JPS6160333B2 - - Google Patents

Info

Publication number
JPS6160333B2
JPS6160333B2 JP56177531A JP17753181A JPS6160333B2 JP S6160333 B2 JPS6160333 B2 JP S6160333B2 JP 56177531 A JP56177531 A JP 56177531A JP 17753181 A JP17753181 A JP 17753181A JP S6160333 B2 JPS6160333 B2 JP S6160333B2
Authority
JP
Japan
Prior art keywords
compressor
indoor
temperature
indoor air
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56177531A
Other languages
Japanese (ja)
Other versions
JPS5880434A (en
Inventor
Toyohiro Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56177531A priority Critical patent/JPS5880434A/en
Publication of JPS5880434A publication Critical patent/JPS5880434A/en
Publication of JPS6160333B2 publication Critical patent/JPS6160333B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • F24F2003/1446Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空調機の除湿機構に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dehumidifying mechanism for an air conditioner.

〔従来の技術〕[Conventional technology]

従来の除湿機構は空調機の室内側熱交換器を2
層構造にして、1方は冷却器に他方は凝縮器とし
て使用し室内空気を吹こみ、一度冷却して再加熱
し温度は一定にして除湿する機構であつた。
Conventional dehumidification mechanisms use two indoor heat exchangers of air conditioners.
It had a layered structure, one was used as a cooler and the other was used as a condenser, and indoor air was blown into the room to cool it and reheat it, keeping the temperature constant and dehumidifying it.

第7図は例えば実開昭55−87444号公報に示さ
れた従来の冷房機の制御装置を示す電気回路図で
あり、2は電源、3は圧縮機10のオン、オフ制
御用の室内サーモスタツト、9はフアンモータ
(便宜上1つで示す)である。しかして、電源2
からフアンモーター9および圧縮機10への回路
の分岐点の手前に、フアンモーター9および圧縮
機10のオン、オフを制御するタイマー接点11
を設けて、フアンモーター9に対しては直接、圧
縮機3に対しては常開の電磁開閉器接点が設けら
れた室内サーモスタツト3に対する側路12を介
しそれぞれ作用し、接点13の閉によつて室内サ
ーモスタツト3に関係なく、フアンモーター9お
よび圧縮機10を同時にオン、オフ制御するよう
にし、また、タイマー接点に対しては常閉の電磁
開閉器接点13が設けられた側路14を形成し、
通常は接点11を短絡させてそれによるオン、オ
フ制御を不能とし、圧縮機10のみが室内サーモ
スタツト3によつてオン、オフ制御されるように
する。
FIG. 7 is an electric circuit diagram showing a conventional air conditioner control device disclosed in, for example, Japanese Utility Model Application Publication No. 55-87444, in which 2 is a power supply, 3 is an indoor thermostat for controlling the compressor 10 on and off. 9 is a fan motor (shown as one for convenience). However, power supply 2
Before the branch point of the circuit from to the fan motor 9 and compressor 10, there is a timer contact 11 that controls turning on and off of the fan motor 9 and compressor 10.
act directly on the fan motor 9 and act on the compressor 3 through a side path 12 to the indoor thermostat 3, which is provided with a normally open electromagnetic switch contact, and close the contact 13. Therefore, regardless of the indoor thermostat 3, the fan motor 9 and the compressor 10 are controlled to be turned on and off at the same time, and the side path 14 is provided with a normally closed electromagnetic switch contact 13 for the timer contact. form,
Normally, the contacts 11 are short-circuited to disable on/off control, so that only the compressor 10 is controlled on/off by the indoor thermostat 3.

タイマー接点11を作動させるタイマーモータ
ー15と、各電磁開閉器接点3′,13を作動さ
せる電磁開閉器コイル16とは、圧縮機10およ
びフアンモーター9と共に、運転切換スイツチ8
によつて幾通りかの組合せで選択的に作動させる
ようになつている。
The timer motor 15 that operates the timer contact 11 and the electromagnetic switch coil 16 that operates the electromagnetic switch contacts 3' and 13 are connected to the operation selector switch 8 along with the compressor 10 and fan motor 9.
It is designed to be operated selectively in several combinations.

