JPS6160639A - Alpha-metylbenzylideneaminoacetonitrile and its preparation - Google Patents

Alpha-metylbenzylideneaminoacetonitrile and its preparation

Info

Publication number
JPS6160639A
JPS6160639A JP59179384A JP17938484A JPS6160639A JP S6160639 A JPS6160639 A JP S6160639A JP 59179384 A JP59179384 A JP 59179384A JP 17938484 A JP17938484 A JP 17938484A JP S6160639 A JPS6160639 A JP S6160639A
Authority
JP
Japan
Prior art keywords
reaction
glycinonitrile
acid
alpha
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59179384A
Other languages
Japanese (ja)
Other versions
JPH0521103B2 (en
Inventor
Sumio Soya
征矢 住男
Kazuhiko Hiromoto
広本 和彦
Tsutomu Nozawa
能沢 勉
Tokuo Kametaka
亀高 徳夫
Nobuyuki Nagato
伸幸 永戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP59179384A priority Critical patent/JPS6160639A/en
Priority to DE19853531084 priority patent/DE3531084A1/en
Publication of JPS6160639A publication Critical patent/JPS6160639A/en
Publication of JPH0521103B2 publication Critical patent/JPH0521103B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

NEW MATERIAL:alpha-Methylbenzylideneaminoacetonitrile of formula. USE:Synthetic raw material and synthetic intermediate of organic compounds such as alpha-amino acids. PREPARATION:The objective compound of formula can be preparated by reacting glycinonitrile with acetophynone in the presence of an acid catalyst (e.g. p-toluenesulfonic acid) in a solvent forming an azeotropic mixture with water (e.g. benzene, toluene, etc.) at 20-150 deg.C for 1-30hr, and removing the water produced by the reaction by conventional azeotropic distillation method. The reaction is carried out by using either of glycinonitrile or acetophenone, preferably acetophenone in excess.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は新規化合物α−メチルベンジリデンアミノアセ
トニトリルおよびその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a new compound α-methylbenzylidene aminoacetonitrile and a method for producing the same.

本発明のα−メチルベンジリデンアミノアセトニトリル
はベンジルクロライド等の有機ハロゲン化物、またはホ
ルムアルデヒド等のアルデヒド類と反応させる等により
各種のα−アミノ酸を始めとする種々の有機化合物の合
成原料、中間体となルは原理的にはグリシノニトリルと
7セトフエノンから合成することが出来るが、原料であ
るグリシノニトリルが安定性の低い物質であるためか、
従来その合成が試みられた例をみない。
The α-methylbenzylidene aminoacetonitrile of the present invention can be used as a raw material or intermediate for the synthesis of various organic compounds including various α-amino acids by reacting with organic halides such as benzyl chloride or aldehydes such as formaldehyde. In principle, it can be synthesized from glycinonitrile and 7cetophenone, but this may be because the raw material glycinonitrile is a substance with low stability.
I have never seen an attempt to synthesize this.

僅かに類似の例として最近ケトンとじてベンゾフェノン
を用いたグリシノニトリルのシック塩基の合成例が+[
2告されているに過ぎない(Tetrahedron 
 LeLt’ers  No、 49 、 P、 4E
i25)。
As a slightly similar example, a recent example of the synthesis of a thick base of glycinonitrile using benzophenone as a ketone has been shown.
(Tetrahedron)
LeLt'ers No, 49, P, 4E
i25).

ハ0問題点を解決するための手段 本発明者はグリシノニトリルとアセトフェノンの反応を
有利に行なわせることにより、高い収率で新規化合物で
あるα−メチルベンジリデンアミノアセトニトリルを得
ることに成功した。
Means for Solving Problems The present inventors have succeeded in obtaining α-methylbenzylidene aminoacetonitrile, a novel compound, in high yield by conducting the reaction between glycinonitrile and acetophenone advantageously.

