JPS6159386B2 - - Google Patents

Info

Publication number
JPS6159386B2
JPS6159386B2 JP3477982A JP3477982A JPS6159386B2 JP S6159386 B2 JPS6159386 B2 JP S6159386B2 JP 3477982 A JP3477982 A JP 3477982A JP 3477982 A JP3477982 A JP 3477982A JP S6159386 B2 JPS6159386 B2 JP S6159386B2
Authority
JP
Japan
Prior art keywords
weight
flux
parts
cao
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3477982A
Other languages
Japanese (ja)
Other versions
JPS58151433A (en
Inventor
Kiichi Narita
Toshio Onoe
Takehisa Makino
Teruo Ishii
Tatsuhiko Sodo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3477982A priority Critical patent/JPS58151433A/en
Publication of JPS58151433A publication Critical patent/JPS58151433A/en
Publication of JPS6159386B2 publication Critical patent/JPS6159386B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、スラグ―メタル間の反応平衡を制御
してTi及びAlの高歩留を達成することのできる
Ti及びAl含有Ni基およびCo基超合金のエレクト
ロスラグ再溶解法に関するものである。 TiやAl等の活性金属を含有する超合金の溶製
法としては、真空アーク再溶解法(VAR)やエ
レクトロスラグ再溶解法(ESR)などを適用す
ることが考えられるが、後者の方法ではスラグ―
メタル反応の平衡を把握することが困難とされ、
たとえAr等の不活性ガスを用いてもスラグによ
るTiやAl等の酸化還元反応が進行して夫々の歩
留りが適中せず、生産における品質管理上の問題
が多かつた。従つてESR法の実施に際しては、
鋼種毎に、或いは超合金の銘柄毎に夫々最適の
ESR条件を求めるのが一般的とされ、特にフラ
ツクス組成については手探りで最適組成を求める
というのが実情であつた。その為止むを得ず
VARに頼るということが多かつたのであるが、
文献的に考察すると、機械的性質等の鋳塊品質面
ではESRの方が優れており、又本発明者等の実
験によると凝固組織(一方凝固)についても
ESRの方が良好であることを確認している。従
つてESRにおけるスラグ―メタル反応を高度に
制御することによつてTiやAl等の歩留りを高く
且つ好適中率で生産し得る方法の確立が強く望ま
れている。 本発明はこの様な事情に着目してなされたもの
であつて、特にTi及びAlを一定の比率で含有す
るNi基およびCo基超合金をESRで溶製するのに
適したフラツクス組成を、電極中のTi及びAl含
有率に基づいて見出し、該フラツクスを用いるこ
とによつてTi及びAlの歩留りを高レベルに維持
してNi基およびCo基超合金を製造することので
きる方法を提供しようとするものである。 しかして本発明に係るESRとは、Ti:0.2重量
%(以下単に%と記載)以上、Al:0.2%以上を
含むと共にlog([%Ti]/[%Al])≦2を
満足するNi基およびCo基超合金のエレクトロス
ラグ再溶解法であつて、CaO,Al2O3,TiO2の総
和を100重量部としたときの各成分含有量が
CaO:20〜65重量部、Al2O3:28〜65重量部、
TiO2:16重量部以下を含み、且つ 0.85log([%Ti]/[%Al])≦−0.68292
+0.0745(X−40)+0.0177(Y−40)+0.3471
(Z−5)−(0.00103(X−40)2+0.00346(Y−
40)2−0.0277(Z−5)+0.00001(X−40)3
0.00003(Y−40)3+0.00175(Z−5)
1.15log([%Ti]/[%Al]) ……(1) 〔但し式において[%Ti]及び[%Al]は電
極中におけるTi及びAlの各含有重量百分率(以
下単に百分率)、X,Y,Zは前記3成分の総和
を100重量部としたときのCaO,Al2O3,TiO2
各成分の含有重量部を夫々表わす〕 を満足する組成のCaO―Al2O3―TiO2系フラツク
ス或いはこれに媒溶剤としてCaF2を加えてなる
フラツクスを選定して不活性雰囲気下でESRを
行なう点に要旨を有するものである。 Ti及びAlのスラグ―メタル反応は次に示す平
衡式で表わされる。 4[Al]+3(TiO2
3[Ti]+2(Al2O3) ……(2) 従つてlog([%Ti]/[%Al])は、次式
(3)に示す如くlog[(%Al2O32/(%TiO23]の
関数で表わすことができる(但しKは反応の平衡
定数、fは活量係数を示す)。 log([%Ti]/[%Al]) =logK−log[(%Al2O32/(%TiO23] −log[fAl2O32/fTiO23] −log[fTi3/fAl4] ……(3) 一方Ni基およびCo基超合金におけるESR用フ
ラツクスとしては、一般にCaF2−CaO系、CaF2
―CaO―Al2O3系、CaF2―Al2O3系等が用いられ
ており、文献のうちあるものはCaF2を希釈剤と
考えている。そこでCaO―Al2O3―TiO2系を主構
成とし、必要に応じ媒溶剤としてのCaF2を加え
ることによつてフラツクス全体の融点や電気伝導
度等の物性を調整してなるフラツクスと、Ti及
びAlの含有率を変化させた種々のNi基超合金の
電極を用い、不活性ガス(Ar)雰囲気下でESR
〓〓〓〓
を行なつた。(2)式の反応がほぼ平衡に達したと考
えられる溶解末期のスラグ組成から求めたlog
[(%Ti)3/(%Al)4]をその時の[CaO―Al2O3
―TiO2]3元系グラフ上にプロツトして、等log
[(%Ti)3/(%Al)4]線を描いたのが第1図であ
る。 このように合金種や操業条件にかかわらず、等
log[(%Ti)3/(%Al)4]曲線が描けるというこ
とは、とりもなおさず(3)式の右辺の第1項,第3
項および第4項がほぼ定数的に扱い得るものであ
ることを意味している。そこでこの第1図におけ
る各曲線を満足する様な2次関数式及び3次関数
式を求めたところ、前者としては log([%Ti]/[%Al])=−0.98434+
0.08332(X−40)+0.0301(Y−40)+0.40012
(Z−5)−0.00052(X−40)2+0.00278(Y−
40)2−0.01443(Z−5) ……(4) 又後者としては、 log([%Ti]/[%Al])=−0.68292+
0.0745(X−40)+0.0177(Y−40)+0.3471(Z
−5)−0.00103(X−40)2+0.00346(Y−40)2
0.0277(Z−5)+0.00001(X−40)3
0.00003(Y−40)3+0.00175(Z−5) ……(5) (但し[%Ti],[%Al],X,Y及びZの意味
は前と同じ) となることが分かつた。即ち電極の[%Ti]及
び[%Al]が決定されれば、(4)式又は(5)式(必
要であれば4次関数以上の多元式にしたものを用
いても良い)に従つてフラツクスのCaO,Al2O3
及びTiO2組成を決定することができるが、該決
定に基づいて調製されたフラツクスを用いたとこ
ろTi及びAlの歩留りが90%以上の極めて高いレ
ベルにあることが分かつた。又(4)式及び(5)式を用