また第8図は例えば実開昭55−59240号公報に
示された第2の従来の空気調和機の除湿装置の概
略電気回路図であり、第8図による電気回路につ
いて説明する。
Further, FIG. 8 is a schematic electrical circuit diagram of a second conventional dehumidifying device for an air conditioner disclosed in, for example, Japanese Utility Model Application Publication No. 55-59240, and the electrical circuit according to FIG. 8 will be explained.

同図において、15はモータ等の回転等によつ
て接点が断続的にON・OFFするタイマ、8は除
湿スイツチ、8は前記除湿スイツチ8と連動する
冷房スイツチである。
In the figure, 15 is a timer whose contacts are turned on and off intermittently by the rotation of a motor, etc., 8 is a dehumidification switch, and 8 is an air conditioner switch interlocked with the dehumidification switch 8.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように構成された従来の装置においては、
除湿運転にすると、室内サーモに関係なく送風機
がタイマーモータによる設定時間毎にオン・オフ
によつてのみ制御され、弱冷を断続的に行なうも
のであり、きめ細かな除湿制御ができないという
問題点があつた。
In the conventional device configured in this way,
When dehumidifying operation is used, the blower is controlled only by turning on and off at set times using a timer motor, regardless of the indoor thermostat, and weak cooling is performed intermittently, which poses the problem of not being able to perform detailed dehumidification control. It was hot.

この発明は上記のような問題点を解消するため
になされたもので、従来のこのような機構は用い
ず、室内側は冷却器のみで1層構造とし室内側冷
却器を通す風を、圧縮機ON中に急激に変化させ
かつ室温を検知しながら快適性をそこなわない範
囲の室温の下降のみで除湿する機構を提供するこ
とを目的としたものである。
This invention was made to solve the above-mentioned problems, and instead of using the conventional mechanism, the indoor side has a single-layer structure with only a cooler, and the air passing through the indoor cooler is compressed. The purpose of this is to provide a mechanism that dehumidifies the room by detecting a sudden change in room temperature while the machine is on, and only reducing the room temperature within a range that does not impair comfort.

〔問題点を解決するための手段〕[Means for solving problems]

この発明圧縮機運転中に室内側送風量を多周期
急激に変化させると共に、除湿運転開始操作時初
期の室内温度を記憶し、この室内温度値により圧
縮機運転率を選択固定させる手段を設けたもので
ある。
This invention provides means for rapidly changing the indoor air flow rate in multiple cycles during compressor operation, storing the initial indoor temperature at the time of dehumidifying operation start operation, and selectively fixing the compressor operating rate based on this indoor temperature value. It is something.

〔作 用〕[Effect]

この発明における除湿制御装置は、マイコン内
に除湿運転開始操作時初期の室内温度を記憶し、
この室内温度値により圧縮機運転率を選択固定す
ると共に、圧縮機運転中に室内側送風量を多周期
急激に変化させるようにプログラムして、きめの
細かな除湿運転を制御する。
The dehumidification control device according to the present invention stores the initial room temperature at the time of the dehumidification operation start operation in the microcomputer,
The compressor operating rate is selected and fixed based on this indoor temperature value, and the indoor air flow rate is programmed to be rapidly changed in multiple cycles while the compressor is operating, thereby controlling finely tuned dehumidification operation.

