JPS6160869A - Hot chamber - Google Patents

Hot chamber

Info

Publication number
JPS6160869A
JPS6160869A JP59180489A JP18048984A JPS6160869A JP S6160869 A JPS6160869 A JP S6160869A JP 59180489 A JP59180489 A JP 59180489A JP 18048984 A JP18048984 A JP 18048984A JP S6160869 A JPS6160869 A JP S6160869A
Authority
JP
Japan
Prior art keywords
hot chamber
hard particles
sintered material
thermal conductivity
cylinder head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59180489A
Other languages
Japanese (ja)
Other versions
JPH0217685B2 (en
Inventor
Takayuki Matsuda
松田 尊行
Hiroki Shimizu
浩樹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPR Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd filed Critical Teikoku Piston Ring Co Ltd
Priority to JP59180489A priority Critical patent/JPS6160869A/en
Publication of JPS6160869A publication Critical patent/JPS6160869A/en
Publication of JPH0217685B2 publication Critical patent/JPH0217685B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide a hot chamber having excellent durability by constituting said chamber of the ferrous sintered material dispersed and incorporated with hard particles at an adequate area ratio by diffusing and solutionizing the periphery thereof partially into matrix and ferrous sintered material having good heat conductivity. CONSTITUTION:The 1st member including the part to contact slidingly with the valve on a combustion side of the hot chamber for an internal-combustion engine consists of the ferrous sintered material which contains the hard particles having>=500 Hv at 3-30% area ratio and in which the components of such hard particles are dispersed by partially diffusing and solutionizing the same at the periphery of the particles into the matrix consisting mainly of pearlite. The 2nd member corresponding to the cylinder head except the above consists of the ferrous sintered material having at least >=0.01Cal/cm.sec. deg.C heat conduc tivity and having the heat conductivity equal to or higher than the heat conduc tivity of the above-mentioned 1st member. The above-mentioned 1st member consists preferably of 0.8-35wt% C, 1.0-10.0% Cr, 0.2-6.0% Ni, 1.0-10.0% Mo, 1.0-15.0% Co and the balance substantially Fe and the 2nd member consists of 0.8-3.0% C, 0.5-5.0% Cr, 1.0-5.0% Cu and the balance Fe.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、内燃機関のシリンダヘッドと吸排気用弁座を
一体化した一体型燃焼室、すなわちいわゆるホットチャ
ンバーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an integrated combustion chamber in which a cylinder head and an intake/exhaust valve seat of an internal combustion engine are integrated, that is, a so-called hot chamber.

近年の内燃機関は、排ガス規制、燃費低減などの社会的
要請を満足させながら、ますます高出力化の傾向を強め
ているので、直接燃焼ガスにさらされている燃焼室回り
の熱負荷が高くなってきている。
In recent years, internal combustion engines have become increasingly high-output while satisfying social demands such as exhaust gas regulations and reduced fuel consumption.As a result, the heat load around the combustion chamber, which is directly exposed to combustion gas, is high. It has become to.

(従来の技術) 現在、一般の内燃機関では、FC又はAlgのシリンダ
ヘッドに、焼結材又はvP鋼材の弁座を圧入又は鋳包ん
でいるが、上述の如(燃焼室回りの熱負荷が高(なると
シリンダヘッドが著しく熱変形し、シリンダヘッドと弁
座の間で燃焼ガスのシール性が低下するとともに弁座又
は弁がシリンダヘッドと異常摩耗を起こして、いわゆる
吹き抜は事故が起こる危険も生じることがある。そこで
、一部の内燃機関では、燃焼室を球形にし一体化したホ
ットチャンバーを用いて変形防止を計っているが、弁座
部分の耐摩耗性を向上させるために高合金vP鋼材をホ
ットチャンバーに適用すれば、高合金鋳鋼は鋳造性があ
まりすぐれないという弱点のために球形という鋳造上複
雑な形状を有するホットチャンバーに鋳巣その他の欠陥
が表われる。
(Prior art) Currently, in general internal combustion engines, a valve seat made of sintered material or VP steel is press-fitted or cast into a cylinder head made of FC or Alg. (If the cylinder head becomes severely deformed due to heat, the sealing performance of the combustion gas between the cylinder head and the valve seat will deteriorate, and the valve seat or valve will wear abnormally with the cylinder head, causing a risk of an accident. Therefore, in some internal combustion engines, the combustion chamber is made spherical and an integrated hot chamber is used to prevent deformation, but in order to improve the wear resistance of the valve seat part, high alloy When vP steel is applied to a hot chamber, cavities and other defects appear in the hot chamber, which has a spherical shape, which is a complex shape for casting, due to the poor castability of high-alloy cast steel.

