JPS6159860B2 - - Google Patents

Info

Publication number
JPS6159860B2
JPS6159860B2 JP55108502A JP10850280A JPS6159860B2 JP S6159860 B2 JPS6159860 B2 JP S6159860B2 JP 55108502 A JP55108502 A JP 55108502A JP 10850280 A JP10850280 A JP 10850280A JP S6159860 B2 JPS6159860 B2 JP S6159860B2
Authority
JP
Japan
Prior art keywords
temperature
thermal displacement
sensor
control device
numerical control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55108502A
Other languages
Japanese (ja)
Other versions
JPS5733938A (en
Inventor
Satoru Yoshida
Isao Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP10850280A priority Critical patent/JPS5733938A/en
Publication of JPS5733938A publication Critical patent/JPS5733938A/en
Publication of JPS6159860B2 publication Critical patent/JPS6159860B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control

Description

【発明の詳細な説明】 本発明は工作機械の熱変位補正に係り、特に主
軸方向の伸びを補正する機能を備えた数値制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to correction of thermal displacement of a machine tool, and particularly to a numerical control device having a function of correcting elongation in the direction of the main axis.

工作機械の熱変位については種々の対策が提案
されている。特にマシニングセンタにおいては三
次元構造である点からしてもその熱変位の問題に
対する各種の対策が積極的に行われている。これ
らの対策案をまとめてみると、 例えば、 (イ) 発熱そのものを減少させる方法 (ロ) 熱交換による熱の除去 (ハ) ウオーミングアツプの実施 (ニ) 熱対称構造の採用 (ホ) 熱変位補正装置の採用 (ヘ) 雰囲気コントロール(例えばシヤワによる) などの各種方法があり上記(イ)、(ロ)、(ハ)、(ニ)は多

採用されて来ているが(ホ)についてはほとんど実施
されていないのが現状である。
Various countermeasures have been proposed for thermal displacement of machine tools. In particular, since machining centers have a three-dimensional structure, various measures are being actively taken to address the problem of thermal displacement. To summarize these countermeasures, for example, (a) Methods to reduce heat generation itself (b) Removal of heat through heat exchange (c) Implementation of warming-up (d) Adoption of thermally symmetrical structure (e) Thermal displacement There are various methods such as adoption of correction devices (f), atmosphere control (for example, by showering), and the above (a), (b), (c), and (d) have been widely adopted, but regarding (e), The current situation is that it is almost never implemented.

このことは(イ)〜(ニ)の対策によりX−Y座標方向
の変位は少くなつてきたがZ軸即ち主軸々方向の
伸びについては一般に精度がX、Y軸方向に比べ
それほど必要ではないという事情もあつたと思わ
れる。
This means that displacement in the X-Y coordinate direction has been reduced by taking measures (a) to (d), but in general, as for the elongation in the Z-axis, that is, the principal axes, as much precision is not required as compared to the X and Y-axis directions. It seems that there was also a situation.

しかしこのZ軸方向における加工精度について
も次第に要求される精度は高まりつゝあり、更に
は無人化等への対応からも対策の必要が迫られて
いる。
However, the required machining accuracy in the Z-axis direction is gradually increasing, and countermeasures are also becoming necessary in response to unmanned systems.

本発明はZ軸方向の熱変位は機械を構成する構
成部材の温度勾配に起因するものとして、Z軸方
向における最大発熱部である主軸頭ノーズ部の温
度と比較的温度変化の少ない他の部分の温度との
温度差と主軸頭ノーズ部の熱変位との関係式を求
め、測定した温度差に従つて熱変位を補正しよう
とするものである。
The present invention assumes that the thermal displacement in the Z-axis direction is caused by the temperature gradient of the structural members constituting the machine, and that the temperature of the spindle head nose, which is the largest heat generating part in the Z-axis direction, and other parts where the temperature changes are relatively small. The purpose of this method is to find a relational expression between the temperature difference with the temperature of the spindle head and the thermal displacement of the nose portion of the spindle head, and correct the thermal displacement according to the measured temperature difference.