いない場合は、第1図の曲線上のポイントからフ
ラツクスを定めるが、log([%Ti]/[%Al]
)値が1.9,1.8,1.45……等の様に第1図に示
した各曲線の間に相当するときは、各曲線の曲り
具合いから夫々比例的に対応曲線を描き、該曲線
上のポイントからフラツクス組成を定めることも
可能である。しかし精度面からすればグラフから
求めるより関数式に基づく方が望ましく、又同じ
関数式の場合でも2次式(4)より3次式(5)の方が望
ましいことは当然であつて言う迄もない。そこで
本発明者等は前記3次式に基づくこととし、種々
の電極と種々のフラツクスを用いて不活性ガス雰
囲気下でESRを行ない鋳塊中へのTi及びAlの歩
留を検討したところ、第1表に示す様な結果が得
られた。なお第1表には大気下でESRをおこな
つた結果もあわせて示した。
The present invention can achieve high yields of Ti and Al by controlling the reaction equilibrium between slag and metal.
This paper relates to an electroslag remelting method for Ni-based and Co-based superalloys containing Ti and Al. Vacuum arc remelting (VAR) and electroslag remelting (ESR) may be applied as methods for melting superalloys containing active metals such as Ti and Al. ―
It is said that it is difficult to understand the equilibrium of metal reactions,
Even if an inert gas such as Ar is used, the oxidation-reduction reaction of Ti, Al, etc. due to the slag progresses, resulting in inconsistent yields and many problems in quality control during production. Therefore, when implementing the ESR method,
The optimal one for each type of steel or brand of superalloy.
It is said that it is common to find ESR conditions, and the reality is that the optimum composition, especially for flux composition, is found by groping. Therefore, it is unavoidable
We often relied on VAR, but
Considering the literature, ESR is superior in terms of ingot quality such as mechanical properties, and according to experiments by the present inventors, it is also superior in terms of solidification structure (on the other hand, solidification).
It has been confirmed that ESR is better. Therefore, there is a strong desire to establish a method that can produce Ti, Al, etc. at a high yield and at a suitable medium rate by highly controlling the slag-metal reaction in ESR. The present invention was made with attention to such circumstances, and in particular, a flux composition suitable for melting Ni-based and Co-based superalloys containing Ti and Al in a certain ratio by ESR, The present invention aims to provide a method for manufacturing Ni-based and Co-based superalloys while maintaining a high yield of Ti and Al by using the flux found based on the Ti and Al content in the electrode. That is. Therefore, the ESR according to the present invention includes Ti: 0.2% by weight or more (hereinafter simply referred to as %), Al: 0.2% or more, and satisfies log([%Ti] 3 /[%Al] 4 )≦2. This is an electroslag remelting method for Ni -based and Co-based superalloys, in which the content of each component is
CaO: 20 to 65 parts by weight, Al2O3 : 28 to 65 parts by weight,
Contains TiO2 : 16 parts by weight or less, and 0.85log ([%Ti] 3 /[%Al] 4 )≦-0.68292
+0.0745 (X-40) +0.0177 (Y-40) +0.3471
(Z-5)-(0.00103(X-40) 2 +0.00346(Y-
40) 2 -0.0277(Z-5) 2 +0.00001(X-40) 3 -
0.00003(Y-40) 3 +0.00175(Z-5) 3
1.15log ([%Ti] 3 / [%Al] 4 ) ...(1) [In the formula, [%Ti] and [%Al] are the respective weight percentages of Ti and Al contained in the electrode (hereinafter simply referred to as percentages) , X, Y, and Z represent the parts by weight of each component of CaO, Al 2 O 3 , and TiO 2 when the total of the three components is 100 parts by weight. 3 - The main point is to select a TiO 2 -based flux or a flux made by adding CaF 2 as a solvent to it and perform ESR in an inert atmosphere. The slag-metal reaction of Ti and Al is expressed by the equilibrium equation shown below. 4 [Al] + 3 (TiO 2 )