即ち、本発明によれば下記の式で示されるα−メチルベ
ンジリデンアミノアセトニトリルが提供される。また更
にその製造法としてグリシノニトリルを7セトフエノン
と酸触媒の存在下において反応させ、反応生成水を公知
の共演蒸留により除去することを特徴とする方法が提供
される。
That is, according to the present invention, α-methylbenzylidene aminoacetonitrile represented by the following formula is provided. Furthermore, as a method for producing the same, there is provided a method characterized in that glycinonitrile is reacted with 7cetophenone in the presence of an acid catalyst, and water produced by the reaction is removed by known co-distillation.

本発明の方法によればアセトフェノンをベンゼン、トル
エン等の水と共與する溶媒に溶かし、これに酸触媒を加
え、グリシノニトリルを直接一度に加えるか、または時
間をかけて滴下する。
According to the method of the present invention, acetophenone is dissolved in a solvent such as benzene or toluene together with water, an acid catalyst is added thereto, and glycinonitrile is added directly at once or added dropwise over time.

反応により生成した水は共沸成分として系外へ留去し、
反応を完結させる。
The water produced by the reaction is distilled out of the system as an azeotropic component,
Complete the reaction.

一般に芳香族ケトンと7ミノの縮合反応は遅いので触媒
を用いる。用いられる触媒とじてプロトン酸、BF3 
 ・エーテラート、塩化亜鉛等が挙げられる。  (C
omprehensive  OrganicChem
istry、 Vol、2 、 P、 387 (19
79) )本反応の触媒について種々検討したところ上
記触媒の他に、活性アルミナ、シリカアルミナ、シリカ
マグネシア、シリカ、H型Y−ゼオライト、希土類交換
Y−ゼオライト、H型モルデナイト、酪性白土、水素型
酸性白土、金属交換酸性白土、活性白土、酸性イオン交
換樹脂等の固体酸触媒、酢酸、プロピオン酸、メタンス
ルホン酸、ベンゼンスルホン酸、パラトルエンスルホン
酸等の有機酸が有効であることを見出した。
Generally, the condensation reaction between aromatic ketones and 7mino is slow, so a catalyst is used. The catalyst used is protonic acid, BF3
- Examples include etherate, zinc chloride, etc. (C
Comprehensive OrganicChem
istry, Vol, 2, P, 387 (19
79)) We investigated various catalysts for this reaction and found that in addition to the above catalysts, activated alumina, silica alumina, silica magnesia, silica, H type Y-zeolite, rare earth exchanged Y-zeolite, H type mordenite, butyric clay, hydrogen It was discovered that solid acid catalysts such as type acid clay, metal-exchanged acid clay, activated clay, and acidic ion exchange resins, and organic acids such as acetic acid, propionic acid, methanesulfonic acid, benzenesulfonic acid, and para-toluenesulfonic acid are effective. Ta.

本反応の原料の一つであるグリシノニトリルはそれ自体
の安定性が低いので反応条件、触媒を選ばないと、分解
反応が併発し、シック塩基の収率が上がらない、このた
め、上に挙げた触媒群の内でとくにシッフ!!!i!!
iの反応収率の高い触媒は次に挙げるものに限られる。
Glycinonitrile, one of the raw materials for this reaction, itself has low stability, so if the reaction conditions and catalyst are not selected, decomposition reactions will occur simultaneously and the yield of thick base will not increase. Among the catalyst groups mentioned above, Schiff is especially important! ! ! i! !
Catalysts with high reaction yields for i are limited to those listed below.

活性アルミナ、HIY−ゼオライト、H型X−ゼオライ
ト、希土類交換Y−ゼオライト、酸性白土、水素型酸性
白土、金属交換酸性白土、活性白土、パラトルエンスル
ホン酸。
Activated alumina, HIY-zeolite, H-type X-zeolite, rare earth-exchanged Y-zeolite, acid clay, hydrogen-type acid clay, metal-exchanged acid clay, activated clay, para-toluenesulfonic acid.

これらの内、固体触媒は反応の連続化が可能であり、後
処理の容易さ、廃棄物が少ない等の利点を有する。
Among these, solid catalysts have advantages such as continuous reaction, ease of post-treatment, and less waste.

