JPS6158521B2 - - Google Patents

Info

Publication number
JPS6158521B2
JPS6158521B2 JP8272578A JP8272578A JPS6158521B2 JP S6158521 B2 JPS6158521 B2 JP S6158521B2 JP 8272578 A JP8272578 A JP 8272578A JP 8272578 A JP8272578 A JP 8272578A JP S6158521 B2 JPS6158521 B2 JP S6158521B2
Authority
JP
Japan
Prior art keywords
floating
floating layer
gas
raw material
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8272578A
Other languages
Japanese (ja)
Other versions
JPS5511122A (en
Inventor
Kenji Matsuda
Kazuo Sezaki
Makoto Shimizu
Kazuyuki Ishino
Tetsuo Horie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP8272578A priority Critical patent/JPS5511122A/en
Publication of JPS5511122A publication Critical patent/JPS5511122A/en
Publication of JPS6158521B2 publication Critical patent/JPS6158521B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • C21B13/146Multi-step reduction without melting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は浮遊式直接製鉄方法に関する。[Detailed description of the invention] The present invention relates to a floating direct steel manufacturing method.

原料炭の価格や需給の見通し、スクラツプ市場
の不安定さ、エネルギー問題、更には環境問題も
からんで高炉−転炉方式にかわるべき将来の製鉄
プロセスが種々提案され、そのひとつの還元鉄−
電気炉方式が注目を集めている。
Various future steelmaking processes have been proposed to replace the blast furnace-converter method due to the outlook for the price and supply and demand of coking coal, the instability of the scrap market, energy issues, and even environmental issues, and reduced iron production is one of them.
The electric furnace method is attracting attention.

環元鉄はロータリーキルン法、シヤフト炉法及
び流動層法等のいわゆる直接製鉄方法で製造され
るが、現在では操業の安定性、ガス利用率、還元
鉄の取扱い性等の点でロータリーキルン法、シヤ
フト炉法の二者が実用性の高いものとして先行し
ている。
Ring-based iron is produced by so-called direct iron manufacturing methods such as rotary kiln method, shaft furnace method, and fluidized bed method.Currently, rotary kiln method and shaft furnace method are used in terms of operational stability, gas utilization rate, ease of handling reduced iron, etc. The two furnace methods are leading the way as they are highly practical.

しかるに前者にあつては、固体還元剤と酸化鉄
原料とをキルン内で反応させた場合、両者の中間
に充分な気体の介在がないため、還元速度が遅
く、過剰な固体環元剤を用いるものは還元鉄と未
反応分の還元剤の分離が必要であり、又後者にあ
つてはガスと粒体とが向流ピストン流れであるた
めガス利用率及び熱交換率は高いが、実際の環元
反応に必要なガス量が顕熱的には過剰であるとい
う問題があつた。
However, in the case of the former, when the solid reducing agent and the iron oxide raw material are reacted in a kiln, there is not enough gas between them, so the reduction rate is slow, and it is necessary to use an excess of the solid reducing agent. In the latter case, it is necessary to separate the reduced iron and the unreacted reducing agent, and in the case of the latter, the gas and particles flow in countercurrent piston flow, so the gas utilization rate and heat exchange rate are high, but in reality There was a problem that the amount of gas required for the ring element reaction was excessive in terms of sensible heat.

そこで本出願人は、シヤフト炉形還元炉内に炭
素粉体から成る浮遊層を形成せしめると共に還元
ガスを還元炉の下方から上方へ送り、上方から供
給する酸化鉄を還元鉄にするいわゆる浮遊層法を
開発し出願した(特願昭51−157726号)。
Therefore, the present applicant has developed a so-called floating layer in which a floating layer of carbon powder is formed in a shaft-type reduction furnace, and reducing gas is sent from the bottom of the reduction furnace to the top to convert the iron oxide supplied from above into reduced iron. He developed a new law and filed an application (Patent Application No. 157726, 1983).

一方流動層は反応装置としては ○イ 粒体の比表面積が大きいので反応速度が大き
い。
On the other hand, a fluidized bed is suitable as a reaction device because the specific surface area of the particles is large, so the reaction rate is high.

○ロ ガス体と粒体の伝熱係数が大きいので、浮遊
層内の温度を均一に保つことができ、且つ温度
制御が容易である。
○ Since the heat transfer coefficient between the gas body and the granules is large, the temperature within the floating layer can be kept uniform and temperature control is easy.

