JPS6159701A - Method of producing polymer positive temperature coefficientresistor - Google Patents

Method of producing polymer positive temperature coefficientresistor

Info

Publication number
JPS6159701A
JPS6159701A JP18026784A JP18026784A JPS6159701A JP S6159701 A JPS6159701 A JP S6159701A JP 18026784 A JP18026784 A JP 18026784A JP 18026784 A JP18026784 A JP 18026784A JP S6159701 A JPS6159701 A JP S6159701A
Authority
JP
Japan
Prior art keywords
positive temperature
temperature characteristic
manufacturing
characteristic material
metal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18026784A
Other languages
Japanese (ja)
Other versions
JPH0342482B2 (en
Inventor
石田 隆文
仁 三宅
隆 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP18026784A priority Critical patent/JPS6159701A/en
Publication of JPS6159701A publication Critical patent/JPS6159701A/en
Publication of JPH0342482B2 publication Critical patent/JPH0342482B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高分子正温度特性抵抗体の製造法に関し、詳し
くは正温度特性材料と金属電極との接着強度が大きく、
寿命が長く、しかもソリや変形がなく、品質の安定した
高分子正温度特性抵抗体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a polymeric positive temperature characteristic resistor, and more specifically, the present invention relates to a method for manufacturing a polymeric positive temperature characteristic resistor, which has a high adhesive strength between a positive temperature characteristic material and a metal electrode, and
This invention relates to a method for manufacturing a polymeric positive temperature characteristic resistor that has a long life, is free from warping or deformation, and has stable quality.

結晶性高分子重合体にカーボンブラックなどの導電性粒
子を配合した組成物は、その電気抵抗値が特定の温度領
域に達すると急激に増大する正温度特性を有している。
A composition in which conductive particles such as carbon black are blended into a crystalline polymer has positive temperature characteristics such that its electrical resistance value increases rapidly when it reaches a specific temperature range.

このような特性を利用して温度の検出や制御をする試み
が種々なされている(特公昭36−16338号、同4
2−23288号など)。
Various attempts have been made to detect and control temperature using these characteristics (Japanese Patent Publication No. 36-16338, No. 4).
2-23288 etc.).

しかしながら、これら正温度特性抵抗体には電極を取付
けて用いるが、結晶性高分子重合体組成物に対して単に
金属電極を圧着しただけでは、両者間の接着強度が小さ
く、このため剥がれやすかったり、長期1間繰返し使用
することにより抵抗値が次第に増大するなど寿命が短い
という問題があった。また、ソリや変形を生じやすく、
品質が一定でないなど実用上きわめて不十分なものであ
った。
However, these positive temperature characteristic resistors are used with electrodes attached, but if a metal electrode is simply crimped onto a crystalline polymer composition, the adhesive strength between the two is low, and it may peel off easily. However, when used repeatedly for a long period of time, the resistance value gradually increases, resulting in a short lifespan. In addition, it is easy to cause warping and deformation,
It was extremely unsatisfactory in practice, with inconsistent quality.

本発明は上記従来の問題点を解消し、寿命が長く、しか
もソリや変形がなく、品質の安定した高分子正温度特性
抵抗体の製・造法を提供することを目的とするものであ
る。
It is an object of the present invention to solve the above-mentioned conventional problems and to provide a method for manufacturing a polymeric positive temperature characteristic resistor that has a long life, is free from warping or deformation, and has stable quality. .

すなわち本発明は、結晶性高分子重合体と導電性粒子か
らなる正温度特性材料に金属電極を取付けて高分子正温
度特性抵抗体を製造するにあたり、正温度特性材料を結
晶性高分子重合体の融点以上に加熱溶融したのち、該正
温度特性材料と金属電極を圧着し、次いでこのようにし
て得られる圧着体に対して加圧と脱圧を断続的に繰り返
したのち、該圧着体を加圧状態において冷却することを
特徴とする高分子正温度特性抵抗体の製造法を提供する
ものである。
That is, in the present invention, when manufacturing a polymer positive temperature characteristic resistor by attaching a metal electrode to a positive temperature characteristic material consisting of a crystalline polymer and conductive particles, the positive temperature characteristic material is a crystalline polymer. After heating and melting the positive temperature characteristic material to a temperature higher than the melting point of The present invention provides a method for manufacturing a polymer positive temperature characteristic resistor, which is characterized by cooling in a pressurized state.