(発明が解決しようとする問題点) 本発明は上記に鑑み、高負荷エンジン用としてすぐれた
耐久性をもつホットチャンバーを提供するものである。
(Problems to be Solved by the Invention) In view of the above, the present invention provides a hot chamber with excellent durability for use in high-load engines.

特に、本発明は、焼結材をホットチャンバーに用いて鋳
巣その他の内部欠陥を少なくするとともに、焼結材を複
合構成としてシリンダヘッド部及び弁座部に要求される
異なる性質を十分に満足できるようにしたホットチャン
バーを提供するものである。
In particular, the present invention uses sintered material in the hot chamber to reduce blowholes and other internal defects, and uses sintered material in a composite structure to fully satisfy the different properties required for the cylinder head and valve seat. This provides a hot chamber that allows for

(問題点を解決するための手段) 本発明に係るホットチャンバーは、燃焼室側のバルブと
摺接する部分を含む第1部材(alは)Iv500以上
の硬質粒子を面積比で3%を越え30%以下含有し、か
つ該硬質粒子の成分が主としてパーライトよりなるマト
リックス中に該硬質粒子の周辺において部分的に拡散固
溶して分散されている鉄系焼結材料から゛なり、前記第
1部材(a)以外のシリンダヘッドに相当する第2部材
(b)は熱伝導率が少くとも0.01ca l / a
++、sec、 ’c以上で前記第1部材(a)の熱伝
導率と同等もしくはそれ以上の熱伝導率を有する鉄系焼
結材料から構成されていることを特徴とする。
(Means for Solving the Problems) The hot chamber according to the present invention has a first member (al) containing hard particles of Iv500 or more that exceeds 3% in area ratio and includes a portion that comes into sliding contact with a valve on the combustion chamber side. % or less, and the components of the hard particles are partially dispersed as a solid solution in a matrix mainly composed of pearlite around the hard particles, and the first member The second member (b) corresponding to the cylinder head other than (a) has a thermal conductivity of at least 0.01 cal/a
It is characterized in that it is made of an iron-based sintered material having a thermal conductivity equal to or higher than the thermal conductivity of the first member (a) in a range of ++, sec, 'c or more.

(作 用) 一般のシリンダヘッドにおけるインサート弁座に相当す
るホットチャンバーの燃焼室側のバルブと摺接する部分
(第1部材(a))は少なくとも3000〜4000r
pa+ 、大きい場合には110000rpをこえるエ
ンジン回転により燃焼ガスに直接さらされながら厳しい
たたかれ摺動摩耗を受ける。このようにバルブと摺接す
る第1部材(a)には、耐熱性と耐摩耗性の両者が要求
される。本発明においては、たたかれ摺動摩耗には、主
としてパーライトよりなるマトリックスに硬質粒子を分
散させた組織を有する第1部材(alにより対処する。
(Function) The part (first member (a)) that is in sliding contact with the valve on the combustion chamber side of the hot chamber, which corresponds to the insert valve seat in a general cylinder head, is heated at least 3,000 to 4,000 r.
If pa+ is large, the engine rotates at over 110,000 rpm and is directly exposed to combustion gas, subject to severe knocking and sliding wear. The first member (a) that comes into sliding contact with the valve is required to have both heat resistance and wear resistance. In the present invention, knocking and sliding wear is dealt with by the first member (al) having a structure in which hard particles are dispersed in a matrix mainly made of pearlite.