○ハ 大量処理、連続操作がやり易く、自動制御方
式の採用が容易である。
○C It is easy to perform large-scale processing and continuous operation, and it is easy to adopt an automatic control system.

等の長所を有する反面、製鉄装置としては ○イ 完全混合のためガス側の反応効率が低下す
る。
On the other hand, as iron making equipment, it has the following advantages: Due to complete mixing, the reaction efficiency on the gas side decreases.

○ロ 流動層内温度の均一性が高温反応の場合熱回
収の不充分さを招く。
○B In the case of high-temperature reactions, the uniformity of the temperature within the fluidized bed leads to insufficient heat recovery.

○ハ 粒体による還元炉内の摩耗が大きい。○C There is a lot of wear inside the reduction furnace due to particles.

○ニ 粒体の凝集、付着の問題から反応条件に制約
を受ける。
○D Reaction conditions are restricted due to problems with agglomeration and adhesion of particles.

等の問題がある。There are other problems.

本発明は従来手段の有する上述の欠点を除去す
ることを目的としてなしたもので、その要旨とす
るところは、外部から供給された炭素物を加熱さ
れたガスにより浮遊させるようにした、少くとも
予備還元用の浮遊層と還元用の浮遊層とから成る
複数の浮遊層を形成すると共に該浮遊層の間に酸
化鉄原料を沈降させ、前記ガスと反応させて還元
鉄にし、前記予備還元用の浮遊層から出た後の排
ガスの一部を再加熱して最終還元用の浮遊層へ循
環させると共に該排ガスの残りを燃焼せしめて高
温ガスとし、該高温ガスによつて酸化鉄原料を予
熱し、酸化鉄原料予熱後の排ガスで浮遊層へ循環
させるガスの加熱を行うことを特徴とするもので
ある。
The present invention has been made with the aim of eliminating the above-mentioned drawbacks of the conventional means, and its gist is that at least A plurality of floating layers consisting of a floating layer for pre-reduction and a floating layer for reduction are formed, and an iron oxide raw material is precipitated between the floating layers, reacted with the gas to become reduced iron, and the raw material for the pre-reduction is A part of the exhaust gas after leaving the floating layer is reheated and circulated to the floating layer for final reduction, and the remainder of the exhaust gas is combusted to produce high-temperature gas, and the iron oxide raw material is preheated by the high-temperature gas. However, this method is characterized in that the exhaust gas after preheating the iron oxide raw material is used to heat the gas that is circulated to the floating layer.

以下本発明の実施例を図面に基いて説明する。 Embodiments of the present invention will be described below based on the drawings.

内部に微粉炭1による浮遊層を形成し得るよう
にした還元炉2の上部には、還元炉2と同様内部
に微粉炭1による浮遊層を形成される予備還元炉
3が、通風路4を介し設けられており、還元炉2
の上方及び予備還元炉3の下方からは、還元炉2
及び予備還元炉3内にCO2やH2Oを含んだガスを
還元するための微粉炭1を供給し得るように形成
されている。
In the upper part of the reduction furnace 2, which is capable of forming a floating layer of pulverized coal 1 inside, there is a preliminary reduction furnace 3, which has a floating layer of pulverized coal 1 formed inside, like the reduction furnace 2. Reduction furnace 2
From above and below the preliminary reduction furnace 3, the reduction furnace 2
It is formed so that pulverized coal 1 for reducing gas containing CO 2 and H 2 O can be supplied into the preliminary reduction furnace 3 .

予備還元炉3の上方には通風路5を介してサイ
クロン6が設けられており、サイクロン6によつ
てガスから分離されたチヤー21(コークス化の
前段階のもの)は予備還元炉3及び還元炉2に戻
し得るようになつている。
A cyclone 6 is provided above the pre-reduction furnace 3 through a ventilation passage 5, and the char 21 (pre-coking stage) separated from the gas by the cyclone 6 is transferred to the pre-reduction furnace 3 and reduction. It is designed so that it can be returned to the furnace 2.

サイクロン6の上方には通風路7を介して予熱
炉8が配設されており、通風路7の中途部には空
気9を排ガスの一部に混入して燃焼させるバーナ
10が設けられている。
A preheating furnace 8 is disposed above the cyclone 6 via a ventilation passage 7, and a burner 10 is provided in the middle of the ventilation passage 7 to mix air 9 into a part of the exhaust gas and burn it. .