以下本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は横型マシニングセンタMTの側面概観
図であり、同図11はコラムベツドで同ベツド1
1上にはコラム12がZ方向に摺動可能に載置さ
れている。又コラムベツド11の左方端はサドル
13、テーブル14の搭載されているベツド11
Aが設けられている。
Figure 1 is a side view of the horizontal machining center MT, and Figure 11 is a column bed.
A column 12 is mounted on the column 1 so as to be slidable in the Z direction. Also, the left end of the column bed 11 is the bed 11 on which the saddle 13 and table 14 are mounted.
A is provided.

15はコラム12内に収納されY方向に移動さ
れる主軸頭先端部を構成する主軸頭ノーズであつ
てその内部には主軸軸受部を内蔵している。尚1
6は自動工具交換に用いられる工具マガジンであ
る。
Reference numeral 15 denotes a spindle head nose constituting the tip of the spindle head which is housed in the column 12 and moved in the Y direction, and has a spindle bearing section built therein. Sho 1
6 is a tool magazine used for automatic tool exchange.

主軸頭ノーズ15にはセンサ位置S1において
温度検出用のセンサt1が取付けられており又も
う1つのセンサt2がコラムベツド11の右端近
傍のセンサ位置S1に取付けられている。センサ
位置S2の位置としてはこのマシニングセンタ
MTの機体温度が比較的安定しており稼動中も
ほゞ一定に保たれる位置であることが好ましい。
従つてセンサ位置S1とS2のZ方向間隔はこの
場合直接意味をもつているわけではない。
A temperature detection sensor t1 is attached to the spindle head nose 15 at a sensor position S1, and another sensor t2 is attached at a sensor position S1 near the right end of the column bed 11. This machining center is the location of sensor position S2.
It is preferable that the temperature of the MT body is relatively stable and maintained at a substantially constant temperature during operation.
Therefore, the distance between the sensor positions S1 and S2 in the Z direction does not have any direct meaning in this case.

第2図は温度上昇テストの一例を示すデータを
グラフ化して示すものであり横軸は主軸回転数
(rpm)及び同回転数の保持される経過時間をと
り、縦軸には温度(℃)をとり、センサ位置S
1,S2での温度変化およびセンサの種類として
ICセンサ、アルコール温度計による温度の推移
を示す。
Figure 2 shows a graph of data showing an example of a temperature rise test.The horizontal axis shows the spindle rotation speed (rpm) and the elapsed time during which the same rotation speed is maintained, and the vertical axis shows the temperature (°C). and sensor position S
1. Temperature change in S2 and sensor type
Shows temperature changes using IC sensor and alcohol thermometer.

第3図イ,ロは主軸を3150rpmで3.5時間駆動
した場合の時間経過に対するZ軸方向の変位(同
図イ)および温度変化(同図ロ)を示す。
Figures 3A and 3B show the displacement in the Z-axis direction (Figure 3A) and temperature change (Figure 3B) over time when the spindle was driven at 3150 rpm for 3.5 hours.

同図イにおいてはテストバー先端の変位と主軸
端面の変位およびコラム、コラムベツド間の変位
をそれぞれ示す。
Figure A shows the displacement of the tip of the test bar, the displacement of the end face of the main shaft, and the displacement between the column and column bed, respectively.

同図ロには主軸頭ノーズに内蔵されている主軸
軸受部(センサ位置S1)でのICセンサとアル
コール温度計による温度変化およびコラムベツド
位置(センサ位置S2)におけるICセンサによ
る温度変化と室温の変化を示す。
Figure B shows temperature changes due to the IC sensor and alcohol thermometer at the spindle bearing built into the spindle head nose (sensor position S1), and temperature changes due to the IC sensor and room temperature changes at the column bed position (sensor position S2). shows.

第4図はそれぞれICセンサ、アルコール温度
計による主軸端面の熱変位の推移を示すグラフで
あつてその横軸座標にはセンサ位置S1,S2に
おける温度差Δt=t1−t2をとつてある。各セン
サによるグラフは主軸を3150rpmで駆動し、3.5
時間でほゞ熱的平衡状態に達したあと主軸回転を
停止せしめた場合に対応しており、矢印で示すよ
うに点P1,P2まで変位の増大するグラフ部分
は主軸駆動中に対応している。
FIG. 4 is a graph showing the transition of thermal displacement of the spindle end face measured by an IC sensor and an alcohol thermometer, respectively, and the abscissa axis indicates the temperature difference Δt=t1−t2 at the sensor positions S1 and S2. The graph from each sensor is 3.5 when the main shaft is driven at 3150 rpm.
This corresponds to the case where the spindle rotation is stopped after almost reaching a thermal equilibrium state over time, and the graph part where the displacement increases up to points P1 and P2 as shown by the arrow corresponds to when the spindle is being driven. .