3[Ti]+2(Al 2 O 3 )...(2) Therefore, log([%Ti] 3 /[%Al] 4 ) is calculated by the following formula
As shown in (3), it can be expressed as a function of log [(%Al 2 O 3 ) 2 /(%TiO 2 ) 3 ] (where K is the equilibrium constant of the reaction and f is the activity coefficient). log([%Ti] 3 / [%Al] 4 ) = logK−log [(%Al 2 O 3 ) 2 / (%TiO 2 ) 3 ] −log[f Al2O3 2/f TiO2 3] −log[f Ti 3/f Al 4]...(3) On the other hand, ESR fluxes for Ni-based and Co-based superalloys are generally CaF 2 -CaO system, CaF 2
-CaO-Al 2 O 3 system, CaF 2 -Al 2 O 3 system, etc. are used, and some literature considers CaF 2 to be the diluent. Therefore, we have created a flux whose main composition is CaO--Al 2 O 3 ---TiO 2 system, and by adding CaF 2 as a solvent if necessary, the physical properties such as the melting point and electrical conductivity of the entire flux are adjusted. ESR in an inert gas (Ar) atmosphere using various Ni-based superalloy electrodes with varying Ti and Al contents.
〓〓〓〓
I did this. log calculated from the slag composition at the final stage of dissolution, when the reaction in equation (2) is considered to have almost reached equilibrium.
[(%Ti) 3 / (%Al) 4 ] at that time [CaO-Al 2 O 3
―TiO 2 ] Plot it on the ternary graph and calculate the log
Figure 1 shows the [(%Ti) 3 /(%Al) 4 ] line drawn. In this way, regardless of alloy type or operating conditions,
The fact that the log [(%Ti) 3 / (%Al) 4 ] curve can be drawn means that the first and third terms on the right side of equation (3)
This means that the term and the fourth term can be treated as almost constants. Therefore, when we found quadratic and cubic function equations that satisfied each curve in Fig. 1, we found that the former was log([%Ti] 3 /[%Al] 4 ) = -0.98434+
0.08332 (X-40) + 0.0301 (Y-40) + 0.40012
(Z-5)-0.00052(X-40) 2 +0.00278(Y-
40) 2 −0.01443(Z−5) 2 …(4) Also, for the latter, log([%Ti] 3 /[%Al] 4 ) = −0.68292+
0.0745 (X-40) + 0.0177 (Y-40) + 0.3471 (Z
-5) -0.00103 (X-40) 2 +0.00346 (Y-40) 2 -
0.0277(Z-5) 2 +0.00001(X-40) 3 -
0.00003(Y-40) 3 +0.00175(Z-5) 3 ...(5) (However, the meanings of [%Ti], [%Al], X, Y, and Z are the same as before). Ta. In other words, once [%Ti] and [%Al] of the electrode are determined, according to equation (4) or (5) (if necessary, a multidimensional equation with a quartic function or higher may be used). CaO of flux, Al 2 O 3
When the flux prepared based on this determination was used, it was found that the yield of Ti and Al was at an extremely high level of 90% or more. If formulas (4) and (5) are not used, the flux is determined from the points on the curve in Figure 1, but log([%Ti] 3 /[%Al]
4 ) When the value corresponds to between the curves shown in Figure 1, such as 1.9, 1.8, 1.45, etc., draw a corresponding curve proportionally based on the degree of curvature of each curve, and It is also possible to determine the flux composition from the points. However, from an accuracy standpoint, it is better to use a functional formula rather than a graph, and it goes without saying that even for the same functional formula, cubic formula (5) is better than quadratic formula (4). Nor. Therefore, the present inventors conducted ESR in an inert gas atmosphere using various electrodes and various fluxes based on the above cubic equation, and investigated the yield of Ti and Al in the ingot. The results shown in Table 1 were obtained. Table 1 also shows the results of ESR conducted under atmospheric conditions.