〔発明の実施例〕[Embodiments of the invention]

以下第1図ないし第6図に示す実施例について
詳細に説明する。1はトライアツク等双方向性半
導体開閉素子1bと発光ダイオード等絶縁信号伝
達素子1aとを組合せた光絶縁形半導体リレー
PHOT SSR(以後PHOT SSRと言う)である。
4は室内側送風機の風速切替用リレー接点、9は
室内側送風機モーターである。
The embodiments shown in FIGS. 1 to 6 will be described in detail below. 1 is an optically insulated semiconductor relay that combines a bidirectional semiconductor switching device 1b such as a triac and an insulated signal transmission device 1a such as a light emitting diode.
PHOT SSR (hereinafter referred to as PHOT SSR).
4 is a relay contact for switching the wind speed of the indoor blower, and 9 is an indoor blower motor.

これらPHOT SSR1、風速切替リレー接点4
および送風機モータ9は直列に交流電源2に接続
され、かつ、これらとは並列に圧縮機モータ開閉
用リレー接点3および圧縮機モータ10が接続さ
れている。
These PHOT SSR1, wind speed switching relay contact 4
The blower motor 9 is connected in series to the AC power source 2, and the compressor motor opening/closing relay contact 3 and the compressor motor 10 are connected in parallel thereto.

次に、弱電側制御系として、第6図により説明
すると、6は1チツプマイクロコンピユータ(以
下マイコン)で、入力側にアナログ−デジタル変
換器61を設け、サーミスタ素子5と抵抗ボリウ
ム11との信号を受けるよう接続されており、か
つ冷房モードと除湿モードとの切替入力スイツチ
8と共に入力回路62へ信号を送るよう構成さ
れ、さらに、CPU63、除湿運転開始時初期の
室内温度を記憶し、運転率を選択固定するメモリ
64などからの信号を出力する出力回路65を設
けている。この出力回路65は前記PHOT SSR
1内の発光ダイオード等の絶縁信号伝達素子1a
と出力バツフア7に出力している。この出力バツ
フア7は抵抗72,74とトランジスタ71,7
3とを備え、圧縮機モータ開閉コイル3′、室内
フアンモータコイル4′にそれぞれ接続され上記
マイコン6の出力回路65よりそれぞれの信号を
受けるよう構成され、さらにマイコン6は圧縮機
3ON中に絶縁信号伝達素子1aを多周期で送風
機4のON、OFFをくりかえす様出力回路65よ
り出力するよう接続している。
Next, as a control system on the low power side, explained with reference to FIG. and is configured to send a signal to the input circuit 62 together with the input switch 8 for switching between cooling mode and dehumidification mode. An output circuit 65 is provided for outputting a signal from a memory 64 or the like for selectively fixing. This output circuit 65 is the PHOT SSR
Insulated signal transmission element 1a such as a light emitting diode in 1
is output to the output buffer 7. This output buffer 7 consists of resistors 72 and 74 and transistors 71 and 7.
3, which are connected to the compressor motor opening/closing coil 3' and the indoor fan motor coil 4', respectively, and configured to receive respective signals from the output circuit 65 of the microcomputer 6, and furthermore, the microcomputer 6 is insulated while the compressor 3 is ON. The signal transmission element 1a is connected to output from the output circuit 65 so that the blower 4 is repeatedly turned on and off in multiple cycles.

以下、本発明の作用について詳細に説明する。 Hereinafter, the effects of the present invention will be explained in detail.

例えばモード切替スイツチ8がON時は室内温
度検知素子5の検知温度と室内温度設定ボリウム
11との差を検知して室内温度がより高い時マイ
コン6が発光ダイオード等の絶縁信号伝達素子1
aと圧縮機リレー3をONする様出する。よつて
通常の冷房が行なわれる。
For example, when the mode selector switch 8 is ON, the microcomputer 6 detects the difference between the temperature detected by the indoor temperature detection element 5 and the indoor temperature setting volume 11, and when the indoor temperature is higher, the microcomputer 6 selects the insulated signal transmission element 1 such as a light emitting diode.
Turn on a and compressor relay 3. Normal cooling is then performed.