図の如くヒステリシスがあるのはコラムやベツ
ド等の機械部材の熱的な慣性の存在によるもので
ある。
The reason why there is hysteresis as shown in the figure is due to the presence of thermal inertia of mechanical members such as columns and beds.

同図の直線Lは上述の各グラフ曲線を代表させ
るため実験データに基づいて得た温度(差)Δt
に関する1つの近似的直線であつてその実験式と
して以下の如く構成される。
The straight line L in the same figure is the temperature (difference) Δt obtained based on experimental data to represent each of the above-mentioned graph curves.
One approximate straight line for , and its empirical formula is constructed as follows.

ZCOMP=ZTMPA/100・(t1−t2)・24/1000+ZTMPB −(1) ここに ZCOMP;Z軸方向熱変位補正量(ミクロン) t1;主軸頭ノーズ部温度(ICセンサ温度) t2;コラムベツド温度(ICセンサ温度) ZTMPA;シスステムパラメータ 0≦ZTMPA≦999 ZTMPB;システムパラメータ −200≦ZTMPB≦200 上記式(1)の定数ZTMPA、ZTMPBを実験デー
タによつて定めると、 ZCOMP638/100(t1−t2)−26 (2) となる。
ZCOMP=ZTMPA/100・(t1−t2)・24/1000+ZTMPB −(1) Here, ZCOMP; Z-axis direction thermal displacement correction amount (microns) t1; Spindle head nose temperature (IC sensor temperature) t2; Column bed temperature ( IC sensor temperature) ZTMPA; System parameter 0≦ZTMPA≦999 ZTMPB; System parameter -200≦ZTMPB≦200 When the constants ZTMPA and ZTMPB in the above equation (1) are determined by experimental data, ZCOMP638/100 (t1-t2 )−26 (2).

第5図は第1図に示される本実施例において各
センサによつて検出された温度信号が数値制御装
置CNCへ入力される回路構成を示しており、同
図で101,102は温度センサであつてセンサ
位置S1,S2に取付けられた同センサ101,
t1,102,t2の各検知温度t1,t2は電
気信号に変換され増幅器103,104へ与えら
れる。
FIG. 5 shows a circuit configuration in which temperature signals detected by each sensor are input to the numerical control device CNC in the present embodiment shown in FIG. The same sensor 101 installed at sensor positions S1 and S2,
The detected temperatures t1, t2, t1, t2 are converted into electrical signals and provided to amplifiers 103, 104.

105はセレクタであつてセンサ101,10
2を数値制御装置CNCにとり込むため増幅器1
03,104を順次切換える。
105 is a selector and the sensors 101, 10
Amplifier 1 to incorporate 2 into the numerical control device CNC
03 and 104 sequentially.

106はアナログデイジタル変換器(A/D変
換器)107Aは同A/D変換器106の出力を
2進数で表わしこれを保持するバツフアユニツト
である。
106 is an analog-to-digital converter (A/D converter), and 107A is a buffer unit that represents the output of the A/D converter 106 as a binary number and holds it.

107はi/Oユニツトで前記バツフアユニツ
ト107Aをその中に含み又セレクタ105への
切換指令が同107からセレクタ105へ与えら
れている。108は数値制御装置CNCの演算処
理装置CPU、又109,110はそれぞれデー
タメモリ、プログラムメモリである。
Reference numeral 107 denotes an I/O unit which includes the buffer unit 107A, and a switching command to the selector 105 is given from the I/O unit 107 to the selector 105. 108 is an arithmetic processing unit CPU of the numerical control device CNC, and 109 and 110 are data memory and program memory, respectively.