その硬質粒子の硬さがHv 500未満、あるいは面積
比で3%未満の場合にぽ、耐摩耗性向上の効果が得られ
ない、一方、30%をこえると材料脆化や加工性の低下
など弊害が増大する。また、硬質粒子の成分が、硬質粒
子の周囲に部分拡散固溶していると、硬質粒子とマトリ
ックスの接合特性が改善され、硬質粒子とマトリックス
との間のベアリ作用により第1部材(a)の耐摩耗性が
一層向上する。
If the hardness of the hard particles is less than Hv 500 or less than 3% in terms of area ratio, the effect of improving wear resistance cannot be obtained.On the other hand, if it exceeds 30%, material embrittlement and decrease in workability may occur. The harm will increase. Further, when the components of the hard particles are partially diffused and solid-solved around the hard particles, the bonding characteristics between the hard particles and the matrix are improved, and the Beary action between the hard particles and the matrix causes the first member (a) to form a solid solution. The wear resistance is further improved.

次に、ホットチャンバーの機能は、第1部材(8)のバ
ルブとの摺接に対する耐摩耗性を具備するとともに、燃
焼熱をシリンダヘッドに相当する第2部材(b)を通じ
て外部に放散させる機能が要求される。バルブと摺接す
る第1部材(a)以外の部分のホットチャンバーの熱特
性がこの機能を左右する。
Next, the function of the hot chamber is to provide wear resistance against sliding contact between the first member (8) and the valve, and to dissipate combustion heat to the outside through the second member (b) corresponding to the cylinder head. is required. This function is determined by the thermal characteristics of the hot chamber in the portion other than the first member (a) that comes into sliding contact with the bulb.

第2部材(blの熱伝導率が第1部材(alの熱伝導率
より低い場合には、第2部材(1))から第1部材(a
)に向かって熱が流れるような放熱勾配が生じ、第1部
材(a)が高温にさらされる結果、熱へクリ、軟化など
を招来する。従ってバルブと摺接する第1部材(al以
外の部分のホットチャンバーは、その熱伝導率をバルブ
と摺接する第1部材(a)の熱伝導率と同等以上とする
。さらに、第2部材(′b)の熱伝導率が0.01ca
l/aI1.iec、 ’C未満であると、第2部材(
blを介する放熱が不十分になる。よって、第2部材(
b)の熱伝導率を0.01ca l / ai、 se
c、 ’C以上とした。
If the thermal conductivity of the second member (bl is lower than the thermal conductivity of the first member (al), the second member (1)) to the first member (a
), and the first member (a) is exposed to high temperatures, resulting in thermal deformation, softening, etc. Therefore, the portion of the hot chamber other than the first member (al) that comes into sliding contact with the bulb should have a thermal conductivity equal to or higher than that of the first member (a) that comes into sliding contact with the bulb.Furthermore, the second member (' The thermal conductivity of b) is 0.01ca
l/aI1. iec, 'C, the second member (
Heat dissipation through bl becomes insufficient. Therefore, the second member (
The thermal conductivity of b) is 0.01cal/ai, se
c, 'C or higher.

第1図〜第3図は吸気ボート及び排気ポートをそれぞれ
2(11有するホットチャンバーの実施例である。
1 to 3 show examples of hot chambers each having two (11) intake ports and two (11) exhaust ports.

第2図はホットチャンバーの平面図であって、la、l
bは吸気ボート、2a 、 2bは排気ポートを示す。
FIG. 2 is a plan view of the hot chamber, with la, l
b indicates an intake boat, and 2a and 2b indicate exhaust ports.

3はプラグ座部である。3 is a plug seat.