ここでモード切替スイツチ8がONからOFFに
切替えた時には、このモード運転切替操作初期時
の室温をマイコン6が記憶して、以後例えば第3
図の様に前記初期室温の値にて、圧縮機の運転率
を選択し、その運転率で圧縮機はON、OFFをく
りかえす。
Here, when the mode changeover switch 8 is changed from ON to OFF, the microcomputer 6 memorizes the room temperature at the initial stage of this mode operation changeover operation, and thereafter, for example,
As shown in the figure, the operating rate of the compressor is selected based on the value of the initial room temperature, and the compressor is repeatedly turned on and off at that operating rate.

つまりマイコン6は第3図のグラフに示すごと
く運転率にて圧縮機用リレー3の開閉ON、OFF
をくりかえす様バツフア7に出力する。
In other words, the microcomputer 6 turns on and off the compressor relay 3 depending on the operating rate as shown in the graph of Figure 3.
is output to buffer 7 repeatedly.

この時の圧縮機ON中において、マイコン6は
発光ダイオード等の絶縁信号伝達素子1aを多周
期で前記圧縮機ON時間内にON、OFFをくりか
えす様出力する。具体的に言えば、圧縮機は初期
室内空気温度25℃にて3分間ON後、3分間OFF
の50%運転率でくりかえし、発光ダイオード等の
絶縁信号伝達素子1aは圧縮機ON中に10秒間
OFF、20秒間ONをくりかえす様マイコン6が制
御する。
While the compressor is ON at this time, the microcomputer 6 outputs an output to the insulated signal transmission element 1a such as a light emitting diode so that it is repeatedly turned ON and OFF in multiple cycles within the compressor ON time. Specifically, the compressor is turned on for 3 minutes at an initial indoor air temperature of 25℃, then turned off for 3 minutes.
Repeatedly at a 50% operating rate, the insulated signal transmission element 1a such as a light emitting diode is connected for 10 seconds while the compressor is ON.
The microcomputer 6 controls the power to turn off and turn on for 20 seconds.

又、初期室内空気温度が例えば28℃の時は温度
負荷が高いのであるから運転率を例えば60%に選
択する様マイコン6のプログラムは構成されてい
る。
Further, when the initial indoor air temperature is, for example, 28° C., the temperature load is high, so the program of the microcomputer 6 is configured to select the operating rate at, for example, 60%.

前記のような制御により、圧縮機ON中におけ
る室内側冷却器フイン表面は発光ダイオード等の
絶縁信号伝達素子1aのON中におけるトライア
ツク1bが室内送風機を運転して室内の空気を冷
却器フイン中を通風することにより、室内温度に
近づこうとし、かつ発光ダイオード等の絶縁信号
伝達素子1aOFF中は、室内送風機が停止しかつ
圧縮機がONしているため冷媒の冷却作用により
急激に温度下降する。この室内側冷却器フイン表
面の温度的上昇下降がそこを通る室内空気の冷却
器フイン表面での結露をうながし除湿することが
できる。
With the above-mentioned control, when the compressor is ON, the surface of the indoor cooler fin is turned on, and when the insulated signal transmission element 1a, such as a light emitting diode, is ON, the tri-attack 1b operates the indoor blower to blow indoor air through the cooler fin. By ventilation, the temperature approaches the indoor temperature, and while the insulated signal transmission element 1a such as a light emitting diode is OFF, the indoor blower is stopped and the compressor is ON, so the temperature rapidly drops due to the cooling effect of the refrigerant. This temperature rise and fall on the surface of the indoor cooler fins promotes dew condensation on the surface of the cooler fins of the indoor air passing therethrough, thereby making it possible to dehumidify the indoor air.

ここで除湿運転開始時の室内空気温度を記憶し
て圧縮機の運転率を選択することは、運転開始時
は室内空気温度はほぼ室外空気温度に同じであ
り、よつて室外の空気温度的負荷状態により運転
率を決定していることと同じことになる。
Remembering the indoor air temperature at the start of dehumidification operation and selecting the compressor operating rate means that at the start of operation, the indoor air temperature is almost the same as the outdoor air temperature, and therefore the outdoor air temperature load is This is the same as determining the operating rate depending on the state.