本発明において用いる結晶性高分子重合体としては特に
制限はなく様々なものを挙げることができるが、通常は
ポリエチレン、ポリプロピレンなどのポリオレフィンあ
るいはオレフィン系共重合体、各種ポリアミド、ポリエ
ステル、フッ素系重合体などが用いられる。
The crystalline polymer used in the present invention is not particularly limited and can include various types, but usually polyolefins such as polyethylene and polypropylene, olefin copolymers, various polyamides, polyesters, and fluorine polymers. etc. are used.

次に導電性粒子としては種々のものを使用することがで
きる。具体的にはカーボンブラック、グラファイト、金
属粒子あるいはこれらの混合物などが挙げられ、特にカ
ーボンブラック、グラファイトおよびこれらの混合物が
好適である。これらは通常平均粒径が5mp”1μ、好
ましくは10mμ〜100mμのものである。
Next, various types of conductive particles can be used. Specific examples include carbon black, graphite, metal particles, and mixtures thereof, with carbon black, graphite, and mixtures thereof being particularly preferred. These usually have an average particle size of 5 mp" 1 .mu., preferably 10 m.mu. to 100 .mu.m.

本発明の正温度特性材料は、上記結晶性高分子重合体と
導電性粒子からなるものであるが、さらにこの材料に架
橋処理を行なってもよい、架橋は一般に行なわれている
有機過酸化物などの架橋剤を加える方法や、放射線など
のエネルギー線を照射する方法などによって行なわれる
The positive temperature characteristic material of the present invention is composed of the above-mentioned crystalline polymer and conductive particles, but this material may be further crosslinked. This can be done by adding a cross-linking agent such as, or by irradiating energy rays such as radiation.

各成分の配合量は特に制限はなく目的とする物性等によ
り異なり、一義的に決定することはできないが、通常は
結晶性高分子重合体40〜85重量%。
The blending amount of each component is not particularly limited and varies depending on the desired physical properties, etc., and cannot be unambiguously determined, but it is usually 40 to 85% by weight of the crystalline polymer.

導電性粒子60〜15重量%、好ましくは結晶性高分子
重合体45〜65重景%、導電性粒子55〜35重量%
である。
Conductive particles 60-15% by weight, preferably crystalline polymer 45-65% by weight, conductive particles 55-35% by weight
It is.

本発明の正温度特性材料は、結晶性高分子重合体に所定
量の導電性粒子を添加した後、充分に混練することによ
り製造される。この混練はバンバリーミキサ−など通常
の混MJ、機を用いて行なえばよく、通常120〜25
0℃で5〜40分間行なえばよい。
The positive temperature characteristic material of the present invention is produced by adding a predetermined amount of conductive particles to a crystalline polymer and then thoroughly kneading the mixture. This kneading may be carried out using a normal mixing machine such as a Banbury mixer, and is usually 120 to 25
It may be carried out at 0°C for 5 to 40 minutes.

なお、この正温度特性材料の形態としてはこれをシーロ
フィルムなどに成形したものであってもよいし、粉末状
のものであってもよい。
Note that the positive temperature characteristic material may be formed into a sealing film or the like, or may be in the form of a powder.

本発明の方法においては、このようにして得られる正温
度特性材料を前記結晶性高分子重合体の融点以上に加熱
溶融する加熱時間は通常20分間以内とすればよい。
In the method of the present invention, the heating time for heating and melting the positive temperature characteristic material thus obtained above the melting point of the crystalline polymer may generally be within 20 minutes.

