JPH0521103B2 - - Google Patents

Info

Publication number
JPH0521103B2
JPH0521103B2 JP59179384A JP17938484A JPH0521103B2 JP H0521103 B2 JPH0521103 B2 JP H0521103B2 JP 59179384 A JP59179384 A JP 59179384A JP 17938484 A JP17938484 A JP 17938484A JP H0521103 B2 JPH0521103 B2 JP H0521103B2
Authority
JP
Japan
Prior art keywords
reaction
acid
acetophenone
glycinonitrile
methylbenzylidene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59179384A
Other languages
Japanese (ja)
Other versions
JPS6160639A (en
Inventor
Sumio Soya
Kazuhiko Hiromoto
Tsutomu Nozawa
Tokuo Kametaka
Nobuyuki Nagato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP59179384A priority Critical patent/JPS6160639A/en
Priority to DE19853531084 priority patent/DE3531084A1/en
Publication of JPS6160639A publication Critical patent/JPS6160639A/en
Publication of JPH0521103B2 publication Critical patent/JPH0521103B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 イ 産業上の利用分野 本発明は新規化合物α−メチルベンジリデンア
ミノアセトニトリルおよびその製造法に関するも
のである。 本発明のα−メチルベンジリデンアミノアセト
ニトリルはベンジルクロライド等の有機ハロゲン
化物、またはホルムアルデヒド等のアルデヒド類
と反応させる等により各種のα−アミノ酸を始め
とする種々の有機化合物の合成原料、中間体とな
り、工業的に有用な物質である。 ロ 従来の技術及び問題点 α−メチルベンジリデンアミノアセトニトリル
は原理的にはグリシノニトリルをアセトフエノン
から合成することが出来るが、原料であるグリシ
ノニトリルが安定性の低い物質であるためか、従
来その合成が試みられた例をみない。僅かに類似
の例として最近ケトンとしてベンゾフエノンを用
いたグリシノニトリルのシツフ塩基の合成例が報
告されているに過ぎない(Tetrahedron Letters
No.49、P.4625)。 ハ 問題点を解決するための手段 本発明者はグリシノニトリルとアセトフエノン
の反応を有利に行なわせることにより、高い収率
で新規化合物であるα−メチルベンジリデンアミ
ノアセトニトリルを得ることに成功した。 即ち、本発明によれば下記の式で示されるα−
メチルベンジリデンアミノアセトニトリル が提供される。また更にその製造法としてグリシ
ノニトリルをアセトフエノンと酸触媒の存在下に
おいて反応させ、反応生成水を公知の共沸蒸留に
より除去することを特徴とする方法が提供され
る。 本発明の方法によればアセトフエノンをベンゼ
ン、トルエン等の水と共沸する溶媒を溶かし、こ
れに酸触媒を加え、グリシノニトリルを直接一度
に加えるか、または時間をかけて滴下する。反応
により生成した水は共沸成分として系外へ留去
し、反応を完結させる。 一般に芳香族ケトンとアミノの縮合反応は遅い
ので触媒を用いる。用いられる触媒としてプロト
ン酸、BF3・エーテラート、塩化亜鉛等が挙げら
れる。〔Comprehensive Organic Chemistry、
Vol.2、P.387(1979)〕 本反応の触媒について種々検討したところ上記
触媒の他に、活性アルミナ、シリカアルミナ、シ
リカマグネシア、シリカ、H型Y−ゼオライト、
希上類交換Y−ゼオライト、H型モリデナイト、
酸性白土、水素型酸性白土、金属交換酸性白土、
活性白土、酸性イオン交換樹脂等の固体酸触媒、
酢酸、プロピオン酸、メタンスルホン酸、ベンゼ
ンスルホン酸、パラトルエンスルホン酸等の有機
酸が有効であることを見出した。 本反応の原料の一つであるグリシノニトリルは
それ自体の安定性が低いので反応条件、触媒を選
ばないと、分解反応が併発し、シツフ塩基の収率
が上がらない。このため、上に挙げた触媒群の内
でとくにシツフ塩基の反応収率の高い触媒は次に
挙げるものに限られる。活性アルミナ、H型Y−
ゼオライト、H型X−ゼオライト、希上類交換Y
−ゼオライト、酸性白土、水素型酸性白土、金属
交換酸性白土、活性白土、パラトルエンスルホン
酸。 これらの内、固体触媒は反応の連続化が可能で
あり、後処理の容易さ、廃棄物が少ない等の利点
を有する。 有機酸触媒ではパラトルエンスルホン酸が特異
的に優れた効果を示した。 触媒の使用量は固体酸の場合、グリシノニトリ
ルの重量を1とすると、0.1〜2、好ましくは0.5
〜1.0である。 反応温度は、溶媒と水の共沸温度であるので、
溶媒の種類、反応の圧力により決まるが、通常20
〜150℃である。反応の圧力は通常は常圧である
が、反応温度を調節するために、減圧または加圧
してもかまわない。 反応時間は1〜30時間である。 用いるグリシノニトリルとアセトフエノンの比
率はいずれか一方を過剰に用いると反応速度の点
で有利である。安定性、回収の両面からアセトフ
エノンの過剰に用いる方が有利であり、その比率
は副生物の生成、回収の点から自ずと限度があ
り、1:101〜2.0(モル比)が適当である。 溶媒は、水と共沸し、かつ水の溶解度の小さい
溶媒で適当な共沸温度を有するものである。ベン
ゼン、トルエン、シクロヘキサン、エチレンジク
ロライト等が挙げられる。 水の除去は通常の方法がとられるが、共沸蒸気
を系外で冷却凝縮し、静置し、溶媒層のみ、系に
戻すことにより達成される。 反応生成物であるα−メチルベンジリデンアミ
ノアセトニトリルは反応終了液から溶媒を留去し
た後、減圧蒸留により未反応のアセトフエノン等
の共沸物質から単離することが出来る。 ニ 実施例 以下、実施例を挙げて説明する。 実施例 1 還流冷却器付の水分定量器をつけた1500mlのセ
パラブルフラスコにベンゼン800mlを入れ、アセ
トフエノン120.7g(1.05モル)を溶解し、パラ
トルエンスルホン酸1・水和物0.25gを加え、
100℃のオイルバスで加温する。 攪拌還流下、90%グリシノニトリル水溶液54.5
g(0.875モル)を20分間で滴下した。水分定量
器で水を分離しながら反応させた。6時間後、反
応液をガスクロマトグラフで分析したところ、α
−メチルベンジリデンアミノアセトニトリルが
131.5g(0.831モル)生成していた。収率95%。 該反応液から、ベンゼンを減圧留去後、窒素雰
囲気減圧蒸留し、3mmHgにて133℃〜134℃の留
分を得た。淡黄色結晶。このものは下記の物性値
を得た。 融点 44〜46℃ 元素分析値(CH10H10N2) C% H% N% 実測値 73.88 6.34 17.47 計算値 75.92 6.37 17.711 H該磁気共鳴スペクトル(CDCl3溶媒中) 4.37ppm(2H) 2.30(3H) 7.25〜7.90(5H) 実施例 2 エチレンジクロライド30mlにアセトフエノン
6.4g(53.0ミリモル)、パラトルエンスルホン酸
1・水和物200mgを加え、還流下グリシノニトリ
ル2.0g(35.3ミリモル)を加え、水分定量器で
水を除きながら反応させた。2時間後、反応液を
ガスクロマトグラフで分析したところ収率83.8%
でα−メチルベンジリデンアミノアセトニトリル
が生成していた。 実施例 3 エチレンジクロライド30mlにアセトフエノン
3.2g(26.5ミリモル)、グリシノニトリル1.0g
(17.7ミリモル)を溶解し、これに触媒として酸