【表】 〓〓〓〓
[Table] 〓〓〓〓

【表】 第1表に見られる通り、電極材に応じたlog
([%Ti]/[%Al])及び使用したフラツ
クスの組成から(5)式をもちいて求めたlog([%
Ti]/[%Al])(以下、それぞれ電極のlog
([%Ti]/[%Al])、使用フラツクスのlog
([%Ti]/[%Al]と略す)値がほぼ等し
い場合の歩留は極めて高いが、両方の値が大幅に
異なつている場合の歩留は不確定であり、特に
TiとAlの歩留バランスが大きく狂つていること
が分かつた。そこで電極と使用フラツクスのlog
([%Ti]/[%Al])値の不一致はどの程
度まで許容されるかについて夫々の歩留との観点
から検討したところ、±15%の枠内であれば実用
的に満足できる歩留と適中率が得られることを知
り、前記(1)式をもつて本発明の条件とした。 また大気下でESRをおこなつた場合にはTiと
Alの歩留は低下し、バラツキも大きくなる。従
つて不活性雰囲気下でESRを実施することが本
発明の下可欠条件である。 次に本発明における各数値条件の限定根拠を説
明する。 まずNi基やCo基超合金におけるTi及びAlの下
限については夫々0.2%と定めたのは、Ni基超合
金やCo基超合金の多くはTi及びAlが夫々約0.2以
上であり、したがつてそれより低いものは本対象
からはずした。またlog([%Ti]/[%Al]
)の上限を2と定めたのは、Ni基やCo基の多
くはlog([%Ti]/[%Al])が2以下であ
るためそれを超えるものは本対象からはずした。 尚Ni基超合金におけるTi及びAl以外の合金元
素については、Cr,Mo,Nb,Co,W,Cu,
B,V,Fe,C,Si,Mn或いはその他の不可避
的不純物が示されるが、Ni基及びCo基超合金の
範疇から逸脱しないものは新規及び公知の如何を
問わず本発明に含まれる。 次にフラツクスについては、CaO,Al2O3
TiO2の総和を100重量部としたときの各成分の含
有量を CaO:20〜65重量部 Al2O3:28〜65重量部 TiO2:16重量部以下 と定めたが、これらのうちCaO及びAl2O3を限定
した理由は次の通りである。 吸湿による水素のピツクアツプがあつてブロ
〓〓〓〓
ーホールが発生する(CaO過剰)。 品質の再現性が悪く、特にTiとAlの歩留が
変動する(CaO,Al2O3過剰および過小)。 操業安定性が悪い(同上) スラグの融点が高くなり過ぎる(同上)。 なお脱硫及び脱酸などを考慮した場合は、
CaO/Al2O3比を1以上にすることが望ましい。
又TiO2の上限を16重量部としたのは、メタルの
log([%Ti]/[%Al]の値を2以下と定め
たからであり、第1図に見られる如くTiO2が16
重量部を超えるのは、log([%Ti]/[%Al]
)が2を越える場合であり、本発明の対象外と
なる。 尚フラツクスの成分としては、CaOの一部を
MgOに変えても良好な結果が得られた。 尚フラツクス中には、融点や電気伝導度を調整
する為に前述の如くCaF2等を加えることがある
が、CaO,Al2O3,TiO2,MgO等の含有比率につ
いてはCaF2を除いた残部における比率と考える
べきであり、他方CaF2等についてはフラツクス
全量に対する比率と考えれば良い。この際CaF2
の含有率は70%以下とすべきであり、70%を越え
ると電気伝導度が著しく大きくなり、溶解の操業
性が悪くなるため限定した。 本発明は上記の如く構成されているから、今仮
にlog([%Ti]/[%Al])=1の電極を用
いる場合、前記(4),(5)式に従つても良いが、簡易
法として第1図に従うと、同図における(1.0)
で示される曲線上の任意の1点をとればよく、例
えばCaO=50%とすればAl2O3=41%,TiO2=9
%となり、CaO=60%とすればAl2O3=33%,
TiO2=7%となり、夫々のポイントから示され
るフラツクス組成を調製してESRに用いれば良
いが、フラツクスの半量(50%)をCaF2で構成
する場合には、前記比率を保持したままで 50CaF2−25CaO−20.5Al2O3−4.5TiO2又は 50CaF2−30CaO−16.5Al2O3−3.5TiO2 の各組成からなるフラツクスとすれば良い。 本発明では以上の如くして最適フラツクス組成
が定められるがESRの雰囲気としては、可及的
に不活性であることが望まれるので、ArやHe等
の不活性雰囲気下で行なうことが推奨され、茲に
Ti及びAlの歩留がバランスよく向上し、且つ適
中率が高まつた。従つてTi及びAlを含むNi基お
よびCo基超合金のESRによる溶製を手軽に行な
うことがきる様になり、VAR等による場合に比
べて良好な鋳塊を得ることも可能となつた。 次に本発明の実施例を説明する。 実施例 1 第2表に示す組成の電極材と第3表に示す組成
のフラツクスを用い、Ar雰囲気下でESRを行な
つた。得られた鋳塊におけるTi及びAlの歩留は
第4表に示す。
[Table] As seen in Table 1, the log according to the electrode material
([%Ti] 3 /[%Al] 4 ) and the composition of the flux used, log([%
Ti] 3 / [%Al] 4 ) (hereinafter, the log of each electrode
([%Ti] 3 / [%Al] 4 ), log of flux used
(abbreviated as [%Ti] 3 / [%Al] 4 ) When the values are almost equal, the yield is extremely high, but when both values are significantly different, the yield is uncertain, especially
It was found that the yield balance of Ti and Al was greatly out of balance. Therefore, the log of the electrode and flux used is
([%Ti] 3 / [%Al] 4 ) When considering the extent to which the value discrepancy is allowed from the perspective of each yield, it was found that it is practically satisfactory if it is within ±15%. Knowing that a yield and a precision value can be obtained, the above-mentioned formula (1) was used as the condition of the present invention. In addition, when ESR is performed in the atmosphere, Ti
The yield of Al decreases and the variation increases. Therefore, it is an essential condition of the present invention to perform ESR under an inert atmosphere. Next, the basis for limiting each numerical condition in the present invention will be explained. First, the lower limit of Ti and Al in Ni-based and Co-based superalloys was set at 0.2% each because in many Ni-based and Co-based superalloys, Ti and Al are each about 0.2% or more. However, those with lower values were excluded from this study. Also, log([%Ti] 3 /[%Al]