通風路7の中途部でバーナ10よりもサイクロ
ン6側には、枝分れした別の通風路11が設けら
れており該通風路11の一端は前記還元炉2の下
方に接続されている。
In the middle of the ventilation passage 7, on the side closer to the cyclone 6 than the burner 10, another branched ventilation passage 11 is provided, and one end of the ventilation passage 11 is connected below the reduction furnace 2.

通風路11には、熱交換器12、脱硫装置1
3、ブロワのごとき昇圧装置14、加熱炉15等
が設けられており、加熱炉15手前には、通風路
11内のガスの成分を調節するためにN2ガスあ
るいはH2ガス若しくはCOガスのごとき調整ガス
を付加するための導入管16が接続されている。
The ventilation passage 11 includes a heat exchanger 12 and a desulfurization device 1.
3. A pressure booster 14 such as a blower, a heating furnace 15, etc. are provided, and in front of the heating furnace 15, N 2 gas, H 2 gas, or CO gas is used to adjust the gas composition in the ventilation passage 11. An inlet pipe 16 for adding a regulating gas such as the like is connected.

予熱炉8には別の通風路17が設けられてお
り、該通風路17を通つた排ガスは加熱炉15に
おいて熱交換を行い、通風路11内のガスを加熱
し得るようになつている。
The preheating furnace 8 is provided with another ventilation passage 17, and the exhaust gas passing through the ventilation passage 17 undergoes heat exchange in the heating furnace 15, so that the gas in the ventilation passage 11 can be heated.

予熱炉8の上方には、図示していないが荷役装
置が設けられており、予熱炉8内に酸化鉄原料た
る粉鉱18を供給し得るようになつている。なお
図中19は粉鉱18が還元されつつ下降し、最終
的には還元鉄として取出される径路を示す。
Although not shown, a cargo handling device is provided above the preheating furnace 8 so that powdered ore 18, which is an iron oxide raw material, can be supplied into the preheating furnace 8. In the figure, reference numeral 19 indicates a path through which the fine ore 18 descends while being reduced and is finally taken out as reduced iron.

操業開始時には、循環系には還元ガスが充分で
ないため、当初は空気又は燃焼排ガスを導入して
循環を行い、還元ガスを生成せしめて導入管16
から調整ガスを循環系に導入し、再循環をくり返
し雰囲気ガス成分を調節してから酸化鉄原料の投
入を開始する。
At the start of operation, there is not enough reducing gas in the circulation system, so initially air or combustion exhaust gas is introduced and circulated to generate reducing gas and then the inlet pipe 16
After introducing the adjustment gas into the circulation system and repeating recirculation to adjust the atmospheric gas components, the introduction of the iron oxide raw material is started.

予熱炉8に投入された粉鉱18は空気9を混入
して燃焼された高温ガスによつて予熱され、予備
還元炉3に送られ、該予備還元炉3において微粉
炭1やチヤー21で形成されている浮遊層中を通
りつつ予備的に還元されて還元炉2へ送られ、該
還元炉2において微粉炭やチヤーで形成されてい
る浮遊層中を通りつつ還元され、還元鉄として取
出される。
Powdered ore 18 charged into the preheating furnace 8 is preheated by high-temperature gas mixed with air 9 and combusted, and sent to the pre-reduction furnace 3, where it is formed with pulverized coal 1 and chia 21. The iron is preliminarily reduced as it passes through a floating layer made of pulverized coal and char, and is sent to the reduction furnace 2. In the reduction furnace 2, it is reduced while passing through a floating layer made of pulverized coal and char, and is taken out as reduced iron. Ru.