第1部材の好ましい組成は、重量比でC0.8〜3.5
%、 Cr 1.0〜10.0%、 Ni 0.2〜6
.0%、 M。
The preferred composition of the first member is C0.8 to 3.5 in terms of weight ratio.
%, Cr 1.0-10.0%, Ni 0.2-6
.. 0%, M.

i、o 〜io、o%、 Go 1.0〜15.0%2
残部がFe及び不純物からなる組成である。第1部材(
alにおいてC含有量が0.8%未満であるとマトリッ
クスにフェライトが析出して耐摩耗性が低下し、一方C
含有量が3.5%を超えると遊離黒鉛が残留し強度が低
下するほか、Cr 、 MoとCが化合して形成する炭
化物の粗大化を来たす、 CrおよびMoの含有量が1
.0%未満であると、これらがCと化合して形する炭化
物が少なく耐摩耗性不足となるとともに、Cr 、 ?
Ioのマトリックスへの固溶量も不足し、耐熱性が不十
分となる。一方、CrおよびhOの含有量が10%を超
えると炭化物の粗大化を来たし、強度および加工性の低
下を来たす、Niが0.2%未満あるいはCoが1.0
%未満であると、マトリックスの耐熱性が不十分になり
、一方Niが660%を超えあるいはGoが15.0%
を超えると、添加量の割には効果が頭打ちとなり経済性
が低下する。
i, o ~io, o%, Go 1.0~15.0%2
The remainder consists of Fe and impurities. The first member (
If the C content in Al is less than 0.8%, ferrite will precipitate in the matrix and the wear resistance will decrease;
If the content exceeds 3.5%, free graphite remains and strength decreases, and Cr, Mo and C combine to form coarse carbides.
.. If it is less than 0%, there will be few carbides formed by combining with C, resulting in insufficient wear resistance, and Cr, ?
The amount of solid solution of Io in the matrix is also insufficient, resulting in insufficient heat resistance. On the other hand, if the content of Cr and hO exceeds 10%, carbides become coarse and the strength and workability decrease.
If Ni exceeds 660% or Go exceeds 15.0%, the heat resistance of the matrix becomes insufficient.
If the amount exceeds , the effect reaches a ceiling and the economical efficiency decreases considering the amount added.

第2部材中)の好ましい組成は、重量比でG 0.8〜
3.0%、Cr 0.5〜5.0%、Cu 1.0〜5
.0%、残部Feおよび不純物からなる組成である。第
2部材(b)においてC含有量が0.8%未満であると
マトリックスにフェライトが析出し、耐摩耗性が低下し
、一方C含有量が3.0%を超えると遊離黒鉛が残存し
強度低下を来たす、Cr含有量が0.5%未満であると
マトリックスへのCrの固溶量が少なくなり耐熱性が不
足し、一方Cr含有量が5.0%を超えると粗大な炭化
物が析出し、て強度低下とともに熱伝導性の面でも阻害
要因となる。Cu含有量が1.0%未満であると十分な
強度が得られず熱伝導度の向上も期待できず、゛一方C
u含有量が5.0%を超えると未固溶Cuが残存し強度
低下を来たす。
In the second member), the preferred composition is G 0.8 to
3.0%, Cr 0.5-5.0%, Cu 1.0-5
.. 0%, and the balance is Fe and impurities. In the second member (b), if the C content is less than 0.8%, ferrite will precipitate in the matrix and the wear resistance will decrease, while if the C content exceeds 3.0%, free graphite will remain. If the Cr content is less than 0.5%, the amount of solid solution of Cr in the matrix will decrease, resulting in a lack of heat resistance, while if the Cr content exceeds 5.0%, coarse carbides will be formed. It precipitates and causes a decrease in strength as well as an impediment to thermal conductivity. If the Cu content is less than 1.0%, sufficient strength cannot be obtained and no improvement in thermal conductivity can be expected.
When the u content exceeds 5.0%, undissolved Cu remains and strength decreases.