性白土(水沢化学製)1.0gを加え、還流下、水
分定量器で水を分離しながら反応させた。2時間
後反応液を分析したところ収率75.4%でα−メチ
ルベンジリデンアミノアセトニトリルが生成して
いた。 実施例 4〜10 触媒を表1に示すものにかえた以外は実施例3
と同様に反応させた。結果を表1にまとめて示
す。 【表】
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a new compound α-methylbenzylidene aminoacetonitrile and a method for producing the same. The α-methylbenzylidene aminoacetonitrile of the present invention can be reacted with organic halides such as benzyl chloride or aldehydes such as formaldehyde to become raw materials and intermediates for the synthesis of various organic compounds including various α-amino acids. It is an industrially useful substance. B. Prior art and problems α-Methylbenzylideneaminoacetonitrile can be synthesized from glycinonitrile from acetophenone in principle, but it has not been possible to synthesize α-methylbenzylidene aminoacetonitrile from acetophenone. I have not seen any attempt at synthesis. As a slightly similar example, the synthesis of the Schiff base of glycinonitrile using benzophenone as the ketone has recently been reported (Tetrahedron Letters).
No.49, P.4625). C. Means for Solving the Problems The present inventors succeeded in obtaining α-methylbenzylidene aminoacetonitrile, a novel compound, in high yield by conducting the reaction between glycinonitrile and acetophenone advantageously. That is, according to the present invention, α-
Methylbenzylidene aminoacetonitrile is provided. Furthermore, a method for producing the same is provided, which comprises reacting glycinonitrile with acetophenone in the presence of an acid catalyst, and removing water produced by the reaction by known azeotropic distillation. According to the method of the present invention, acetophenone is dissolved in a solvent that is azeotropic with water, such as benzene or toluene, an acid catalyst is added thereto, and glycinonitrile is added directly at once or added dropwise over time. The water produced by the reaction is distilled out of the system as an azeotropic component to complete the reaction. Generally, the condensation reaction between aromatic ketones and amino is slow, so a catalyst is used. Examples of catalysts used include protonic acid, BF 3 etherate, and zinc chloride. [Comprehensive Organic Chemistry,
Vol. 2, P. 387 (1979)] Various catalysts for this reaction were investigated. In addition to the above catalysts, activated alumina, silica alumina, silica magnesia, silica, H-type Y-zeolite,
Rarely exchanged Y-zeolite, H-type molidenite,
Acid clay, hydrogen type acid clay, metal exchange acid clay,
Solid acid catalysts such as activated clay and acidic ion exchange resins,
It has been found that organic acids such as acetic acid, propionic acid, methanesulfonic acid, benzenesulfonic acid, and paratoluenesulfonic acid are effective. Glycinonitrile itself, which is one of the raw materials for this reaction, has low stability, so unless the reaction conditions and catalyst are selected, decomposition reactions will occur and the yield of Schiff's base will not increase. For this reason, among the above-mentioned catalyst groups, the catalysts that have a particularly high Schiff base reaction yield are limited to the following. Activated alumina, H type Y-
Zeolite, H type X-zeolite, rarefied exchange Y
-Zeolite, acid clay, hydrogen type acid clay, metal exchanged acid clay, activated clay, para-toluenesulfonic acid. Among these, solid catalysts have advantages such as continuous reaction, ease of post-treatment, and less waste. Among organic acid catalysts, para-toluenesulfonic acid showed a particularly excellent effect. In the case of a solid acid, the amount of catalyst used is 0.1 to 2, preferably 0.5 when the weight of glycinonitrile is 1.