又さらに圧縮機運転率を固定して運転すること
は、冷媒回路の冷却器と凝縮器の相対的関係から
言つて本発明による除湿運転中は室外空気温度の
変化に応じて最終的に安定する室内空気温度は連
動する等の室外気温追従効果をもたせることがで
きる。
Furthermore, by operating the compressor at a fixed operating rate, considering the relative relationship between the cooler and the condenser in the refrigerant circuit, the dehumidification operation according to the present invention is ultimately stabilized according to changes in the outdoor air temperature. It is possible to have an effect of following the outdoor temperature by linking the indoor air temperature.

外気温に追従して室内空気温度が変化し、かつ
除湿できるのを理想とすれば、サーミスター等で
外気温を検知して室温を設定することなく外気温
追従する、快適な除湿空間を作ることができる。
Ideally, the indoor air temperature could change according to the outside temperature and dehumidify, creating a comfortable dehumidifying space that would detect the outside temperature with a thermistor and follow the outside temperature without having to set the room temperature. be able to.

第2図は本発明により得られた室内空気の温
度、湿度の状態を運転開始からの時間の経過をグ
ラフ化したものである。図中イは室内湿度の経過
グラフ、21は室外空気湿度。22は本発明によ
る除湿運転による室内湿度曲線。ロは国内梅雨時
の一昼夜の室内外空気温度の経過グラフで23は
室外空気温度、24は本除湿運転による室内空気
の経過曲線である。25は(前記の室内送風機制
御により)運転開始初期時の室温より少し低目に
冷房ぎみとなるが快適性をそこなわない程度であ
り、かつ圧縮機運転率は一定率であるから室外気
温度と相対的に一定比率空気温度で追従すること
になる。
FIG. 2 is a graph showing the temperature and humidity of indoor air obtained by the present invention over time from the start of operation. In the figure, A is a progress graph of indoor humidity, and 21 is outdoor air humidity. 22 is an indoor humidity curve obtained by dehumidifying operation according to the present invention. B is a graph of the indoor and outdoor air temperature over the course of a day and night during the rainy season in Japan, 23 is the outdoor air temperature, and 24 is the indoor air temperature curve during the main dehumidification operation. 25 (due to the above-mentioned indoor blower control), the air conditioner is slightly cooled to a temperature slightly lower than the room temperature at the beginning of operation, but it is at a level that does not impair comfort, and since the compressor operation rate is a constant rate, the outdoor air temperature The air temperature will be followed at a relatively constant ratio.

第5図は本発明のマイコン6内固定メモリー
ROMに記憶されたプログラムフロー図である。
Figure 5 shows the fixed memory inside the microcomputer 6 of the present invention.
It is a program flow diagram stored in ROM.

室内空気温度検知素子5を入力として、第4図
の除湿ノツチ(エレクトロニクスドライ)に切替
られた時、その時の初期室温を検知して記憶する
命令51を通つて、前記初期室温を例えば27℃以
上かを判定する命令52により分枝し、圧縮機運
転率を50%と60%分の時間をGカウンターに設定
する命令53,54がある。
When the dehumidification notch (electronics dry) shown in FIG. 4 is switched to the indoor air temperature detection element 5 as an input, the initial room temperature is set to 27° C. or higher, for example, through a command 51 that detects and stores the initial room temperature at that time. There are instructions 53 and 54 that branch off from the instruction 52 that determines whether the compressor operation rate is 50% or 60%, and set the time corresponding to 50% and 60% of the compressor operating rate in the G counter.