一方加熱炉15で加熱された還元ガスは還元炉
2において粉鉱を還元して還元反応の生成物たる
CO2、H2Oの混合したガスとなると共に浮遊層中
の炭素物と反応して C+CO2=2CO C+H2O=CO+H2 なる反応で新たな還元ガスに再成されて微粉炭の
一部と共に予備還元炉3に送られ、予備還元炉3
においても還元炉2におけると同様に多少CO2
H2Oの混合したガスとなると共に上記と同様な反
応で新たな還元ガスに再成され、サイクロン6に
送られる。予備還元炉3のガス空塔速度は還元炉
2の空塔速度より大きく取つてあるから、予備還
元炉3内では微粉炭はガスとの接触により乾留さ
れサイジングが行われる。
On the other hand, the reducing gas heated in the heating furnace 15 reduces the fine ore in the reducing furnace 2 and becomes a product of the reduction reaction.
It becomes a mixed gas of CO 2 and H 2 O, and reacts with carbon substances in the floating layer, and is regenerated into a new reducing gas through the reaction C + CO 2 = 2CO, C + H 2 O = CO + H 2 , and becomes part of pulverized coal. It is sent to the pre-reduction furnace 3 together with the pre-reduction furnace 3.
In the same way as in the reduction furnace 2, some CO 2 ,
The gas becomes a mixture of H 2 O and is regenerated into a new reducing gas by the same reaction as above, and is sent to the cyclone 6. Since the gas superficial velocity of the preliminary reduction furnace 3 is set higher than the superficial velocity of the reduction furnace 2, the pulverized coal is carbonized and sized by contact with gas in the preliminary reduction furnace 3.

サイクロン6においては、予備還元炉3から還
元ガスに混つて送られてきたチヤー21がガスか
ら分離されて予備還元炉3や還元炉2に戻され、
チヤーを分離された還元ガスはサイクロン6から
排出されて一部は予熱炉8側の通風路7に送ら
れ、残りは加熱炉15側の通風路11へ送られ
る。
In the cyclone 6, the chia 21 sent mixed with the reducing gas from the preliminary reduction furnace 3 is separated from the gas and returned to the preliminary reduction furnace 3 and the reduction furnace 2.
The reducing gas from which the char has been separated is discharged from the cyclone 6, and part of it is sent to the ventilation passage 7 on the preheating furnace 8 side, and the rest is sent to the ventilation passage 11 on the heating furnace 15 side.

通風路11へ送られた還元ガスは、先ず熱交換
器12で熱交換されてH2O等を除去され、脱硫装
置13で脱硫され、昇圧装置14で所定の圧力に
昇圧され、加熱炉15で加熱されて再び還元炉2
へ供給されて粉鉱の還元を行う。又必要な場合に
は、加熱炉15の上流側で調整ガスが加えられ、
還元ガス組成の調整が行われる。
The reducing gas sent to the ventilation passage 11 is first heat-exchanged in the heat exchanger 12 to remove H 2 O, etc., desulfurized in the desulfurization device 13, boosted to a predetermined pressure in the pressure booster 14, and then transferred to the heating furnace 15. is heated again in reduction furnace 2.
The fine ore is reduced. Also, if necessary, adjustment gas is added upstream of the heating furnace 15,
Adjustment of reducing gas composition is performed.

通風路7へ送られた還元ガスは空気9を混入さ
れて燃焼され、加熱されて予熱炉8へ送られ、こ
こで粉鉱18の予熱を行つたうえ通風路17へ送
られ、前記通風路11中の還元ガスを顕熱により
加熱したうえ大気中へ放出される。バーナ10に
添加される空気量は予熱炉8へ導入される高温ガ
ス中の酸素濃度が0〜2%となるようにする。
The reducing gas sent to the ventilation passage 7 is mixed with air 9, combusted, heated, and sent to the preheating furnace 8, where the ore powder 18 is preheated, and then sent to the ventilation passage 17, where it is heated. The reducing gas in No. 11 is heated by sensible heat and then released into the atmosphere. The amount of air added to the burner 10 is set so that the oxygen concentration in the high temperature gas introduced into the preheating furnace 8 is 0 to 2%.