次いで加熱溶融された正温度特性材料と金属電極を圧着
する。
Next, the heated and melted positive temperature characteristic material and the metal electrode are pressed together.

ここで金属電極としては金属箔、金属板、金属線、金属
網などが用いられる。また、金属の種類としては導電性
の良好な金属であればよく、種々のものを使用すること
ができる。特に金属箔としては電解銅箔、電解ニッケル
箔などが好適に用いられる。
Here, as the metal electrode, metal foil, metal plate, metal wire, metal net, etc. are used. Further, as for the type of metal, any metal having good conductivity may be used, and various metals can be used. In particular, as the metal foil, electrolytic copper foil, electrolytic nickel foil, etc. are preferably used.

また、正温度特性材料と金属電極の圧着は種々の方法に
より行なうことができ、特に制限はないが、通常熱プレ
ス、圧着ロールなどにより行なえばよい。この圧着を行
なうにあたり、正温度特性材料の表裏両面に同時に金属
電極を圧着すると、接着力が均等になり、ソリや変形が
生じないので好ましい。
Further, the pressure-bonding of the positive temperature characteristic material and the metal electrode can be carried out by various methods, and although there are no particular limitations, it may be carried out usually by hot press, pressure roll, etc. When carrying out this pressure bonding, it is preferable to simultaneously press the metal electrodes on both the front and back surfaces of the positive temperature characteristic material because the adhesive force becomes uniform and no warpage or deformation occurs.

なお、この圧着に際しては正温度特性材料の金属電極圧
着面が予め酸化処理してあるものを用いることが好まし
い。この正温度特性材料の金属電極圧着面の酸化処理は
例えばオゾン、酸素、酸化窒素、過酸化水素などを用い
て行なわれる。ここでオゾン処理は通常1〜209A程
度の濃度のオゾン含有ガスで接触処理することにより行
なわれる。
In this case, it is preferable to use a positive temperature characteristic material whose surface to which the metal electrode is pressed has been oxidized in advance. The oxidation treatment of the surface of the positive temperature characteristic material to which the metal electrode is pressed is performed using, for example, ozone, oxygen, nitrogen oxide, hydrogen peroxide, or the like. Here, the ozone treatment is usually carried out by contact treatment with an ozone-containing gas having a concentration of about 1 to 209A.

酸化処理の条件は酸化処理の種類のほか目的とする物性
や使用する結晶性高分子重合体の種類等により異なり一
義的に決定することはできないが、通常20〜80℃の
温度で10分〜6時間である。
The conditions for oxidation treatment vary depending on the type of oxidation treatment, the desired physical properties, the type of crystalline polymer used, etc., and cannot be determined unambiguously, but they are usually carried out at a temperature of 20 to 80°C for 10 minutes or more. It is 6 hours.

次に、このようにして得られる正温度特性材料と金属電
極との圧着体に対して加圧と脱圧を断続的に繰返す、こ
こで、加圧の際の圧力は通常50〜200 kg / 
am ”程度であり、また加圧と脱圧の繰返し回数は加
圧条件、結晶性高分子重合体の種類等により一義的に定
めることは困難であるが、通常2〜20回程度である。
Next, pressurization and depressurization are intermittently repeated on the crimped body of the positive temperature characteristic material and the metal electrode obtained in this way. Here, the pressure during pressurization is usually 50 to 200 kg /
am'', and the number of repetitions of pressurization and depressurization is usually about 2 to 20 times, although it is difficult to unambiguously determine it depending on the pressurization conditions, the type of crystalline polymer, etc.