さらにGカウンターがカウンターアツプしてい
るかを判断する命令により分枝する。前記Gカウ
ンタアツプ時は圧縮機10、室内送風機9を
OFFする命令57へ、Gカウンターカウント中
は圧縮機10をONし、室内送風機9を前に述べ
た除湿制御運転制御する命令56を通る様プログ
ラムは構成されている。図中G・F←1と記した
のはそれぞれ命令分枝用フラグのセツトを表わ
し、G・F←0はリセツトを表わす。又、G・F
=1と記したのはそれぞれのタイマーカウンター
の時間設定はそれぞれの設定条件時1回だけタイ
マーセツトするための命令である。又、Gカウン
ター1とはプログラムの1ループごとにそれぞれ
のカウンターを−1して減算タイマーを構成して
いることを示している。
Furthermore, it branches according to an instruction to determine whether the G counter is up. When the G counter is up, the compressor 10 and indoor blower 9 are
The program is configured to pass through the instruction 57 to turn OFF, turn on the compressor 10 while the G counter is counting, and pass the instruction 56 to control the dehumidification control operation of the indoor blower 9 described above. In the figure, G and F←1 represent the setting of instruction branching flags, and G and F←0 represent a reset. Also, G.F.
=1 is a command for setting the timer counter only once under each setting condition. Further, G counter 1 indicates that each counter is decremented by 1 every loop of the program to form a subtraction timer.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば冷房サイクル
を行う冷媒回路と1チツプマイクロコンピユータ
等の半導体論理制御LSIを有する空調機を、圧縮
機ON中に室内側送風量を多周期急激に変化させ
る手段と、除湿運転開始操作時初期の室内空気温
度を記憶し初期の室内空気温度値により圧縮機運
転率を選択固定する手段より構成したので、冷房
専用の冷媒回路により従来の除湿装置に必要とし
ていた電磁弁、熱交換器の2層構造を廃止した低
コストの空調機を得ると共に、容易にきめの細か
な除湿運転を実行し得る空調機を提供する等の非
常に効果の高いものである。
As described above, according to the present invention, an air conditioner having a refrigerant circuit that performs a cooling cycle and a semiconductor logic control LSI such as a one-chip microcomputer is a means for rapidly changing the indoor air flow rate in multiple cycles while the compressor is ON. In addition, the system memorizes the initial indoor air temperature at the time of the dehumidification operation start operation and selects and fixes the compressor operation rate based on the initial indoor air temperature value, which eliminates the need for conventional dehumidifiers due to the refrigerant circuit dedicated to cooling. This is highly effective in that it provides a low-cost air conditioner that eliminates the two-layer structure of a solenoid valve and a heat exchanger, and also provides an air conditioner that can easily carry out detailed dehumidification operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の空調機の除湿制御装置を示す
電気回路ブロツク図、第2図は本発明による室内
空気の温湿度の時間的経過を示す説明図、第3図
は圧縮機運転率と除湿運転操作初期室内温度の関
係を示す説明図、第4図はリモコン本体を示す斜
視図、第5図は本発明のプログラムフロー図、第
6図は第1図の電気回路ブロツク図の詳細図、第
7図は従来の制御装置の電気回路図、第8図は第
2の従来の電気回路である。 図中、1は光絶縁形半導体リレーPHOT
SSR、2は電源、6はマイクロコンピユータ、6
4はメモリー、65は出力回路、7は出力バツフ
アである。
Fig. 1 is an electric circuit block diagram showing the dehumidification control device for an air conditioner according to the present invention, Fig. 2 is an explanatory diagram showing the time course of the temperature and humidity of indoor air according to the invention, and Fig. 3 is a diagram showing the change in compressor operating rate. An explanatory diagram showing the relationship between the indoor temperature at the initial stage of the dehumidification operation, FIG. 4 is a perspective view of the remote control body, FIG. 5 is a program flow diagram of the present invention, and FIG. 6 is a detailed diagram of the electric circuit block diagram of FIG. 1. , FIG. 7 is an electric circuit diagram of a conventional control device, and FIG. 8 is a second conventional electric circuit. In the diagram, 1 is an optically insulated semiconductor relay PHOT
SSR, 2 is the power supply, 6 is the microcomputer, 6
4 is a memory, 65 is an output circuit, and 7 is an output buffer.