第1図(第2図のI−I線断面図)及び第3図(第2図
のm−m線断面図)に示す如く、吸気ボート1b、排気
ポート2b及びプラグ座部3において弁(図示せず)と
接触する部分は第1部材fatより、非接触部分は第2
部材(b)より構成する。第1部材(a)及び第2部材
(b)は圧粉成形を伴う焼結により製造されるので、型
成形を容易にするように第1部材(a)及び第2部材中
)をそれぞれ芯体及び被覆体として図示の如く内外に配
置することが望ましい。
As shown in FIG. 1 (cross-sectional view taken along line II in FIG. 2) and FIG. 3 (cross-sectional view taken along line mm in FIG. 2), valves ( (not shown) is in contact with the first member fat, and non-contact parts are in contact with the second member fat.
Consists of member (b). Since the first member (a) and the second member (b) are manufactured by sintering accompanied by compaction, the first member (a) and the second member (inside) are respectively cored to facilitate molding. It is desirable that the body and covering be placed inside and outside as shown.

本発明のホットチャンバーの第1部材(,11)及び第
2部材(b)の双方には焼結法固有の空孔が内在する。
Both the first member (, 11) and the second member (b) of the hot chamber of the present invention contain pores specific to the sintering method.

この空孔は通常10%前後であるので、燃焼ガス洩れの
原因にはならない、しかしながら、空孔は熱伝導の面か
らは不都合であるので公知の溶浸用Cu合金で第1部材
(a)及び第2部材(b)を溶浸封孔することが好まし
い。溶浸によって第2蔀材tb>のCu含有量が10%
以上になると、その熱伝導率が0.1ca l /as
、sec、’C以上になる會(実施例) 次に実験例により本発明の詳細な説明する。
Since these pores are usually around 10%, they do not cause combustion gas leakage.However, since pores are inconvenient in terms of heat conduction, the first member (a) is made of a known Cu alloy for infiltration. And it is preferable to infiltrate and seal the second member (b). By infiltration, the Cu content of the second bamboo material tb> is 10%.
When the thermal conductivity becomes 0.1cal/as
, sec, 'C or higher (Example) Next, the present invention will be explained in detail using experimental examples.

重量比で、Cr 20%、Mo20%、Co34%、N
i8%、Fe15%、その他3%を含有する合金粉末(
−150メツシユ)、市販のFe(:r粉末(−100
メツシユ)及びFeMo粉末(−100メツシユ)、還
元鉄粉(−100メツシユ)及び黒鉛粉(10I1m)
を用いて通常粉末冶金法に用いられる成型および焼結工
程2条件を用いて第1表に示す成分組成を有する実施例
1.2.3、及び比較例1及び2のホットチャンバーを
製造した。但し、粉末成形工程における圧力は5−6 
ton /ca!、焼結条件は1130℃×50分、分
解アンモニアガス雰囲気とした。
Weight ratio: 20% Cr, 20% Mo, 34% Co, N
Alloy powder containing 8% i, 15% Fe, and 3% other (
-150 mesh), commercially available Fe(:r powder (-100
mesh), FeMo powder (-100 mesh), reduced iron powder (-100 mesh), and graphite powder (10I1m)
Hot chambers of Example 1.2.3 and Comparative Examples 1 and 2 having the component compositions shown in Table 1 were manufactured using two molding and sintering process conditions normally used in powder metallurgy. However, the pressure in the powder molding process is 5-6
ton/ca! The sintering conditions were 1130° C. for 50 minutes in a decomposed ammonia gas atmosphere.

得られたホットチャンバーのバルブと摺接する第1部材
(alのy!質精粒子硬さ、硬質粒子の含有量及び熱伝
導率、さらには第2部材中)部分の熱伝導率を各々第1
表に示す。
The thermal conductivity of the first member (Al's y! quality particle hardness, hard particle content and thermal conductivity, and further in the second member) that comes into sliding contact with the bulb of the obtained hot chamber is determined by the first
Shown in the table.