有機酸触媒ではパラトルエンスルホン酸が特異的に優れ
た効果を示した。
Among organic acid catalysts, para-toluenesulfonic acid showed a particularly excellent effect.

触媒の使用量は固体酸の場合、グリシノニトリルの重J
11を1とすると、0.1〜2、好ましくは0.5〜1
.0である。
In the case of a solid acid, the amount of catalyst used is the heavy J of glycinonitrile.
If 11 is 1, then 0.1 to 2, preferably 0.5 to 1
.. It is 0.

反応温度は、溶媒と水の共沸温度であるので、溶媒の種
類、反応の圧力により決まるが、通常20〜150℃で
ある0反応の圧力は通常は常圧であるが、反応温度を調
節するために、減圧または加圧してもかまわない、  
 ゛ 反応時間は1〜30時間である。
The reaction temperature is the azeotropic temperature of the solvent and water, so it is determined by the type of solvent and the reaction pressure, but it is usually 20 to 150°C.The reaction pressure is usually normal pressure, but the reaction temperature can be adjusted. It does not matter whether the pressure is reduced or increased in order to
゛Reaction time is 1 to 30 hours.

用いるグリシノニトリルと7セトフエノンの比率はいず
れか一方を過剰に用いると反応速度の点で有利である。
Regarding the ratio of glycinonitrile and 7cetophenone used, using an excess of either one is advantageous in terms of reaction rate.

安定性、回収の両面からアセトフェノンを過剰に用いる
方が有利であり、その比率は副生物の生成、回収の点か
ら自ずと限度があり、1: i、oi〜2.0(モル比
)が適当である。
It is advantageous to use an excess of acetophenone from both stability and recovery standpoints, and the ratio is naturally limited in terms of by-product generation and recovery, and a suitable molar ratio is 1:i, oi to 2.0. It is.

溶媒は、水と共琲し、かつ水の溶解度の小さい溶媒で適
当な共沸温度を有するものである。ベンゼン、トルエン
、シクロヘキサン、エチレンジクロライド等が挙げられ
る。
The solvent is a solvent that is conjugated with water, has a low solubility in water, and has an appropriate azeotropic temperature. Examples include benzene, toluene, cyclohexane, and ethylene dichloride.

水の除去は通常の方法がとられるが、共沸蒸気を系外で
冷却凝縮し、静置し、溶媒居のみ、系に戻すことにより
lされる。
Water can be removed by a conventional method, such as by cooling and condensing the azeotropic vapor outside the system, allowing it to stand, and returning only the solvent to the system.

反応生成物である一Mα−メチルベンジリデン伊アミノ
矛アセトニトリルは反応路を液から溶媒を留去した後、
減圧蒸留により未反応の7セトフエノン等の共沸物質か
ら単離することが出来る。
The reaction product, monoMα-methylbenzylidene and acetonitrile, was removed from the reaction path by distilling off the solvent from the liquid.
It can be isolated from unreacted azeotropic substances such as 7-cetophenone by distillation under reduced pressure.

二、実施例 以下、実施例を挙げて説明する。2. Examples Examples will be described below.

実施例に 流冷却器付の水分定蚤器をつけた1500m文のセパラ
ブルフラスコにベンゼン800m !lヲ入h 、アセ
トフェノン128.7g (1,05モル)を溶解し、
バラトルエンスルホンm1・水和物0.25gを加え、
100℃のオイルバスで加温する。
In the example, 800 m of benzene was placed in a 1500 m separable flask equipped with a moisture regulator with a flow cooler! Add 1 h, dissolve 128.7 g (1.05 mol) of acetophenone,
Add 0.25g of balatoluenesulfone m1 hydrate,
Heat in an oil bath at 100℃.