この加圧・脱圧操作を行なうことにより十分に脱気され
る。ここで、この加圧・脱圧操作を行なわないと、圧着
した正温度特性材料と金属電極との間に気体が含まれる
こととなり、充分な圧着強度を得ることができず、また
長期間の繰返し使用に耐えられないものとなる。
By carrying out this pressurization/depressurization operation, the air can be sufficiently degassed. If this pressurization/depressurization operation is not performed, gas will be contained between the crimped positive temperature characteristic material and the metal electrode, making it impossible to obtain sufficient crimping strength and making it difficult to maintain long-term durability. It becomes unbearable after repeated use.

さらに、本発明においては上記の如く加圧・脱圧操作が
繰返し行なわれた圧着体を、加圧状態において冷却する
。この操作の際の条件としては通常50〜200 kg
/am”の加圧下に冷却する。このように加圧下に冷却
を行なうことにより、成形歪を防止することができる。
Furthermore, in the present invention, the crimped body that has been repeatedly subjected to pressurization and depressurization operations as described above is cooled in a pressurized state. The conditions for this operation are usually 50 to 200 kg.
/am''. By performing cooling under pressure in this manner, molding distortion can be prevented.

ここで圧力をかけないで冷却すると、得られる正温度特
性抵抗体にソリが生じたり、金属電極の剥離を起こしや
すくなるので好ましくない。
If the resistor is cooled without applying pressure, the resultant positive temperature characteristic resistor may warp or the metal electrode may easily peel off, which is not preferable.

叙上の如く、目的とする高分子正温度特性抵抗体を製造
することができる。
As described above, the desired polymer positive temperature characteristic resistor can be manufactured.

本発明の方法により得られる高分子正温度特性抵抗体は
、正温度特性材料と金属電極との接着強度が大きく、こ
のため剥がれにくく長期間繰返し使用しても電気抵抗が
増大するなどの虞れがなく、長期間に亘り使用すること
ができる。
The polymer positive temperature characteristic resistor obtained by the method of the present invention has a high adhesive strength between the positive temperature characteristic material and the metal electrode, and therefore is difficult to peel off and has no risk of increasing electrical resistance even after repeated use over a long period of time. It can be used for a long period of time.

しかも本発明の方法により得られる高分子正温度特性抵
抗体はソリや変形がなく、きわめて品質の安定したもの
である。
Moreover, the polymer positive temperature characteristic resistor obtained by the method of the present invention is free from warpage and deformation and has extremely stable quality.

したがって、本発明は感熱抵抗素子1発熱体などに用い
られる正温度特性抵抗体の製造に有効に利用することが
できる。
Therefore, the present invention can be effectively utilized for manufacturing a positive temperature characteristic resistor used for the heating element of the heat-sensitive resistance element 1, etc.

次に、実施例により本発明をさらに詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 結晶性高分子重合体として融点135℃の高密度ポリエ
チレン(出光石油化学(株)製、出光ポリエチレン52
0 B) 100重量部に対して、平均粒径43mμの
カーボンブラック(三菱化成工業(株)製、ダイヤブラ
ックE)75重量部を配合し、バンバリーミキサ−によ
り160〜165℃で20分間混練したのち、架橋剤と
して2.5−ジメチル−2゜5−ジ(t−ブチルパーオ
キシ)ヘキシン−3を0.5重量部添加して正温度特性
材料を得た0次に、この材料を熱プレス成形機により、
190℃で5分間プレスして肉厚IIIIII+のシー
トに成形した。
Example 1 High-density polyethylene with a melting point of 135°C (manufactured by Idemitsu Petrochemical Co., Ltd., Idemitsu Polyethylene 52) as a crystalline polymer
0B) 75 parts by weight of carbon black (manufactured by Mitsubishi Chemical Industries, Ltd., Diablack E) having an average particle size of 43 mμ was blended with 100 parts by weight, and the mixture was kneaded for 20 minutes at 160 to 165°C using a Banbury mixer. Later, 0.5 parts by weight of 2.5-dimethyl-2.5-di(t-butylperoxy)hexyne-3 was added as a crosslinking agent to obtain a positive temperature characteristic material.Next, this material was heated By press molding machine,
It was pressed at 190° C. for 5 minutes to form a sheet with a wall thickness of III+.

得られたシートを一辺30cmの正方形に切り出し、こ
のシートの表裏両面に肉厚35μの電解銅箔を重ね合せ
てプレス成形機に装着し、190℃において10分間保
持することによりシートを溶融させた。
The obtained sheet was cut into a square with a side of 30 cm, electrolytic copper foil with a thickness of 35 μm was layered on both the front and back sides of this sheet, and the sheet was placed in a press molding machine and held at 190° C. for 10 minutes to melt the sheet. .

次いでこの積層物を150kg/cm”の圧力で圧着し
て2分間保持した後、急激に脱圧した。この加圧・脱圧
の操作を10回繰返した後、150 kg/ Cff1
”に加圧した状態で室温まで冷却した。
Next, this laminate was pressed at a pressure of 150 kg/cm", held for 2 minutes, and then rapidly depressurized. After repeating this pressurization/depressurization operation 10 times, a pressure of 150 kg/cm" was applied.
It was cooled to room temperature under pressure.

このようにして得られた積層シートから一辺1.50の
正方形の試験片を切り出し、25℃における比抵抗値お
よび130℃昇温した際の25℃における電気抵抗値に
対する抵抗増大倍率を測定した。さらに、120℃に保
持して長時間放置した後の比抵抗の変化率を測定した。
A square test piece of 1.50 mm on a side was cut out from the laminated sheet thus obtained, and the specific resistance value at 25°C and the resistance increase magnification relative to the electrical resistance value at 25°C when the temperature was raised to 130°C were measured. Furthermore, the rate of change in specific resistance after being maintained at 120° C. for a long time was measured.

また、上記積層シートを幅15mmの短冊状に切り出し
、JIS−に−6854に準じて電解銅箔の180°剥
離試験を行なった。以上の結果を第1表に示す。
Further, the above laminated sheet was cut into strips having a width of 15 mm, and a 180° peeling test of electrolytic copper foil was conducted in accordance with JIS-6854. The above results are shown in Table 1.

比較例1 実施例1において、加圧・脱圧操作の繰返しを行なわな
かったこと以外は、実施例1と同様にして行なった。結
果を第1表に示す。
Comparative Example 1 The same procedure as in Example 1 was conducted except that the pressurization and depressurization operations were not repeated. The results are shown in Table 1.

比較例2 実施例1において、室温まで冷却したときの加圧を・行
なわなかったこと以外は、実施例1と同様にして行なっ
た。結果を第1表に示す。
Comparative Example 2 The same procedure as in Example 1 was carried out except that the pressurization upon cooling to room temperature was not performed. The results are shown in Table 1.

Claims (6)