第6図はX,Y,Z軸方向へ移動指令が与えら
れる場合同移動量に対し熱変位補正量を関与せし
めるプロセスを示すフローチヤートであつて第5
図のプログラムメモリ(P・M)110の一部で
ある。
FIG. 6 is a flowchart showing the process of making the thermal displacement correction amount involved in the amount of movement when a movement command is given in the X, Y, and Z axis directions.
This is a part of the program memory (P/M) 110 shown in the figure.

同図においてプログラムステツプSTj−2は次
のサンプリング時間での各軸サーボ指令値(今Z
軸のみを考えるとΔZに相当する)を計算する。
次いでSTj−1においてピツチ誤差補正処理が行
われSTj−2での演算結果ΔZに対しΔZPが加え
られる。次いで熱変位補正用のプログラムステツ
プSTjに移り先ずSTj1でセンサt1での検出温
度t1をデータメモリ109にとり込み、次いで
STj2でセンサt2での検出温度t2をとり込
む。次にSTj3でその差Δt=t1−t2を計算す
る。
In the same figure, program step STj-2 is the servo command value for each axis (now Z) at the next sampling time.
If only the axis is considered, calculate ΔZ).
Next, pitch error correction processing is performed in STj-1, and ΔZP is added to the calculation result ΔZ in STj-2. Next, the program moves to step STj for thermal displacement correction, and in STj1, the temperature t1 detected by the sensor t1 is loaded into the data memory 109, and then
At STj2, the temperature t2 detected by the sensor t2 is taken in. Next, in STj3, the difference Δt=t1−t2 is calculated.

次にSTj4において ZCOMP=ZCOMP/100×(t1−t2)×24/1000+ZTMPB が計算される。ここにZTMPA、ZTMPBはデー
タメモリ109内に予じめストアされている。
Next, in STj4, ZCOMP=ZCOMP/100×(t1−t2)×24/1000+ZTMPB is calculated. ZTMPA and ZTMPB are stored in the data memory 109 in advance.

STj5では ΔZCOMP(n)=ZCOMP(n)−ZCOMP(n−1) として前回(n−1)の補正量算出値と今回
(n)のそれとの差ΔZCOMP(n)が計算され
る。
In STj5, the difference ΔZCOMP(n) between the previous correction amount calculation value (n-1) and the current correction amount calculation value (n) is calculated as ΔZCOMP(n)=ZCOMP(n)−ZCOMP(n−1).

次にSTj6においてSTj5の出力ΔZCOMP
(n)がSTj−1での出力 ΔZ+ΔZP に加えられ、 ΔZ=ΔZ+ΔZP+ΔZCOMP となる。
Next, in STj6, the output ΔZCOMP of STj5
(n) is added to the output ΔZ+ΔZP at STj-1, resulting in ΔZ=ΔZ+ΔZP+ΔZCOMP.

STj+1はバツクラツシユ補正処理であつてZ
軸駆動系のバツクラツシユ補正量ΔZBがTj6の
出力ΔZに対し賦与されたのちサーボ系に与えら
れるようになつている。
STj+1 is a backlash correction process and Z
The backlash correction amount ΔZB of the shaft drive system is applied to the output ΔZ of Tj6 and then applied to the servo system.

尚STj1〜STj6のステツプはピツチエラー補
正処理STj−1よりも手前で遂行されるようにし
てもよいが必ずバツクラツシユ補正処理STj+1
の前になければならないことは当然である。
Note that the steps STj1 to STj6 may be performed before the pitch error correction processing STj-1, but they must be performed before the pitch error correction processing STj+1.
Of course, it must be in front of.

第7図イ,ロ,ハはパートプログラムのZ軸方
向移動指令内容(シーケンス番号N001、N002)
に対するZ軸移動Z=1000、F=100とセンサt
1,t2の温度差および補正のなされるタイミン
グを示す。各信号の横軸はZ軸方向座標値を示
す。
Figure 7 A, B, and C are part program Z-axis movement command contents (sequence numbers N001 and N002)
Z-axis movement Z = 1000, F = 100 and sensor t
1 and t2 and the timing at which correction is made. The horizontal axis of each signal indicates the coordinate value in the Z-axis direction.

第7図では補正の動作が実際におこなわれるの
はそれぞれプログラムブロツクごとに行われる例
を示した。
FIG. 7 shows an example in which the correction operation is actually performed for each program block.