撹拌還流下、90% グリシノニトリル水溶液54.5
g (0,875モル)を20分間で滴下した。水分定
量器で水を分離しながら反応させた。6時間後、反応液
をガスクロマトグラフで分析したところ、α−メチルベ
ンジリデンアミノアセトニトリルが131.5g (0
,831モル)生成していた。収率85%。
Under stirring and reflux, 90% glycinonitrile aqueous solution 54.5
g (0,875 mol) was added dropwise over 20 minutes. The reaction was carried out while separating water using a water meter. After 6 hours, the reaction solution was analyzed by gas chromatography, and it was found that 131.5 g of α-methylbenzylidene aminoacetonitrile (0
, 831 mol) was produced. Yield 85%.

該反応液から、ベンゼンを減圧留去後、窒素雲囲気減圧
蒸留し、3+s+s Hgにて133℃〜134℃の留
分を得た。淡黄色結晶、このものは下記の物性値を得た
Benzene was distilled off under reduced pressure from the reaction solution, and then distilled under reduced pressure under a nitrogen cloud to obtain a fraction having a temperature of 133° C. to 134° C. at 3+s+s Hg. This pale yellow crystal had the following physical properties.

融点    44〜46℃ 元素分析値  (CH,H謬N2) 0%   6%  N% 実測値   73.88  6.34  17.47計
算値   75.92  8.37  17.71’H
該磁気共1Bスペクトル(CD0文3溶媒中)4.37
  ppm     (2H)2.30       
 (3H) ?、25〜7.90     (5H)実施′例2 エチレンジクロライド30m1に7セトフエノンEi、
4g (53,0ミリモル)、パラトルエンスルホン醜
吻1水和物20hgを加え、還流下グリシノニトリル2
.0g  (35,3ミリモル)を加え、水分定量器で
水を除きながら反応させた。2時間後、反応液をガスク
ロマトグラフで分析したところ収率83.8%でα−メ
チルベンジリデンアミノアセトニトリルが生成していた
Melting point 44-46°C Elemental analysis value (CH, H) 0% 6% N% Actual value 73.88 6.34 17.47 Calculated value 75.92 8.37 17.71'H
The magnetic co-1B spectrum (CD0 pattern 3 in solvent) 4.37
ppm (2H)2.30
(3H)? , 25-7.90 (5H) Example 2 7cetophenone Ei in 30ml of ethylene dichloride,
Add 4g (53.0 mmol) and 20hg of paratoluenesulfone monohydrate, and add 2g of glycinonitrile under reflux.
.. 0 g (35.3 mmol) was added, and the reaction was carried out while removing water using a water meter. After 2 hours, the reaction solution was analyzed by gas chromatography, and it was found that α-methylbenzylidene aminoacetonitrile was produced in a yield of 83.8%.

実施例3 エチレンジクロライド30mJi!にアセトフェノン3
.2. (28,5ミリモル)、グリシノニトリル 1
.Og(17,7ミリモル)を溶解し、これに触媒とし
て酸性白土(水沢化学部)  1.0gを加え、還流下
、水分定量器で水を分離しながら反応させた。2時間後
反応液を分析したところ収率75.4%でα−メチルベ
ンジリデンアミノアセトニトリルが生成していた。
Example 3 Ethylene dichloride 30mJi! acetophenone 3
.. 2. (28.5 mmol), glycinonitrile 1
.. Og (17.7 mmol) was dissolved, 1.0 g of acid clay (Mizusawa Chemical Department) was added as a catalyst, and the mixture was reacted under reflux while water was separated using a water meter. Analysis of the reaction solution after 2 hours revealed that α-methylbenzylideneaminoacetonitrile had been produced in a yield of 75.4%.

実施例4〜10 触媒を表1に示すものにかえた以外は実施例3と同様に
反応させた。結果を表1にまとめて示す。
Examples 4 to 10 The reaction was carried out in the same manner as in Example 3, except that the catalyst was changed to one shown in Table 1. The results are summarized in Table 1.

表    1Table 1

【図面の簡単な説明】[Brief explanation of drawings]

図1、図2はMα−メチルベンジリデンチアミノンアセ
トニトリルのマススペクトル、該磁気共鳴スペクトルで
ある。
FIGS. 1 and 2 show the mass spectrum and magnetic resonance spectrum of Mα-methylbenzylidenethiaminoacetonitrile.