The upper limit of 4 ) was set at 2 because many Ni and Co groups have a log([%Ti] 3 /[%Al] 4 ) of 2 or less, so those exceeding that value were excluded from this study. . Alloying elements other than Ti and Al in Ni-based superalloys include Cr, Mo, Nb, Co, W, Cu,
B, V, Fe, C, Si, Mn or other unavoidable impurities are shown, but any new or known impurities that do not depart from the scope of Ni-based and Co-based superalloys are included in the present invention. Next, regarding flux, CaO, Al 2 O 3 ,
When the total amount of TiO 2 is 100 parts by weight, the content of each component is determined to be: CaO: 20 to 65 parts by weight, Al 2 O 3 : 28 to 65 parts by weight, TiO 2 : 16 parts by weight or less. The reason for limiting CaO and Al 2 O 3 is as follows. Hydrogen pick-up occurs due to moisture absorption.
- Holes are generated (CaO excess). Quality reproducibility is poor, especially the yield of Ti and Al fluctuates (too much and too little CaO, Al 2 O 3 ). Poor operational stability (same as above) Melting point of slag becomes too high (same as above). In addition, when considering desulfurization and deoxidation,
It is desirable that the CaO/Al 2 O 3 ratio is 1 or more.
The reason for setting the upper limit of TiO 2 to 16 parts by weight is because of the metal
This is because the value of log([%Ti] 3 /[%Al] 4 was set to be 2 or less, and as seen in Figure 1, TiO 2 is 16
Exceeding parts by weight is log([%Ti] 3 /[%Al]
4 ) exceeds 2, which is outside the scope of the present invention. As a component of the flux, some CaO is
Good results were obtained even after changing to MgO. As mentioned above, CaF 2 etc. may be added to the flux in order to adjust the melting point and electrical conductivity, but the content ratios of CaO, Al 2 O 3 , TiO 2 , MgO etc. are the same except for CaF 2. On the other hand, for CaF 2 etc., it can be considered as a ratio to the total amount of flux. At this time, CaF 2
The content should be 70% or less; if it exceeds 70%, the electrical conductivity will increase significantly and the operability of melting will deteriorate, so it was limited. Since the present invention is configured as described above, if an electrode with log([%Ti] 3 /[%Al] 4 )=1 is used, the above equations (4) and (5) may be followed. However, if we follow Figure 1 as a simplified method, (1.0) in the figure
It is sufficient to take any one point on the curve shown by, for example, if CaO = 50%, Al 2 O 3 = 41%, TiO 2 = 9
%, and if CaO = 60%, Al 2 O 3 = 33%,
TiO 2 = 7%, and the flux composition shown from each point can be prepared and used for ESR, but if half (50%) of the flux is composed of CaF 2 , the above ratio should be maintained. A flux having a composition of 50CaF 2 −25CaO−20.5Al 2 O 3 −4.5TiO 2 or 50CaF 2 −30CaO−16.5Al 2 O 3 −3.5TiO 2 may be used. In the present invention, the optimum flux composition is determined as described above, but since it is desired that the ESR atmosphere be as inert as possible, it is recommended that the ESR be carried out in an inert atmosphere such as Ar or He. , to the ground
The yield of Ti and Al was improved in a well-balanced manner, and the accuracy rate was also increased. Therefore, it has become possible to easily produce Ni-based and Co-based superalloys containing Ti and Al by ESR, and it has also become possible to obtain better ingots than when using VAR or the like. Next, examples of the present invention will be described. Example 1 ESR was conducted in an Ar atmosphere using electrode materials having the compositions shown in Table 2 and fluxes having the compositions shown in Table 3. The yields of Ti and Al in the obtained ingots are shown in Table 4.

【表】 〓〓〓〓〓
[Table] 〓〓〓〓〓

【表】【table】

【表】 第4表に示される様に、(5)式からのずれが±15
%以内のものではTiとAlの歩留が90%を示した
が±30%のものでは、Ti又はAlのいずれかに歩
留の異常低下を認めることがあつた。 実施例 2 第5表に示す組成の電極材と、該電極材のlog
([%Ti]/[%Al])値とほぼ同一の値を
示すフラツクス(第6表)を準備し、Ar雰囲気
下でESRを行なつた。得られた鋳塊におけるTi
及びAlの歩留は第7表に示す通りであつて、い
ずれの歩留も極めて高かつた。
[Table] As shown in Table 4, the deviation from equation (5) is ±15
When the yield was within ±30%, the yield of Ti and Al was 90%, but when the yield was within ±30%, an abnormal decrease in the yield of either Ti or Al was observed. Example 2 Electrode material with the composition shown in Table 5 and the log of the electrode material
A flux (Table 6) showing almost the same value as ([%Ti] 3 /[%Al] 4 ) was prepared and ESR was performed in an Ar atmosphere. Ti in the obtained ingot
The yields of Al and Al were as shown in Table 7, and all yields were extremely high.

【表】【table】

【表】 〓〓〓〓〓
[Table] 〓〓〓〓〓

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図はlog([%Ti]/[%Al])とフラ
ツクス組成の関係を示すグラフである。 〓〓〓〓〓
FIG. 1 is a graph showing the relationship between log([%Ti] 3 /[%Al] 4 ) and flux composition. 〓〓〓〓〓

Claims (1)