~1.0. Since the reaction temperature is the azeotropic temperature of the solvent and water,
Depends on the type of solvent and reaction pressure, but usually 20
~150℃. The reaction pressure is usually normal pressure, but the pressure may be reduced or increased in order to control the reaction temperature. Reaction time is 1 to 30 hours. Regarding the ratio of glycinonitrile and acetophenone used, using an excess of either one is advantageous in terms of reaction rate. It is advantageous to use an excess of acetophenone in terms of both stability and recovery, but the ratio is naturally limited in terms of by-product production and recovery, and a suitable molar ratio is 1:101 to 2.0. The solvent is a solvent that is azeotropic with water and has a low solubility in water and has an appropriate azeotropic temperature. Examples include benzene, toluene, cyclohexane, and ethylene dichlorite. Water can be removed by conventional methods, such as cooling and condensing the azeotropic vapor outside the system, allowing it to stand, and returning only the solvent layer to the system. The reaction product α-methylbenzylideneaminoacetonitrile can be isolated from unreacted azeotropic substances such as acetophenone by distillation under reduced pressure after distilling off the solvent from the reaction-completed liquid. D. Examples The following will explain examples. Example 1 Put 800 ml of benzene into a 1500 ml separable flask equipped with a water meter equipped with a reflux condenser, dissolve 120.7 g (1.05 mol) of acetophenone, add 0.25 g of para-toluenesulfonic acid monohydrate,
Warm in an oil bath at 100℃. 90% glycinonitrile aqueous solution 54.5 under stirring and refluxing
g (0.875 mol) was added dropwise over 20 minutes. The reaction was carried out while separating water using a water meter. After 6 hours, the reaction solution was analyzed by gas chromatography, and it was found that α
-Methylbenzylidene aminoacetonitrile
131.5g (0.831 mol) was produced. Yield 95%. Benzene was distilled off under reduced pressure from the reaction solution, and then distilled under reduced pressure in a nitrogen atmosphere to obtain a fraction having a temperature of 133°C to 134°C at 3 mmHg. Pale yellow crystals. This product obtained the following physical property values. Melting point 44-46℃ Elemental analysis value (CH 10 H 10 N 2 ) C% H% N% Actual value 73.88 6.34 17.47 Calculated value 75.92 6.37 17.71 1H magnetic resonance spectrum (in CDCl 3 solvent) 4.37ppm (2H) 2.30 (3H) 7.25-7.90 (5H) Example 2 Acetophenone in 30ml of ethylene dichloride
6.4 g (53.0 mmol) and 200 mg of para-toluenesulfonic acid monohydrate were added thereto, and 2.0 g (35.3 mmol) of glycinonitrile was added under reflux, followed by reaction while removing water with a water meter. After 2 hours, the reaction solution was analyzed by gas chromatography and the yield was 83.8%.
α-methylbenzylideneaminoacetonitrile was produced. Example 3 Acetophenone in 30ml of ethylene dichloride
3.2g (26.5mmol), glycinonitrile 1.0g
(17.7 mmol) was dissolved, 1.0 g of acid clay (manufactured by Mizusawa Chemical) was added as a catalyst, and the mixture was reacted under reflux while separating water using a water meter. Analysis of the reaction solution after 2 hours revealed that α-methylbenzylideneaminoacetonitrile had been produced in a yield of 75.4%. Examples 4 to 10 Example 3 except that the catalyst was changed to one shown in Table 1.
reacted in the same way. The results are summarized in Table 1. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