第8図イ,ロ,ハではより一般的な補正動作を
示しており1つの移動指令が有効である間第6図
のプログラムフローSTj1〜STj6がサーボ出力
ΔZ(STj−2)の出力される毎にΔZCOMPが
すなわち ΔZCOMP(1)、ΔZCOMP(2)、ΔZCOMP(3) ………ΔZCOMP(n) が次々と与えられることを示す。尚各サンプル時
刻iでΔt=t1−t2が変化しなければΔZCOMP
(i)は零である。
Figure 8 A, B, and C show more general correction operations, and while one movement command is valid, the program flow STj1 to STj6 in Figure 6 is the servo output ΔZ (STj-2). ΔZCOMP(1), ΔZCOMP(2), ΔZCOMP(3)...ΔZCOMP(n) are given one after another. If Δt=t1−t2 does not change at each sample time i, ΔZCOMP
(i) is zero.

尚温度差Δt=t1−t2の検出精度を向上させる
ため10回のサンプリング(セレクタの切換)を行
ない最大値と最小値を除去した平均値をΔtとす
るようにしている。即ち である。
In order to improve the detection accuracy of the temperature difference Δt=t1−t2, sampling is performed 10 times (by switching the selector), and the average value obtained by removing the maximum value and minimum value is set as Δt. That is, It is.

第9図は熱変位補正を行つた場合のデータをプ
ロツトしたものであり、主軸端面位置の変位が補
正しない場合に比し大幅に減少していることがわ
かる。
FIG. 9 is a plot of data when thermal displacement correction is performed, and it can be seen that the displacement of the spindle end face position is significantly reduced compared to the case where no correction is made.

尚以上の説明においてはZ軸についてのみ説明
したが、他の移動軸X,Y方向についても適用さ
れることはいうまでもない。そのためにはX,Y
軸方向にセンサt1X,t2Xを設けるだけでよ
い。又補正のため関数を一次式として示したがこ
れもt1−t2の範囲に応じて適宜システムパラメー
タZTMPA、ZTMPBを他の値に選択すること、
やさらに現在のマシニングセンタMTの温度状態
がそれまでの主軸駆動状態からみて第4図の矢視
がどちらの側に対応しているかなどを考慮して前
記パラメータを適宜修正するようなことも容易に
可能である。
In the above explanation, only the Z-axis was explained, but it goes without saying that the explanation is also applicable to the other moving axes in the X and Y directions. For that purpose, X, Y
It is sufficient to simply provide sensors t1X and t2X in the axial direction. Also, although the function is shown as a linear equation for correction, the system parameters ZTMPA and ZTMPB should be selected to other values as appropriate depending on the range of t1-t2.
Moreover, it is also easy to modify the above parameters as appropriate, taking into account the current temperature state of the machining center MT and to which side the arrow in Fig. 4 corresponds from the previous spindle drive state. It is possible.

以上説明したように本発明によれば2個のセン
サを機械中に取付け、又数値制御装置CNC内に
温度補正用のプログラムを設けるだけで主軸駆動
に伴う熱変位補正を行うことが可能となりとくに
第6図のフローに示す如く移動指令中Δtの変化
がある場合絶えずこれに伴う変位を補正できるよ
うになつているので高い精度で加工ができる。
As explained above, according to the present invention, it is possible to compensate for thermal displacement associated with spindle drive simply by installing two sensors in the machine and providing a temperature compensation program in the numerical controller CNC. As shown in the flowchart of FIG. 6, if there is a change in Δt during a movement command, the displacement accompanying this change can be constantly corrected, so that machining can be performed with high accuracy.