【特許請求の範囲】[Claims] (1)結晶性高分子重合体と導電性粒子からなる正温度
特性材料に金属電極を取付けて高分子正温度特性抵抗体
を製造するにあたり、正温度特性材料を結晶性高分子重
合体の融点以上に加熱溶融したのち、該正温度特性材料
と金属電極を圧着し、次いでこのようにして得られる圧
着体に対して加圧と脱圧を断続的に繰り返したのち、該
圧着体を加圧状態において冷却することを特徴とする高
分子正温度特性抵抗体の製造法。
(1) When manufacturing a polymer positive temperature characteristic resistor by attaching a metal electrode to a positive temperature characteristic material consisting of a crystalline polymer and conductive particles, the positive temperature characteristic material is used at the melting point of the crystalline polymer. After heating and melting as described above, the positive temperature characteristic material and the metal electrode are crimped, and then pressure is applied and depressurized intermittently to the crimped body obtained in this way, and then the crimped body is pressurized. 1. A method for producing a polymer positive temperature characteristic resistor characterized by cooling in a state.
(2)正温度特性材料が、結晶性高分子重合体と導電性
粒子との混練物のシートである特許請求の範囲第1項記
載の製造法。
(2) The manufacturing method according to claim 1, wherein the positive temperature characteristic material is a sheet of a kneaded product of a crystalline polymer and conductive particles.
(3)正温度特性材料が、結晶性高分子重合体と導電性
粒子からなる粉末である特許請求の範囲第1項記載の製
造法。
(3) The manufacturing method according to claim 1, wherein the positive temperature characteristic material is a powder consisting of a crystalline polymer and conductive particles.
(4)正温度特性材料の表裏両面に同時に金属電極を圧
着する特許請求の範囲第1項記載の製造法。
(4) The manufacturing method according to claim 1, wherein metal electrodes are simultaneously pressed onto both the front and back surfaces of the positive temperature characteristic material.
(5)正温度特性材料の金属電極圧着面が予め酸化処理
してあるものを用いる特許請求の範囲第1項記載の製造
法。
(5) The manufacturing method according to claim 1, which uses a positive temperature characteristic material whose surface to which the metal electrode is pressed has been oxidized in advance.
(6)金属電極が電解鋼箔または電解ニッケル箔からな
るものである特許請求の範囲第1項記載の製造法。
(6) The manufacturing method according to claim 1, wherein the metal electrode is made of electrolytic steel foil or electrolytic nickel foil.
JP18026784A 1984-08-31 1984-08-31 Method of producing polymer positive temperature coefficientresistor Granted JPS6159701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18026784A JPS6159701A (en) 1984-08-31 1984-08-31 Method of producing polymer positive temperature coefficientresistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18026784A JPS6159701A (en) 1984-08-31 1984-08-31 Method of producing polymer positive temperature coefficientresistor

Publications (2)

Publication Number Publication Date
JPS6159701A true JPS6159701A (en) 1986-03-27
JPH0342482B2 JPH0342482B2 (en) 1991-06-27

Family

ID=16080245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18026784A Granted JPS6159701A (en) 1984-08-31 1984-08-31 Method of producing polymer positive temperature coefficientresistor

Country Status (1)

Country Link
JP (1) JPS6159701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138701A (en) * 1986-11-29 1988-06-10 日本メクトロン株式会社 Manufacture of ptc device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138701A (en) * 1986-11-29 1988-06-10 日本メクトロン株式会社 Manufacture of ptc device

Also Published As

Publication number Publication date
JPH0342482B2 (en) 1991-06-27

Similar Documents

Publication Publication Date Title
JP3930905B2 (en) Conductive polymer composition and device
EP0517372B1 (en) Method of manufacturing a PTC device
US5039844A (en) PTC devices and their preparation
KR100355487B1 (en) Electrical Devices Containing Conductive Polymers
JPH11502374A (en) Electrical device
JPH08512174A (en) Conductive polymer composition
WO2005122190A1 (en) Polymer ptc device
US5817423A (en) PTC element and process for producing the same
JPH0369163B2 (en)
JPS6159701A (en) Method of producing polymer positive temperature coefficientresistor
JPH11214203A (en) Positive temperature coefficient element and manufacture thereof
JPS63244702A (en) Ptc device and manufacture of the same
JPS63312601A (en) Conductive polymer ptc resistance element and manufacture thereof
JPH0935906A (en) Polymer based ptc element and its manufacture
JPH06318504A (en) Ptc element
JPS6387705A (en) Ptc device
JP2007317994A (en) Overcurrent protecting element and its manufacturing method
JPH01186783A (en) Manufacture of heater element of positive temperature characteristic
JPS6143633A (en) Production of heat-sensitive resistant electrically-conductive composition
JPH0418681B2 (en)
JPS60226101A (en) Method of producing positive temperature coefficient resistor
JPS6165402A (en) Heat sensitive resistive conductive material and method of producing same
JPS63110602A (en) Ptc device and manufacture of the same
JPS6142901A (en) Method of producing thermosensitive resistive conductive composition
JPS6142902A (en) Method of producing thermosensitive resistive conductive composition