図1、図2はα−メチルベンジリデンアミノア
セトニトリルのマススペクトル、該磁気共鳴スペ
クトルである。
FIGS. 1 and 2 show the mass spectrum and magnetic resonance spectrum of α-methylbenzylidene aminoacetonitrile.

Claims (1)

【特許請求の範囲】 1 下記の式で示されるα−メチルベンジリデン
アミノアセトニトリル。 2 グリシノニトリルをアセトフエノンと酸触媒
の存在下において反応させ、反応生成水を公知の
共沸蒸留により除去することを特徴とするα−メ
チルベンジリデンアミノアセトニトリルの製造
法。
[Claims] 1. α-Methylbenzylidene aminoacetonitrile represented by the following formula. 2. A method for producing α-methylbenzylidene aminoacetonitrile, which comprises reacting glycinonitrile with acetophenone in the presence of an acid catalyst and removing water produced by the reaction by known azeotropic distillation.
JP59179384A 1984-08-30 1984-08-30 Alpha-metylbenzylideneaminoacetonitrile and its preparation Granted JPS6160639A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59179384A JPS6160639A (en) 1984-08-30 1984-08-30 Alpha-metylbenzylideneaminoacetonitrile and its preparation
DE19853531084 DE3531084A1 (en) 1984-08-30 1985-08-30 Process for the preparation of phenylalanine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59179384A JPS6160639A (en) 1984-08-30 1984-08-30 Alpha-metylbenzylideneaminoacetonitrile and its preparation

Publications (2)

Publication Number Publication Date
JPS6160639A JPS6160639A (en) 1986-03-28
JPH0521103B2 true JPH0521103B2 (en) 1993-03-23

Family

ID=16064914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59179384A Granted JPS6160639A (en) 1984-08-30 1984-08-30 Alpha-metylbenzylideneaminoacetonitrile and its preparation

Country Status (1)

Country Link
JP (1) JPS6160639A (en)

Also Published As

Publication number Publication date
JPS6160639A (en) 1986-03-28

Similar Documents

Publication Publication Date Title
JP5279275B2 (en) Diarylphenoxyaluminum compounds
US5908939A (en) Method of making D,L-A-tocopherol
JPH05213838A (en) Preparation of fluoxetine
US4958033A (en) Process for preparing alcohols
EP0550762B1 (en) Process for producing nitrile
US5457222A (en) Process for producing nitrile
JPH0521103B2 (en)
US4231962A (en) 3-Phenoxybenzylideneamines and 3-benzylbenzylideneamines
JP2830210B2 (en) Synthesis of α, β-unsaturated ketones
US4169858A (en) Process for preparing a ketone
JPS63303960A (en) Production of oxyalkylamide
US7019154B2 (en) Process for the production of 5-benzyl-3-furfuryl alcohol
CA2255147C (en) Process for the preparation of ethynylcyclopropane
US4436939A (en) Process for producing 1-(p-prenylphenyl)ethanol
JP2586949B2 (en) Method for producing p- or m-hydroxybenzaldehyde
JP4304758B2 (en) Method for producing para-acetoxystyrene
JPH0696564B2 (en) α- (ω-hydroxyalkyl) furfuryl alcohol and process for producing the same
JPH0439449B2 (en)
JP2646294B2 (en) Nitrile production method
WO1998005630A1 (en) Process for the preparation of organic nitriles
SU777033A1 (en) Method of preparing 2-(beta-chloroethyl)-1,3-dioxolane
JP3340761B2 (en) Process for producing para-tertiary butoxy-α-methylstyrene
JPH0925251A (en) Production of cyclopentyl bromide
SU1567565A1 (en) Method of obtaining 1-chlor-4-methylpentan 2-ol
JPS63295562A (en) Manufacture of 4-methylimidazole

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees