JPS6159866B2 - - Google Patents

Info

Publication number
JPS6159866B2
JPS6159866B2 JP7729381A JP7729381A JPS6159866B2 JP S6159866 B2 JPS6159866 B2 JP S6159866B2 JP 7729381 A JP7729381 A JP 7729381A JP 7729381 A JP7729381 A JP 7729381A JP S6159866 B2 JPS6159866 B2 JP S6159866B2
Authority
JP
Japan
Prior art keywords
copying
model
control device
tracer head
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7729381A
Other languages
Japanese (ja)
Other versions
JPS57194859A (en
Inventor
Takashi Hatsutori
Kimimoto Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7729381A priority Critical patent/JPS57194859A/en
Publication of JPS57194859A publication Critical patent/JPS57194859A/en
Publication of JPS6159866B2 publication Critical patent/JPS6159866B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q35/00Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually
    • B23Q35/04Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually using a feeler or the like travelling along the outline of the pattern, model or drawing; Feelers, patterns, or models therefor
    • B23Q35/08Means for transforming movement of the feeler or the like into feed movement of tool or work
    • B23Q35/12Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means
    • B23Q35/121Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means using mechanical sensing
    • B23Q35/123Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means using mechanical sensing the feeler varying the impedance in a circuit
    • B23Q35/126Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means using mechanical sensing the feeler varying the impedance in a circuit varying inductance

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Copy Controls (AREA)

Description

【発明の詳細な説明】 本発明は倣制御装置に係り、特に表面一方向倣
モードにおけるトレーサヘツドの引上げ量を、倣
モデルの表面形状に応じて所定値に算出設定でき
るようにした倣制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a copying control device, and more particularly, to a copying control device that is capable of calculating and setting the lifting amount of a tracer head in a surface unidirectional copying mode to a predetermined value according to the surface shape of a copying model. Regarding.

先ず、本発明に適用する倣制御装置に関し、第
1図と第2図を参照して説明する。第1図は本発
明を適用する倣制御装置の一例の概略構成図、第
2図A,B,Cは夫々トレーサヘツド部分の側面
図及びその異なる位置における横断面図を示す。
First, a copying control device applied to the present invention will be explained with reference to FIGS. 1 and 2. FIG. 1 is a schematic diagram of an example of a copying control device to which the present invention is applied, and FIGS. 2A, B, and C are side views and cross-sectional views of the tracer head portion at different positions, respectively.

第1図中、倣制御装置1は例えばマシニングセ
ンタ或いはフライス盤等の工作機械1aの倣加工
を制御するものである。トレーサヘツド2は例え
ば木材或いは石膏等でつくられた倣モデル4のモ
デル面を追跡してそのときのスタイラス11の変
位を検出する。このトレーサヘツド2は、第2図
に示す如く、スタイラス11に連結したヘツド支
柱11aがばね等の弾性体15により空中に浮遊
する如く四方から支承してあるため、スタイラス
11が倣モデル4に接触したときの接触角度に応
じX軸、Y軸、Z軸の3軸に関する変位εx,ε
y,εzが検出される。X軸差動変圧器12、Y軸
差動変圧器13、Z軸差動変圧器14は上記3軸
直線変位検出用として支柱11aに3次元配列で
取付けてあり、夫々添字が対応する上記変位ε
x,εy,εzを検出する。
In FIG. 1, a copying control device 1 controls copying processing of a machine tool 1a such as a machining center or a milling machine. The tracer head 2 traces the model surface of a copy model 4 made of wood, plaster, etc., and detects the displacement of the stylus 11 at that time. As shown in FIG. 2, this tracer head 2 is supported from all sides by a head support 11a connected to a stylus 11 so as to be suspended in the air by an elastic body 15 such as a spring, so that the stylus 11 comes into contact with the copying model 4. Displacement ε x , ε with respect to the three axes of the
y and ε z are detected. The X-axis differential transformer 12, the Y-axis differential transformer 13, and the Z-axis differential transformer 14 are attached to the column 11a in a three-dimensional array for detecting the three-axis linear displacement, and each subscript corresponds to the displacement. ε
Detect x , ε y , and ε z .

制御装置10は、3次元ベクトル変位√x
+εy +εz が一定値εpとなるよう変位εx
εy,εzと送り速度Fを演算し、X軸モータ7、
Y軸モータ8、Z軸モータ9を制御し、主軸カツ
タ3とテーブル6を駆動する。これにより倣制御
装置1は倣モデル4と同じ形状にワーク5を切削
する。
The control device 10 has a three-dimensional vector displacement √ x 2
Displacement ε x , so that +ε y 2z 2 becomes a constant value ε p
ε y , ε z and feed rate F are calculated, and the X-axis motor 7,
The Y-axis motor 8 and Z-axis motor 9 are controlled to drive the main shaft cutter 3 and table 6. As a result, the copying control device 1 cuts the workpiece 5 into the same shape as the copying model 4.

次に、倣制御装置1の制御モードの一例を第3
図乃至第6図を併せ説明する。第3図は2次元倣
モデルの一例の斜視図、第4図は第3図のX−Z
断面図、第5図はX−Y輪郭全周倣モデルの一例
の斜視図、第6図は第5図のX−Y断面図を示
す。
Next, an example of the control mode of the copying control device 1 will be explained in the third example.
The explanation will be made with reference to FIGS. 6 to 6. Figure 3 is a perspective view of an example of a two-dimensional imitation model, and Figure 4 is an X-Z diagram of Figure 3.
A sectional view, FIG. 5 is a perspective view of an example of an X-Y contour full-circumference model, and FIG. 6 is an X-Y sectional view of FIG.

第3図中、倣モデル4aのモデル面上、点A−
B間及び点C−D間は倣平面XZの2次元倣モー
ド、点B−C間は倣平面YZの2次元倣モードで
ある。即ち、本例は2次元往復倣モードの例であ
る。また、第5図中、倣モデル4bのモデル面
上、点A−B−C−D間及び点E−F−G−H間
は倣平面X−Yの2次元倣モード、即ち輪郭全周
倣モード、D−E間は倣平面Y−Zの2次元倣モ
ードである。なお、第3図乃至第6図に示した倣
モードの範囲は、装置に取付けたリミツトスイツ
チ或いはカウンタ等により規制するようになつて
いる。
In Fig. 3, point A- on the model surface of copying model 4a
The area between B and point C and D is a two-dimensional copying mode on the copying plane XZ, and the area between points B and C is a two-dimensional copying mode on the copying plane YZ. That is, this example is an example of a two-dimensional reciprocating copying mode. In addition, in Fig. 5, on the model surface of the copying model 4b, between points A-B-C-D and between points E-F-G-H are the two-dimensional copying mode of the copying plane X-Y, that is, the entire circumference of the contour. The copying mode between DE and E is a two-dimensional copying mode of the copying plane YZ. The range of copying modes shown in FIGS. 3 to 6 is regulated by a limit switch or a counter attached to the apparatus.

ここで、2次元倣の制御アルゴリズムは例えば
「MELDAS2200形連続式2、3次元ナライ制御装
置」(三菱電機技報VOL.40、NO11、1966)に既
に明らかにされた如く、一般に次式で表わされ
る。
Here, the control algorithm for two-dimensional copying is generally expressed by the following equation, as already clarified in "MELDAS2200 type continuous two- and three-dimensional copying control device" (Mitsubishi Electric Technical Report VOL.40, NO11, 1966). It can be done.

ただし、Fは倣の送り速度、Fα,Fβは倣制
御軸の送り速度である。△εは3軸変位ベクトル
値√x y z で、その符号は送り方
向により異なる。εα,εβは倣制御軸の検出変
位で、例えば第5図の点A−B−C−D間倣の場
合、即ち全周倣いの場合εα=εx、εβ=εy
ある。
However, F is the feed rate of copying, and Fα and Fβ are the feed rates of the copy control axis. Δε is a triaxial displacement vector value √ x 2 + y 2 + z 2 , and its sign differs depending on the feeding direction. εα and εβ are detected displacements of the copying control axis, and for example , in the case of copying between points A-B- CD in FIG.

なお、(1)、(2)式のcos(△ε−εp)、sin(△ε
−εp)は計算が複雑であるから、第7図に示し
た直線で近似することが多い。
In addition, cos (△ε−ε p ) and sin (△ε
p ) is complicated to calculate, so it is often approximated by the straight line shown in FIG.

第8図は表面一方向倣モデルの一例の斜視図を
示す。第8図中、4cは表面一方向倣モデルで、
その表面は波状にうねつていて山の部分と谷の部
分がある。今、トレーサヘツド2が倣始点Aから
倣終Bまで倣モデル4cの表面に沿つて移動する
と、終点検知用リミツトスイツチ41が作動し、
終点Bからリミツトスイツチ42が作動する点C
までZ軸方向に高速引上げが行なわれ、次に点A
−B間の倣移動量と同距離だけトレーサヘツド2
は点C−D間を高速移動する。次にトレーサヘツ
ド2は、リミツトスイツチ43が作動するアプロ
ーチ開始点Eまで高速で引下げられ、点E−A間
のアプローチ動作を行ない、倣モデル4cに接触
する。次にトレーサヘツド2は倣移動方向に対し
て90度回転した方向である点A−F間をピツクフ
イードされ、再び同様の倣動作を繰り返す。
FIG. 8 shows a perspective view of an example of a surface unidirectional copying model. In Fig. 8, 4c is a surface unidirectional copying model,
Its surface is wavy and has peaks and valleys. Now, when the tracer head 2 moves along the surface of the copy model 4c from the copy start point A to the copy end B, the end point detection limit switch 41 is activated.
Point C where limit switch 42 operates from end point B
High-speed pulling is performed in the Z-axis direction until point A.
- Tracer head 2 by the same distance as the amount of copying movement between B.
moves between points C and D at high speed. Next, the tracer head 2 is pulled down at high speed to the approach start point E where the limit switch 43 is activated, performs an approach operation between points E and A, and comes into contact with the copying model 4c. Next, the tracer head 2 is pick-fed between points A and F, which is a direction rotated 90 degrees with respect to the direction of copying movement, and the same copying operation is repeated again.

こうした一連の倣動作が繰り返されることによ
り、倣モデル4cの表面は一方向に倣われ、高精
度の切削が行なわれる。ここで、点B−C間の高
速引上げ、点C−D間の高速移動、点D−E間の
高速引下げの各動作は、トレーサヘツド2が倣モ
デル4cの表面から空中に離間して行なわれる動
作である。従つて、このような空中の移動に必要
な動作はできる限り短時間で行なうことが望まし
く、特に、一方向倣を連続的に行なう場合の時間
効率向上に重要な意味をもつ。
By repeating this series of copying operations, the surface of the copying model 4c is copied in one direction, and highly accurate cutting is performed. Here, each operation of high-speed lifting between points B and C, high-speed movement between points C and D, and high-speed lowering between points D and E is performed while the tracer head 2 is separated from the surface of the copying model 4c in the air. This is an action that Therefore, it is desirable to perform the operations necessary for such aerial movement in as short a time as possible, which is particularly important for improving time efficiency when continuous one-way scanning is performed.

しかるに、従来の倣制御装置においては、点B
−C間の高速引上げ時の引上げ量は、点C−D間
の高速移動時にトレーサヘツド2が倣モデル4c
の山の部分に対し衝突を起さないような範囲で決
定されていた。さらにまた、例えば第9図に示し
たようなモデル面の一部分が局所的に高くなつて
突起部が形成された表面一方向倣モデル4dを用
いた場合、突起部とは関係のない図中実線で示し
た箇所の引上げ量も突起部のある図中一点鎖線で
示した箇所での引上げ量も全て前記リミツトスイ
ツチ42で同一量に設定されていた。このため、
突起部とは関係のない箇所での空中移動に必要な
動作に無駄が生じ、それだけ倣動作の時間効率が
悪い欠点があつた。
However, in the conventional copying control device, point B
The amount of pull-up during high-speed pull-up between points C and D is as follows: The amount of pull-up during high-speed pull-up between points C and D is
The range was determined so as not to cause collisions with the mountains. Furthermore, for example, when using a surface unidirectional imitation model 4d in which a portion of the model surface is locally raised to form a protrusion as shown in FIG. 9, solid lines in the figure that are unrelated to the protrusion may The amount of pull at the location indicated by and the amount of pull at the location indicated by the dashed line in the figure where the protrusion is located were all set to the same amount by the limit switch 42. For this reason,
The operation required for aerial movement at a location unrelated to the protrusion is wasted, and the time efficiency of the copying operation is correspondingly poor.

本発明は、上記従来の事情に鑑みてなされたも
のであり、倣モデルの形状に応じて倣終点の引上
げ量を所定値に算出設定する構成とし、これによ
り時間効率のよい倣動作が行なわれるようにした
倣制御装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and is configured to calculate and set the lifting amount of the end point of copying to a predetermined value according to the shape of the copying model, thereby performing copying operations with high time efficiency. It is an object of the present invention to provide a copying control device.

以下本発明の一実施例につき第10,11図を
参照して説明する。第10図は本発明倣制御装置
の制御装置の一実施例のブロツク系統図、第11
図は本発明倣制御装置に適用した表面一方倣モデ
ルの一例の縦断面図を示す。
An embodiment of the present invention will be described below with reference to FIGS. 10 and 11. FIG. 10 is a block system diagram of one embodiment of the control device of the copying control device of the present invention;
The figure shows a longitudinal sectional view of an example of a one-surface copying model applied to the copying control device of the present invention.

第10図に示した制御装置10において、トレ
ーサヘツド2内の差動変圧器12,13,14
は、夫々励磁発信器17からアンプを介して供給
された正弦波電圧によつて励磁され、スタイラス
11の先端が倣モデル4に接触したときに変位ε
x,εy,εzを発生する。マイクロコンピユータ
19は、トレーサヘツド2によつて検出された変
位εx,εy,εzをADコンパレータ18を介して
供給され、速度設定器(図示せず)により設定さ
れた倣送り速度Fを用いて(1)、(2)式で示した倣制
御アルゴリズムを計算する。また、マイクロコン
ピユータ19の出力は、DAコンバータ30を介
して各軸用のサンプルホールド回路31,32,
33に記憶され、この記憶値をもとにアンプ3
4,35,36を介してX軸、Y軸、Z軸に関す
る駆動モータ7,8,9は速度制御される。各駆
動モータ7,8,9の速度は夫々タコジエネレー
タ等からなる速度検出器37,38,39により
検出されてフイードバツクされる。
In the control device 10 shown in FIG.
are excited by a sinusoidal voltage supplied from the excitation oscillator 17 via an amplifier, and when the tip of the stylus 11 contacts the copying model 4, the displacement ε
Generate x , ε y , and ε z . The microcomputer 19 is supplied with the displacements ε x , ε y , ε z detected by the tracer head 2 via the AD comparator 18, and calculates the profile feed speed F set by a speed setting device (not shown). The following control algorithm is calculated using equations (1) and (2). In addition, the output of the microcomputer 19 is sent to sample and hold circuits 31, 32 for each axis via a DA converter 30.
33, and based on this memory value, the amplifier 3
The speeds of the drive motors 7, 8, 9 for the X, Y, and Z axes are controlled via the drive motors 4, 35, and 36. The speeds of the respective drive motors 7, 8, 9 are detected by speed detectors 37, 38, 39 each comprising a tacho generator or the like and fed back.

40は、Z軸駆動モータ9に直結したパルス発
生器で、モータ9の回転に応じてパルスを発生す
る。41はアツプダウンカウンタで、Z軸が正方
向に移動するときはカウントアツプし、逆方向に
移動するときにはカウンタダウンする。マイクロ
コンピユータ19は、一定時間ごとにカウンタ4
1のカウンタ量をサンプリングして記憶するとと
もに、カウンタ量から倣動作中の最高点を判別す
る。
A pulse generator 40 is directly connected to the Z-axis drive motor 9 and generates pulses in accordance with the rotation of the motor 9. 41 is an up-down counter which counts up when the Z-axis moves in the positive direction and counts down when it moves in the opposite direction. The microcomputer 19 updates the counter 4 at regular intervals.
The counter value of 1 is sampled and stored, and the highest point during the copying operation is determined from the counter value.

例えば第11図に示した表面一方向倣モデル4
eを用いた場合、倣始点A(ZA)から倣終点B
(ZB)までの各点のカウンタ量を比較することに
より、倣つた部分の最高点H(ZH)が検出され
る。マイクロコンピユータ19は、この最高点H
(ZH)と終点B(ZB)の高さを比較し、ZH≧ZB
であればZH−ZBよりも僅かに大なる値を終点B
における引上げ量として設定する。また、ZH<
ZBのときは、終点Bにおける引上げ量は零に設
定される。
For example, the surface unidirectional copying model 4 shown in Fig. 11
When using e, from copying start point A (ZA) to copying end point B
By comparing the counter values at each point up to (ZB), the highest point H (ZH) of the traced portion is detected. The microcomputer 19 is at this highest point H.
(ZH) and the height of the end point B (ZB), ZH≧ZB
If so, set the value slightly larger than ZH − ZB to the end point B
Set as the amount of lift in . Also, ZH<
At the time of ZB, the amount of pulling at the end point B is set to zero.

こうして1回の倣動作中に必要な引上げ量が設
定されると、引上げ動作時にカウンタ41のカウ
ント量が設定された引上げ量に一致したときに、
Z軸駆動モータ9は停止される。
In this way, when the required lifting amount during one copying operation is set, when the count amount of the counter 41 matches the set lifting amount during the pulling operation,
Z-axis drive motor 9 is stopped.

このように、上記制御装置10は、表面一方向
倣を繰り返す場合、倣モデル4eの形状に応じて
常に最小の引上げ量で済むよう制御する構成であ
るから、例えば第9図に示した倣モデル表面一部
に突起部があるような倣モデル4dを用いた場合
でも、どの箇所においてもトレーサヘツド2を最
短距離で倣終点Bから倣始点Aまで戻すことがで
き、これにより常に時間効率のよい倣動作を行な
うことができる。
In this way, the control device 10 is configured to perform control so that the minimum lifting amount is always required depending on the shape of the copying model 4e when repeating one-way surface copying. Even when using a copying model 4d that has a protrusion on a part of its surface, the tracer head 2 can be returned from the copying end point B to the copying start point A in the shortest distance at any location, making it always time efficient. Copying operation can be performed.

又、制御装置10は、倣動作中に引上げ点Cを
設定してしまう構成であるから、引上げ点Cを機
械的に位置決めするためのリミツトスイツチ42
を不要とすることができる。
Furthermore, since the control device 10 is configured to set the pull-up point C during the copying operation, a limit switch 42 for mechanically positioning the pull-up point C is provided.
can be made unnecessary.

以上説明したように本発明になる倣制御装置に
よれば、倣モデルの表面をトレーサヘツドが一方
向に倣う表面一方向倣モードの際、倣終点におい
てトレーサヘツドを倣モデル表面から引上げると
きの引上げ量を倣モデルの表面形状に応じて所定
値に算出設定する構成としているため、例えば倣
モデルの表面一部に倣始点と倣終点を結ぶ倣曲線
の高さが他よりも高い箇所があるような場合で
も、その特定箇所だけ他と違つた引上げ量に設定
することにより、従来装置の如く必要のない箇所
までも該特定箇所の引上げ量と同じ引上げ量に設
定したために倣の時間効率を低下させてしまうと
いつた不都合を無くすことができ、これにより倣
モデルの形状に関係なく常に効率のよい倣制御が
可能になる等の効果を奏する。
As explained above, according to the copying control device of the present invention, in the surface unidirectional copying mode in which the tracer head copies the surface of the copying model in one direction, when the tracer head is pulled up from the copying model surface at the copying end point. Since the lifting amount is calculated and set to a predetermined value according to the surface shape of the copying model, for example, there is a part of the surface of the copying model where the height of the copying curve connecting the copying start point and the copying end point is higher than other parts. Even in such a case, by setting a different lifting amount for that specific location, unlike conventional equipment, even areas that are not needed can be set to the same lifting amount as that of the specific location, improving the time efficiency of copying. It is possible to eliminate the inconvenience caused by lowering the value, and this has the effect that efficient copying control is always possible regardless of the shape of the copying model.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した倣制御装置の一例の
概略構成図、第2図A,B,Cは夫々トレーサヘ
ツド部分の側面図及びその異なる位置における横
断面図、第3図は2次元倣モデルの一例の斜視
図、第4図は第3図のX−Z断面図、第5図はX
−Y輪郭全周倣モデルの一例の斜視図、第6図は
第5図のX−Y断面図、第7図はcos(△ε−ε
p)、−sin(△ε−εp)の直線近似に用いた直線
のグラフ、第8図は表面一方向倣モデルの一例の
斜視図、第9図は他の表面一方向倣モデルの一例
の斜視図、第10図は本発明倣制御装置の制御装
置の一実施例のブロツク系統図、第11図は本発
明倣制御装置に適用した表面一方向倣モデルの一
例の縦断面図である。 1……倣制御装置、2……トレーサヘツド、
4,4c,4d,4e……表面一方向倣モデル、
9……Z軸駆動モータ、10……制御装置、40
……パルス発生器、41……アツプダウンカウン
タ。
Fig. 1 is a schematic configuration diagram of an example of a copying control device to which the present invention is applied, Fig. 2 A, B, and C are side views and cross-sectional views of the tracer head portion at different positions, respectively, and Fig. 3 is a two-dimensional A perspective view of an example of a copying model, FIG. 4 is a cross-sectional view taken along the X-Z line in FIG. 3, and FIG.
-A perspective view of an example of a Y contour full-circumference copying model, Figure 6 is an X-Y sectional view of Figure 5, and Figure 7 is a cos(△ε-ε
p ), −sin (△ε−ε p ), a graph of the straight line used for linear approximation, Figure 8 is a perspective view of an example of a surface unidirectional copying model, and Figure 9 is an example of another surface unidirectional copying model. 10 is a block system diagram of an embodiment of the control device of the copying control device of the present invention, and FIG. 11 is a vertical sectional view of an example of a surface one-way copying model applied to the copying control device of the present invention. . 1... Copying control device, 2... Tracer head,
4, 4c, 4d, 4e... surface unidirectional copying model,
9... Z-axis drive motor, 10... Control device, 40
...Pulse generator, 41...Up-down counter.

Claims (1)

【特許請求の範囲】[Claims] 1 倣モデルの表面を追跡するトレーサヘツドの
変位にもとづいて内蔵マイクロコンピユータが倣
方向、倣速度を演算制御する倣制御装置におい
て、該倣モデルの表面を該トレーサヘツドが一方
向に倣う表面一方向倣モードの際、前記倣モデル
の表面形状に応じて倣つた部分の最高点の高さ量
を検出する手段と、その検出した高さ量を記憶す
る手段と、倣終点において前記トレーサヘツドを
倣モデル表面から引上げるときの引上げ量を、前
記記憶した高さ量にある設定値を加えて算出設定
する手段とを備えたことを特徴とする倣制御装
置。
1 In a copying control device in which a built-in microcomputer calculates and controls the copying direction and copying speed based on the displacement of a tracer head that traces the surface of a copying model, the tracer head traces the surface of the copying model in one direction. In the copying mode, a means for detecting the height of the highest point of the traced portion according to the surface shape of the copying model, a means for storing the detected height, and a means for detecting the height of the highest point of the traced portion according to the surface shape of the copying model; 1. A copying control device comprising means for calculating and setting a lifting amount when lifting from a model surface by adding a certain set value to the stored height amount.
JP7729381A 1981-05-21 1981-05-21 Profiling controlling device Granted JPS57194859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7729381A JPS57194859A (en) 1981-05-21 1981-05-21 Profiling controlling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7729381A JPS57194859A (en) 1981-05-21 1981-05-21 Profiling controlling device

Publications (2)

Publication Number Publication Date
JPS57194859A JPS57194859A (en) 1982-11-30
JPS6159866B2 true JPS6159866B2 (en) 1986-12-18

Family

ID=13629826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7729381A Granted JPS57194859A (en) 1981-05-21 1981-05-21 Profiling controlling device

Country Status (1)

Country Link
JP (1) JPS57194859A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094255A (en) * 1983-10-31 1985-05-27 Fanuc Ltd Working by machine tool
JPH0663850A (en) * 1992-08-20 1994-03-08 Fanuc Ltd Method for controlling non-contact copying

Also Published As

Publication number Publication date
JPS57194859A (en) 1982-11-30

Similar Documents

Publication Publication Date Title
JP2810709B2 (en) Non-contact profile control device
JPS6219986B2 (en)
US4476369A (en) EDM Method of and apparatus for machining cavities using a plurality of independently movable segmented electrodes
EP0494314B1 (en) Non-contact copy control device
EP0446370B1 (en) Non-contact profile control apparatus
JPS6159866B2 (en)
EP0520075B1 (en) Non-contact digitizing method
US4688179A (en) Tracer control system
EP0506966B1 (en) Non-contact copy control device
JPS6159865B2 (en)
WO1991002624A1 (en) Profile control apparatus
EP0081589A1 (en) Numerical control device
US4747734A (en) Profiling apparatus
EP0420990B1 (en) Profile control device
JPS6049542B2 (en) Tracing control method
JPS6056848A (en) Machining data producing system
JPH0732980B2 (en) Three-dimensional shape processing method
JPS58202770A (en) Surface grinding machine
JP2685832B2 (en) Numerically controlled grinding machine
JPS6435607A (en) Path data preparing system
JPS6159864B2 (en)
JPS637441Y2 (en)
SU142119A1 (en) System control software for machine tools
JP2790809B2 (en) Contour copying method
JPS55157410A (en) Method of rough working by drilling tool