このようにして得られた実施例及び比較例のホットチャ
ンバーを500call気筒ガソリンエンジンを用いて
9000rpmX 4/4で100)1rの耐久運転に
供した。運転後の第1部材(alの摩耗量を第1表に併
記する。
The hot chambers of Examples and Comparative Examples thus obtained were subjected to endurance operation of 100) 1r at 9000 rpm x 4/4 using a 500 call cylinder gasoline engine. The wear amount of the first member (al) after operation is also listed in Table 1.

以下余白 比較例1に示すごとくバルブと摺接する第1部材+al
の硬質粒子の含有量が少ない場合には摩耗の進行が早く
、第2部材(b)の熱伝導率が第1部材+alより低い
場合(比較例2)の場合にも、熱放散が妨げられ第1部
材(aJの摩耗が進行する。これに対し、実施例1〜3
はホットチャンバーとしてすぐれた耐久性を存する。
As shown in Margin Comparative Example 1 below, the first member that comes into sliding contact with the valve +al
When the content of hard particles is small, wear progresses quickly, and even when the thermal conductivity of the second member (b) is lower than the first member + al (comparative example 2), heat dissipation is hindered. Wear of the first member (aJ progresses. In contrast, Examples 1 to 3
has excellent durability as a hot chamber.

(効 果) 本発明のホットチャンバーは、高出力内燃機関用として
すぐれた耐久性を有する0本発明のホットチャンバーを
鋳造ホットチャンバーに比軟すると、内部欠陥が少なく
、各部材(a) 、 (b)の性質を所望特性に適合せ
しめ総合特性において鋳造ポットチャンバーを上回わる
(Effects) The hot chamber of the present invention has excellent durability for use in high-output internal combustion engines. When the hot chamber of the present invention is compared to a cast hot chamber, it has fewer internal defects and each member (a), ( (b) adapts the properties to the desired properties and outperforms the casting pot chamber in overall properties;

【図面の簡単な説明】[Brief explanation of drawings]

第1図はホットチャンバーの実施例を示す第2図の断面
図、 第2図はホットチャンバーの平面図、 第3図は第2図の断面図である。 a−第1部材、  b−第2部材、 la 、 lb−吸気ボート、2a 、 2b−排気ボ
ート、3−プラグ座部。
1 is a sectional view of FIG. 2 showing an embodiment of the hot chamber, FIG. 2 is a plan view of the hot chamber, and FIG. 3 is a sectional view of FIG. 2. a - first member, b - second member, la, lb - intake boat, 2a, 2b - exhaust boat, 3 - plug seat.

Claims (1)