Claims (2)

【特許請求の範囲】[Claims] (1)下記の式で示されるα−メチルベンジリデンアミ
ノアセトニトリル。 ▲数式、化学式、表等があります▼
(1) α-methylbenzylidene aminoacetonitrile represented by the following formula. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
(2)グリシノニトリルをアセトフェノンと酸触媒の存
在下において反応させ、反応生成水を公知の共沸蒸留に
より除去することを特徴とするα−メチルベンジリデン
アミノアセトニトリルの製造法。
(2) A method for producing α-methylbenzylidene aminoacetonitrile, which comprises reacting glycinonitrile with acetophenone in the presence of an acid catalyst and removing water produced by the reaction by known azeotropic distillation.
JP59179384A 1984-08-30 1984-08-30 Alpha-metylbenzylideneaminoacetonitrile and its preparation Granted JPS6160639A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59179384A JPS6160639A (en) 1984-08-30 1984-08-30 Alpha-metylbenzylideneaminoacetonitrile and its preparation
DE19853531084 DE3531084A1 (en) 1984-08-30 1985-08-30 Process for the preparation of phenylalanine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59179384A JPS6160639A (en) 1984-08-30 1984-08-30 Alpha-metylbenzylideneaminoacetonitrile and its preparation

Publications (2)

Publication Number Publication Date
JPS6160639A true JPS6160639A (en) 1986-03-28
JPH0521103B2 JPH0521103B2 (en) 1993-03-23

Family

ID=16064914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59179384A Granted JPS6160639A (en) 1984-08-30 1984-08-30 Alpha-metylbenzylideneaminoacetonitrile and its preparation

Country Status (1)

Country Link
JP (1) JPS6160639A (en)

Also Published As

Publication number Publication date
JPH0521103B2 (en) 1993-03-23

Similar Documents

Publication Publication Date Title
US4933449A (en) Preparing 3-(4 chlorophenyl)-3-(3,4-dimethoxyphenyl) acrylic acid morpholide in the presence of potassium tert-butylate
JPS6160639A (en) Alpha-metylbenzylideneaminoacetonitrile and its preparation
JPH0556333B2 (en)
US5342972A (en) Preparation of 6-bromo-2,2-dialkyl-2,3-dihydrobenzofurans which are optionally fluoro-substituted
JPS63264543A (en) Production of polyhydroxybenzophenones
JPS63303960A (en) Production of oxyalkylamide
CA2255147C (en) Process for the preparation of ethynylcyclopropane
JPH03109342A (en) Production of 4,4'-dihydroxydiphenylmethane
JPS63295562A (en) Manufacture of 4-methylimidazole
Oda et al. 1, 1-Ethylene-1H-azulenium ion and its alkyl substituted derivatives: Synthesis, characterization, and some reactions thereof
JP3505991B2 (en) Process for producing 4,5-disubstituted anthranilamide
JP4304758B2 (en) Method for producing para-acetoxystyrene
SU1567565A1 (en) Method of obtaining 1-chlor-4-methylpentan 2-ol
WO2021039230A1 (en) METHOD FOR PRODUCING m-DIALKYLBENZALDEHYDE
JPS62164656A (en) Production of cyanoisophorone
JPH0925251A (en) Production of cyclopentyl bromide
EP0101003B1 (en) Process for preparing 4-oxo-4,5,6,7-tetrahydrobenzofuran derivative
JPH04182452A (en) Production of aliphatic dicarboxylic acid monoester
US5229530A (en) 2,2-dialkyl-2,3-dihydro-6-bromobenzofuran
JP2003104953A (en) Organometallic complex compound and method for producing carboxylic acid ester using the compound
JP3030347B2 (en) Monoalkylation method
SU1728213A1 (en) Method for 1,1-dichlor-3-phenylpropene preparation
JPS60330B2 (en) Method for producing cyclopentanone
SU1174427A1 (en) Method of producing 4-aryl-3-methylbutane-2-ones
JP3509416B2 (en) Method for producing diaryl carbonate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees