramic PVD or ion plating to form a film or coating.
JP59222117A 1984-10-24 1984-10-24 Differential pressure generator Pending JPS61100615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59222117A JPS61100615A (en) 1984-10-24 1984-10-24 Differential pressure generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59222117A JPS61100615A (en) 1984-10-24 1984-10-24 Differential pressure generator

Publications (1)

Publication Number Publication Date
JPS61100615A true JPS61100615A (en) 1986-05-19

Family

ID=16777418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59222117A Pending JPS61100615A (en) 1984-10-24 1984-10-24 Differential pressure generator

Country Status (1)

Country Link
JP (1) JPS61100615A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165424U (en) * 1988-05-13 1989-11-20
JPH0499030U (en) * 1991-02-01 1992-08-27

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165424U (en) * 1988-05-13 1989-11-20
JPH0499030U (en) * 1991-02-01 1992-08-27

Similar Documents

Publication Publication Date Title
Moreau et al. On-line control of the plasma spraying process by monitoring the temperature, velocity, and trajectory of in-flight particles
US11781891B2 (en) Magnetic-inductive flowmeter having an internal conductive coating
EP0608793B1 (en) Electric flowmeter
Koch et al. Condensation of steam on the surface of hard coated copper discs
Bilek et al. A study of filter transport mechanisms in filtered cathodic vacuum arcs
JPS61100615A (en) Differential pressure generator
Kuang et al. The flush-mounted rail Langmuir probe array designed for the Alcator C-Mod vertical target plate divertor
US4196631A (en) Ultrasonic probe for measuring liquids at high temperature and under high pressure
JPH0215806B2 (en)
CN113167613B (en) Magnetic inductive flowmeter
CN104213072A (en) Compound shade and making method thereof
Cluggish Transport of a cathodic arc plasma in a straight, magnetized duct
Beck et al. Wear of small orifices by streaming current driven corrosion
CN107607230B (en) A method of measurement hall thruster wall surface ion hot-fluid
JP5232759B2 (en) Method for evaluating the quality of sprayed film
Montavon et al. Vacuum plasma spray forming of Astroloy: An investigation of processing parameters
JPS63212804A (en) Measuring method of film thickness
Niemi et al. Wear characteristics of oxide coatings deposited by plasma spraying, high power plasma spraying and detonation gun spraying
Korpiola et al. Oxygen partial pressure measurement in the HVOF gun tail flame
CN109507227A (en) The method for measuring the thermal coefficient of composite sample floating coat
JPH01156624A (en) Differential pressure detector
Moriya et al. Sealing of plasma-sprayed ceramic coatings by sol-gel process
Lepicovsky et al. Application of thin-film thermocouples to localized heat transfer measurements
JPH0587510A (en) Method for measuring scale thickness
Lun Performance improvement of vacuum arc thrusters