【特許請求の範囲】 1、シリンダヘッドと吸排気用弁座を一体化した一体型
燃焼室(以下ホットチャンバーと云う)において、燃焼
室側のバルブと摺接する部分を含む第1部材(a)はH
v500以上の硬質粒子を面積比で3%を越え30%以
下含有し、かつ該硬質粒子の成分が主としてパーライト
よりなるマトリックス中に該硬質粒子の周辺において部
分的に拡散固溶して分散されている鉄系焼結材料からな
り、前記第1部材(a)以外のシリンダヘッドに相当す
る第2部材(b)は熱伝導率が少くとも0.01cal
/cm.sec.℃以上で前記第1部材(a)の熱伝導
率と同等もしくはそれ以上の熱伝導率を有する鉄系焼結
材料から構成されていることを特徴とするホットチャン
バー。 2、第1部材が重量比でC0.8〜3.5%、Cr1.
0〜10.0%、Ni0.2〜6.0%をMo1.0〜
10.0%、Co1.0〜15.0%3残部がFe及び
不純物からなる組成を有し、第2部材が重量比で少くと
もC0.8〜3.0%、Cr0.5〜5.0%、Cu1
.0〜5.0%を含有し、残部が実質的にFeからなる
組成を有する特許請求の範囲第1項記載のホットチャン
バー。 3、第1部材及び第2部材双方に内在する空孔がCu系
合金で溶浸封孔されている鉄系焼結材料からなる、特許
請求の範囲第1項又は第2項記載のホットチャンバー。
[Claims] 1. In an integrated combustion chamber (hereinafter referred to as a hot chamber) that integrates a cylinder head and an intake/exhaust valve seat, a first member (a) that includes a portion that comes into sliding contact with a valve on the combustion chamber side. is H
Contains more than 3% and less than 30% of hard particles with v500 or more in terms of area ratio, and the components of the hard particles are partially diffused and dissolved in a solid solution around the hard particles in a matrix mainly made of pearlite. The second member (b) corresponding to the cylinder head other than the first member (a) has a thermal conductivity of at least 0.01 cal.
/cm. sec. A hot chamber characterized in that it is made of an iron-based sintered material having a thermal conductivity equal to or higher than that of the first member (a) at temperatures above .degree. 2. The first member has a weight ratio of C0.8 to 3.5%, Cr1.
0~10.0%, Ni0.2~6.0%, Mo1.0~
10.0%, Co 1.0-15.0%, the balance being Fe and impurities, and the second member has a weight ratio of at least 0.8-3.0% C, 0.5-5% Cr. 0%, Cu1
.. The hot chamber according to claim 1, having a composition containing 0 to 5.0% of Fe, with the remainder substantially consisting of Fe. 3. The hot chamber according to claim 1 or 2, which is made of an iron-based sintered material in which the pores inherent in both the first member and the second member are infiltrated and sealed with a Cu-based alloy. .
JP59180489A 1984-08-31 1984-08-31 Hot chamber Granted JPS6160869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59180489A JPS6160869A (en) 1984-08-31 1984-08-31 Hot chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59180489A JPS6160869A (en) 1984-08-31 1984-08-31 Hot chamber

Publications (2)

Publication Number Publication Date
JPS6160869A true JPS6160869A (en) 1986-03-28
JPH0217685B2 JPH0217685B2 (en) 1990-04-23

Family

ID=16084125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59180489A Granted JPS6160869A (en) 1984-08-31 1984-08-31 Hot chamber

Country Status (1)

Country Link
JP (1) JPS6160869A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328353B2 (en) * 2006-08-05 2013-10-30 大豊工業株式会社 Pb-free copper alloy sliding material and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328353B2 (en) * 2006-08-05 2013-10-30 大豊工業株式会社 Pb-free copper alloy sliding material and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0217685B2 (en) 1990-04-23

Similar Documents

Publication Publication Date Title
US6139599A (en) Abrasion resistant iron base sintered alloy material for valve seat and valve seat made of iron base sintered alloy
US4505988A (en) Sintered alloy for valve seat
JPH0210311B2 (en)
JP3614237B2 (en) Valve seat for internal combustion engine
US6096142A (en) High temperature abrasion resistant copper alloy
JPS6160869A (en) Hot chamber
JPS61291950A (en) Wear resistance sintered alloy
JPS63290249A (en) Ferrous sintered alloy combining heat resistance with wear resistance
JPH0639095Y2 (en) Fuel injection nozzle for diesel engine
JPS6033343A (en) Wear resistance sintered alloy
JPS60251258A (en) Iron system sintered alloy for valve sheet
JPS6025499B2 (en) Rocker arm for internal combustion engine
JPH03158444A (en) Valve seat made of fe-base sintered alloy excellent in wear resistance
JP3226618B2 (en) Iron-based sintered alloy for valve seat
JPH0116905B2 (en)
JPS60258449A (en) Sintered iron alloy for valve seat
JPH0137466B2 (en)
JP3492088B2 (en) Method for manufacturing joint valve seat made of sintered alloy and joint valve seat material
JPS62207847A (en) Ferrous sintered alloy for valve seat
JPH0115583B2 (en)
JPS5851147B2 (en) Engine combustion chamber insert material
JPH0215624B2 (en)
JPS6296661A (en) Sintered iron alloy for valve seat
JPS6296660A (en) Sintered iron alloy for valve seat
JPS6196060A (en) Wear and corrosion resistant sintered alloy