Claims (1)

【特許請求の範囲】[Claims] 1 冷房サイクルを行なう冷媒回路と1チツプマ
イクロコンピユータ等の半導体論理制御LSIを有
する空調機において、圧縮機ON中に室内側送風
量を多周期急激に変化させる手段を有し、かつ、
除湿運転開始操作時初期の室内空気温度を記憶し
初期の室内空気温度値により圧縮機運転率を選択
固定する手段を有したことを特徴とする空調機の
除湿制御装置。
1. In an air conditioner that has a refrigerant circuit that performs a cooling cycle and a semiconductor logic control LSI such as a one-chip microcomputer, the air conditioner has a means for rapidly changing the indoor air flow rate in multiple cycles while the compressor is ON, and
1. A dehumidification control device for an air conditioner, comprising means for storing an initial indoor air temperature at the time of a dehumidifying operation start operation and selecting and fixing a compressor operating rate based on the initial indoor air temperature value.
JP56177531A 1981-11-05 1981-11-05 Dehumidification controlling device of air conditioner Granted JPS5880434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56177531A JPS5880434A (en) 1981-11-05 1981-11-05 Dehumidification controlling device of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56177531A JPS5880434A (en) 1981-11-05 1981-11-05 Dehumidification controlling device of air conditioner

Publications (2)

Publication Number Publication Date
JPS5880434A JPS5880434A (en) 1983-05-14
JPS6160333B2 true JPS6160333B2 (en) 1986-12-20

Family

ID=16032551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56177531A Granted JPS5880434A (en) 1981-11-05 1981-11-05 Dehumidification controlling device of air conditioner

Country Status (1)

Country Link
JP (1) JPS5880434A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116934U (en) * 1986-10-23 1988-07-28

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033212A (en) * 1983-07-28 1985-02-20 Ube Ind Ltd Purifying method of aqueous potassium hydroxide solution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017609Y2 (en) * 1978-10-19 1985-05-30 松下電器産業株式会社 Air conditioner dehumidifier
JPS5587444U (en) * 1978-12-12 1980-06-17
JPS6033212B2 (en) * 1980-08-19 1985-08-01 三菱電機株式会社 Air conditioner control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033212A (en) * 1983-07-28 1985-02-20 Ube Ind Ltd Purifying method of aqueous potassium hydroxide solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116934U (en) * 1986-10-23 1988-07-28

Also Published As

Publication number Publication date
JPS5880434A (en) 1983-05-14

Similar Documents

Publication Publication Date Title
JPS63286642A (en) Air-conditioning machine
US3520147A (en) Control circuit
KR930002769A (en) Air conditioner
US3293874A (en) Air conditioning system with reheating means
JP3936345B2 (en) Air conditioner
JPS6160333B2 (en)
JP2001201143A (en) Air conditioner
US3385349A (en) Control arrangement for an air conditioning system
JPS6033212B2 (en) Air conditioner control device
JPH10141730A (en) Heat-exchange ventilation device
JPS594620B2 (en) Air conditioner control device
JP3297105B2 (en) Air conditioner
JP2002106925A (en) Air conditioner
JPS6123217Y2 (en)
JPH0361095B2 (en)
JP2002333235A (en) Air conditioner
JPH028231B2 (en)
JPS6128985Y2 (en)
JPH05272840A (en) Air-conditioning processing equipment
JP2672638B2 (en) Dehumidifier of air conditioner
JPH0313497B2 (en)
JPS5836Y2 (en) air conditioner
JPS5933943Y2 (en) air conditioner
JPH0256570B2 (en)
JPS6018898B2 (en) air conditioner