又とくに主軸方向(Z)の熱変位はほとんど主
軸頭ノーズ近傍において発生するので本発明にお
いては補正動作に関してZ軸の現在位置やパート
プログラムにて指令される移動量と関係なく補正
量を決定できるのでプログラム処理が簡単であり
各サーボ出力(ΔZ)ごとに補正量を組み入れる
ことができるものである。
In addition, since most of the thermal displacement in the spindle direction (Z) occurs near the spindle head nose, in the present invention, the correction amount can be determined for the correction operation regardless of the current position of the Z-axis or the movement amount commanded by the part program. Therefore, the programming process is simple and the correction amount can be incorporated for each servo output (ΔZ).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はマシニングセンタの側面概観図、第2
図は温度上昇テストを示すグラフ、第3図は主軸
を3150rpmで駆動したときの温度及変位の状態を
示すグラフ、第4図は各センサの温度差に対する
主軸端面の変位を示すグラフ、第5図はセンサと
数値制御装置との結合を示すブロツク図、第6図
は熱変位補正のプロセスを示すフローチヤート、
第7図イ,ロ,ハは移動指令が与えられる毎に補
正を行う場合の説明図、第8図イ,ロ,ハはほゞ
連続して補正を行わしめる場合の説明図、第9図
は補正を行つた場合の主軸端面の熱変位を示すグ
ラフである。 11……コラムベツド、12……コラム、13
……サドル、14……テーブル、15……主軸頭
ノーズ、16……工具マガジン、S1,S2……
センサ位置。
Figure 1 is a side view of the machining center, Figure 2
Figure 3 is a graph showing the temperature rise test, Figure 3 is a graph showing the state of temperature and displacement when the spindle is driven at 3150 rpm, Figure 4 is a graph showing the displacement of the spindle end face with respect to the temperature difference between each sensor, and Figure 5 The figure is a block diagram showing the connection between the sensor and the numerical control device, and Figure 6 is a flowchart showing the process of thermal displacement correction.
Figure 7 A, B, and C are explanatory diagrams when the correction is performed every time a movement command is given. Figure 8 A, B, and C are explanatory diagrams when the correction is performed almost continuously. Figure 9 is a graph showing the thermal displacement of the spindle end face when correction is performed. 11... Column bed, 12... Column, 13
... Saddle, 14 ... Table, 15 ... Spindle head nose, 16 ... Tool magazine, S1, S2 ...
sensor position.

Claims (1)

【特許請求の範囲】[Claims] 1 工作機械の熱変位を補正する数値制御装置に
おいて、前記工作機械の主軸頭部の温度を検知す
る第1のセンサと前記工作機械の比較的温度変化
の少ない機体部分の温度を検知する第2のセンサ
を用いて検知した2ケ所の温度の差(Δt)と主
軸の伸び量との関係を表わす温度差−熱変位量の
関数式をプログラムメモリ内にストアすると共
に、前記主軸に対し軸方向移動指令が与えられた
状態で前記数値制御装置内での補間演算に伴つて
出力されるサーボ出力(ΔZ)に対し前記関数式
から得られる熱変位補正量(ΔZCOMP)を賦与
せしめるプログラムステツプをストアするプログ
ラムメモリを有する熱変位補正機能を備えた数値
制御装置。
1. In a numerical control device for correcting thermal displacement of a machine tool, a first sensor detects the temperature of the spindle head of the machine tool, and a second sensor detects the temperature of a body part of the machine tool where temperature changes are relatively small. A temperature difference-thermal displacement function expression representing the relationship between the temperature difference (Δt) at two locations detected using the sensor and the amount of elongation of the main shaft is stored in the program memory, and the axial direction relative to the main shaft is stored in the program memory. Stores a program step that gives a thermal displacement correction amount (ΔZCOMP) obtained from the above functional formula to the servo output (ΔZ) outputted as a result of interpolation calculation in the numerical control device when a movement command is given. Numerical control device with thermal displacement correction function and program memory.
JP10850280A 1980-08-07 1980-08-07 Numerical value controlling device with heat displacement compensating function Granted JPS5733938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10850280A JPS5733938A (en) 1980-08-07 1980-08-07 Numerical value controlling device with heat displacement compensating function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10850280A JPS5733938A (en) 1980-08-07 1980-08-07 Numerical value controlling device with heat displacement compensating function

Publications (2)

Publication Number Publication Date
JPS5733938A JPS5733938A (en) 1982-02-24
JPS6159860B2 true JPS6159860B2 (en) 1986-12-18

Family

ID=14486395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10850280A Granted JPS5733938A (en) 1980-08-07 1980-08-07 Numerical value controlling device with heat displacement compensating function

Country Status (1)