【特許請求の範囲】 1 Ti:0.2重量%以上、Al:0.2重量%以上を含
むと共にlog([%Ti]/([%Al])≦2を満
足するNi基およびCo基超合金のエレクトロスラ
グ再溶解法であつて、CaO,Al2O3,TiO2の総和
を100重量部としたときの各成分含有量がCaO:
20〜65重量部、Al2O3:28〜65重量部、TiO2:16
重量部以下である様に夫々必須的に含有すると共
に、 0.85log([%Ti]/([%Al])≦−
0.68292+0.0745(X−40)+0.0177(Y−40)+
0.3471(Z−5)−0.00103(X−40)2+0.00346
(Y−40)2−0.0277(Z−5)+0.00001(X−
40)3−0.00003(Y−40)3+0.00175(Z−5)
≦1.15log([%Ti]/([%Al]) [但し式において[%Ti]及び[%Al]は電
極中におけるTi及びAlの各含有重量百分率(以
下単に百分率)、X,Y,Zは前記3成分の総和
を100重量部としたときのCaO,Al2O3,TiO2
各成分の含有重量部を夫々表わす]を満足する組
成のCaO―Al2O3―TiO2系フラツクス或はこれに
更に媒溶剤としてCaF2を加えてなるフラツクス
を用いて不活性雰囲気下でエレクトロスラグ再溶
解を行なうことを特徴とするNi基およびCo基超
合金のエレクトロスラグ再溶解法。 2 特許請求の範囲第1項において、CaF2の含
有量をフラツクス全重量に対して70重量%以下と
したフラツクスを用いるエレクトロスラグ再溶解
法。 3 Ti:0.2重量%以上、Al:0.2重量%以上を含
むと共にlog([%Ti]/([%Al])≦2を満
足するNi基およびCo基超合金のエレクトロスラ
グ再溶解法であつて、CaO,MgO,Al2O3,TiO2
の総和を100重量部としたときの各成分含有量が
CaO+MgO:20〜65重量部、Al2O3:28〜65重量
部、TiO2:16重量部以下である様に夫々必須的
に含有すると共に、 0.85log([%Ti]/([%Al])≦−
0.68292+0.0745(X−40)+0.0177(Y−40)+
0.3471(Z−5)−0.00103(X−40)2+0.00346
(Y−40)2−0.0277(Z−5)+0.00001(X−
40)3−0.00003(Y−40)3+0.00175(Z−5)
≦1.15log([%Ti]/([%Al]) [但し式において[%Ti]及び[%Al]は電
極中におけるTi及びAlの各含有重量百分率(以
下単に百分率)、X,Y,Zは前記4成分の総和
を100重量部としたときのCaO+MgO,Al2O3
TiO2の各成分の含有重量部を夫々表わす] を満足する組成のCaO+MgO―Al2O3―TiO2系フ
ラツクス或はこれに更に媒溶剤としてCaF2を加
〓〓〓〓
えてなるフラツクスを用いて不活性雰囲気下でエ
レクトロスラグ再溶解を行なうことを特徴とする
Ni基およびCo基超合金のエレクトロスラグ再溶
解法。 4 特許請求の範囲第3項において、CaF2の含
有量をフラツクス全重量に対して70重量%以下と
したフラツクスを用いるエレクトロスラグ再溶解
法。
[Claims] 1 Ni-based and Co-based superalloys containing Ti: 0.2% by weight or more, Al: 0.2% by weight or more, and satisfying log([%Ti] 3 /([%Al] 4 )≦2 In this electroslag remelting method , the content of each component is CaO:
20-65 parts by weight, Al2O3 : 28-65 parts by weight, TiO2 : 16
Each is essential so that it is not more than part by weight, and 0.85log ([%Ti] 3 / ([%Al] 4 ) ≦-
0.68292+0.0745(X-40)+0.0177(Y-40)+
0.3471 (Z-5) - 0.00103 (X-40) 2 +0.00346
(Y-40) 2 -0.0277(Z-5) 2 +0.00001(X-
40) 3 -0.00003 (Y-40) 3 +0.00175 (Z-5) 3
≦1.15log ([%Ti] 3 / ([%Al] 4 ) Y and Z represent the parts by weight of each component of CaO, Al 2 O 3 , and TiO 2 when the sum of the three components is 100 parts by weight.] CaO--Al 2 O 3 ---TiO An electroslag remelting method for Ni-based and Co-based superalloys, which is characterized by performing electroslag remelting in an inert atmosphere using a 2- based flux or a flux obtained by adding CaF 2 as a solvent. 2 An electroslag remelting method using a flux in which the content of CaF 2 is 70% by weight or less based on the total weight of the flux, as set forth in claim 1. 3 Ti: 0.2% by weight or more, Al: 0.2% by weight % or more and satisfies log([%Ti] 3 /([%Al] 4 )≦2, the method is an electroslag remelting method for Ni-based and Co-based superalloys containing CaO, MgO, Al 2 O 3 , TiO2
The content of each component when the total sum is 100 parts by weight is
CaO + MgO: 20 to 65 parts by weight, Al 2 O 3 : 28 to 65 parts by weight, and TiO 2 : 16 parts by weight or less. Al] 4 )≦−
0.68292+0.0745(X-40)+0.0177(Y-40)+
0.3471 (Z-5) - 0.00103 (X-40) 2 +0.00346
(Y-40) 2 -0.0277(Z-5) 2 +0.00001(X-
40) 3 -0.00003 (Y-40) 3 +0.00175 (Z-5) 3
≦1.15log ([%Ti] 3 / ([%Al] 4 ) Y, Z are CaO + MgO, Al 2 O 3 when the total of the above four components is 100 parts by weight,
The content of each component of TiO 2 is expressed in parts by weight.] CaO + MgO - Al 2 O 3 - TiO 2 flux with a composition that satisfies the following, or CaF 2 is added as a solvent to this.
The method is characterized in that electroslag remelting is carried out under an inert atmosphere using a flux obtained from
Electroslag remelting method of Ni-based and Co-based superalloys. 4. The electroslag remelting method according to claim 3, using a flux in which the content of CaF 2 is 70% by weight or less based on the total weight of the flux.
JP3477982A 1982-03-04 1982-03-04 Electro-slag remelting method of ni and co superalloys Granted JPS58151433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3477982A JPS58151433A (en) 1982-03-04 1982-03-04 Electro-slag remelting method of ni and co superalloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3477982A JPS58151433A (en) 1982-03-04 1982-03-04 Electro-slag remelting method of ni and co superalloys

Publications (2)

Publication Number Publication Date
JPS58151433A JPS58151433A (en) 1983-09-08
JPS6159386B2 true JPS6159386B2 (en) 1986-12-16

Family

ID=12423768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3477982A Granted JPS58151433A (en) 1982-03-04 1982-03-04 Electro-slag remelting method of ni and co superalloys

Country Status (1)

Country Link
JP (1) JPS58151433A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565447B2 (en) * 1992-03-23 1996-12-18 株式会社日本製鋼所 Method for producing ingot of Ni-base super heat-resistant alloy
JP2565448B2 (en) * 1992-03-23 1996-12-18 株式会社日本製鋼所 Method for producing Ni-Fe based super heat-resistant alloy ingot
JP2007291504A (en) 2006-03-29 2007-11-08 Mitsubishi Materials Corp Arc starting material for electroslag remelting of superalloy and arc starting method employing the arc starting material
JP5818132B2 (en) * 2011-05-19 2015-11-18 日立金属株式会社 Ingot manufacturing method
CN113249607B (en) * 2021-04-02 2022-04-26 北京钢研高纳科技股份有限公司 Carbide-reinforced cobalt-based high-temperature alloy regulator and preparation method thereof
CN113981234B (en) * 2021-10-21 2023-10-27 重庆大学 Electroslag remelting method for nickel-based superalloy

Also Published As

Publication number Publication date
JPS58151433A (en) 1983-09-08

Similar Documents

Publication Publication Date Title
US4282420A (en) Welding electrode
JPH0214419B2 (en)
JPS6159386B2 (en)
JPS63100150A (en) Master alloy for producing titanium alloy and its production
JP3052746B2 (en) High strength and high ductility titanium alloy
EP0067494B1 (en) Welding electrode
US4605436A (en) Method of producing titanium alloys
EP4317467A1 (en) Duplex stainless steel wire rod, and duplex stainless steel wire
US4643874A (en) Method of making a titanium-containing hydrogen storage alloy
US4719330A (en) Welding electrode
US4585474A (en) Method of and prealloy for the production of titanium alloys
US4582533A (en) Method of and prealloy for the production of titanium alloys
JPS6263626A (en) Production of low oxygen ti alloy
JP2532160B2 (en) Ferritic stainless wire with excellent MIG welding workability
JP6982795B2 (en) Manufacturing method of boron-containing stainless steel
US4340805A (en) Welding electrode with a fluoride based slag system
JPH11199955A (en) Titanium alloy for casting, excellent in impact resistance
JPH0639636B2 (en) Flax for remelting electroslag of steel or alloy containing A (1) and Si
JPS6244535A (en) Flux for electroslag remelting method
US2158036A (en) Hack saw steel
US2834666A (en) Method for the production of metal powders
JP3225788B2 (en) Method for producing steel with excellent toughness in weld heat affected zone
EP3802899B1 (en) Silicon based alloy, method for the production thereof and use of such alloy
US3573902A (en) Yttrium-containing welding alloys
US3266892A (en) Columbium-hafnium base alloys with yttrium addition