Country Link
JP (1) JPS5733938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7676338B2 (en) 2006-12-11 2010-03-09 Okuma Corporation Method for detecting abnormality of temperature sensor in machine tool
US7766541B2 (en) 2006-12-18 2010-08-03 Okuma Corporation Method for detecting abnormality of temperature sensor in machine tool

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237104A (en) * 1987-03-25 1988-10-03 Mori Seiki Seisakusho:Kk Numerically controlled machine tool for correcting thermal displacement
JP3413068B2 (en) * 1997-08-19 2003-06-03 オークマ株式会社 Estimation method of thermal displacement of machine tools
KR101355232B1 (en) * 2012-04-12 2014-01-27 현대위아 주식회사 Compensating apparatus for thermal deformation in machine tool and driving method thereof
JP5892850B2 (en) * 2012-05-10 2016-03-23 三菱電機株式会社 Machine tool and thermal displacement correction method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182466A (en) * 1975-01-17 1976-07-20 Niigata Engineering Co Ltd Kosakukikainiokeru netsuheni no hoshohoho
JPS5190083A (en) * 1975-02-06 1976-08-06 Kosakukikaino netsuhenihoseisochi
JPS51115378A (en) * 1975-04-03 1976-10-09 Shin Nippon Koki Kk Method and apparatus for correcting thermal deformation in machine too l
JPS54123674A (en) * 1978-03-17 1979-09-26 Okuma Mach Works Ltd Method of and device for compensating positioning temperature for numerical control machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182466A (en) * 1975-01-17 1976-07-20 Niigata Engineering Co Ltd Kosakukikainiokeru netsuheni no hoshohoho
JPS5190083A (en) * 1975-02-06 1976-08-06 Kosakukikaino netsuhenihoseisochi
JPS51115378A (en) * 1975-04-03 1976-10-09 Shin Nippon Koki Kk Method and apparatus for correcting thermal deformation in machine too l
JPS54123674A (en) * 1978-03-17 1979-09-26 Okuma Mach Works Ltd Method of and device for compensating positioning temperature for numerical control machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7676338B2 (en) 2006-12-11 2010-03-09 Okuma Corporation Method for detecting abnormality of temperature sensor in machine tool
US7766541B2 (en) 2006-12-18 2010-08-03 Okuma Corporation Method for detecting abnormality of temperature sensor in machine tool

Also Published As

Publication number Publication date
JPS5733938A (en) 1982-02-24

Similar Documents

Publication Publication Date Title
JP5399624B2 (en) Numerical control method and numerical control device
JP5905158B2 (en) Numerical controller
JP3405965B2 (en) Thermal displacement compensation method for machine tools
US10234843B2 (en) Thermal displacement correction device for machine tool
US6701212B2 (en) Lost motion correction system and lost motion correction method for numerical control machine tool
US5779405A (en) Thermal displacement correcting apparatus for machine tool
JP4803491B2 (en) Position correction device for machine tool
JPH11333670A (en) Thermal deformation error measuring and correcting system for machine tool
JPH08174380A (en) Method and device for correcting thermal displacement for machine tool
US5408758A (en) System for compensating spatial errors
CN115398360A (en) Machine tool control and method for feature map-based error compensation on a machine tool
JP2009009274A (en) Numerical controller
JPH05116053A (en) Thermal displacement compensation method for machine tool
JPS6159860B2 (en)
JP2566345B2 (en) Processing machine
JPH0747257B2 (en) Method for correcting thermal displacement of machine tool and its control device
JPH106183A (en) Thermal displacement correction amount calculating method for machine tool
JP2544790B2 (en) Method and apparatus for correcting positioning error in machine tool feed system
JP2006116654A (en) Thermal deformation correction method and thermal deformation correcting device of nc machine tool
JP4469681B2 (en) Method for correcting machining errors of machine tools
JPH08229774A (en) Deformation correcting machining method for machine tool
JPH05169351A (en) Thermal displacement compensation method of machine tool
JP2004154907A (en) Thermal displacement correction method and device for multishaft machining tool
JP2017144527A (en) Correction method of thermal displacement of machine tool
JP3520145B2 (en) Thermal displacement compensation method for machine tools