第2図は本発明の他の実施例であり、前記実施
例と異なるところは、粉鉱18を予備還元炉3の
上方に供給するようにし、予備還元炉3を出たガ
スの一部に過剰空気と水蒸気22とを混入させ、
ウインクラー式等の流動層式石炭ガス化器20内
に微粉炭23を混入して前記過剰空気と水蒸気と
を混入したガスによつて該微粉炭23を流動せし
め、燃焼及び水性ガス反応によつて生成した還元
ガス(CO+H2)を脱硫後調整ガスを添加し、予
備還元炉3から排出された残りのガスに加熱炉1
5において空気24を加えて燃焼させ、この燃焼
させたガスによつて前記還元ガスを加熱し、該還
元ガスを還元炉2に供給するようにした点及びサ
イクロン6を予備還元炉3の直後ではなく、石炭
ガス化器20の下流側に設けた点である。斯かる
構成としても前記実施例と同様にして還元鉄を得
ることができる。図中25は灰分、又第1図に示
す符号と同一の符号のものは同一のものを示す。
FIG. 2 shows another embodiment of the present invention, which differs from the previous embodiment in that the fine ore 18 is supplied above the pre-reduction furnace 3, and part of the gas leaving the pre-reduction furnace 3 is Mixing excess air and water vapor 22,
Pulverized coal 23 is mixed into a fluidized bed type coal gasifier 20 such as a Winkler type, and the pulverized coal 23 is made to flow by the gas mixed with the excess air and water vapor, resulting in combustion and water gas reaction. After desulfurizing the reducing gas (CO + H 2 ) generated by
5, air 24 is added and combusted, the combusted gas heats the reducing gas, and the reducing gas is supplied to the reduction furnace 2, and the cyclone 6 is placed immediately after the preliminary reduction furnace 3. Rather, it is provided on the downstream side of the coal gasifier 20. Even with such a configuration, reduced iron can be obtained in the same manner as in the above embodiment. In the figure, 25 indicates the ash content, and the same reference numerals as those shown in FIG. 1 indicate the same components.

なお本発明の実施例においては、加熱炉15を
出た排ガスの塵埃の処理については特に触れてい
ないが、サイクロン等適宜の手段を用い得るこ
と、還元炉と予備還元炉は合計2基以上ならいく
つ設けてもよいこと、粉鉱や微粉炭やチヤーの投
入の仕方としては上記実施例に示すもののほか、
最終の浮遊層には酸化鉄原料のほかにチヤーを投
入し、最終の浮遊層には酸化鉄原料のほかに生微
粉炭を投入し、予備還元炉の浮遊層には酸化鉄原
料のほかにチヤー単体若しくはチヤーと生微粉炭
を投入するようにしてもよいこと、最終の浮遊層
には酸化鉄原料のほかに生微粉炭を投入した浮遊
層の排ガスからサイクロンで分離したチヤーを投
入するようにしてもよいこと、浮遊層から出た排
ガスは還元成分全部を循環させ加熱は他の手段で
やつてもよいこと、その他本発明の要旨を逸脱し
ない範囲内で種々変更を加え得ること、等は勿論
である。
Although the embodiments of the present invention do not specifically mention the treatment of dust from the exhaust gas exiting the heating furnace 15, it is noted that appropriate means such as a cyclone can be used, and that if there are two or more reducing furnaces and pre-reducing furnaces in total, In addition to the methods shown in the above embodiments, the number of units may be set, and the method of introducing powdered ore, pulverized coal, and char is as shown in the above example.
In addition to the iron oxide raw material, char is input into the final floating layer, raw pulverized coal is input in addition to the iron oxide raw material into the final floating layer, and in addition to the iron oxide raw material, raw pulverized coal is input into the floating layer of the preliminary reduction furnace. Chir alone or chir and raw pulverized coal may be introduced into the final floating layer, and in addition to the iron oxide raw material, raw pulverized coal may be added to the floating layer. In the exhaust gas discharged from the floating layer, all the reducing components may be circulated and heating may be done by other means, and other various changes may be made within the scope of the gist of the present invention. Of course.

本発明の浮遊式直接製鉄方法は、上述のごとき
構成であるから下記のごとき種々の優れた効果を
奏し得る。
Since the floating direct steelmaking method of the present invention has the above-described configuration, it can achieve various excellent effects as described below.

() 酸化鉄原料は完全混合でないためガス利用
率が増加する。
() Since the iron oxide raw material is not completely mixed, the gas utilization rate increases.

() 過剰であるガス顕熱はC+CO2=2CO等を
含む見掛けの直接還元によつて吸収するため、
熱バランスが大幅に改善される。
() Excess gas sensible heat is absorbed by apparent direct reduction including C + CO 2 = 2CO, etc.
Heat balance is significantly improved.

() 流動層(浮遊層)を多段に設け、該流動層
の排ガスを前段の流動層に導入し、あるいは原
料予熱炉や循環ガス加熱炉に導入するので、熱
回収を充分に行うことができる。
() Fluidized beds (floating beds) are provided in multiple stages, and the exhaust gas from the fluidized bed is introduced into the preceding fluidized bed or into the raw material preheating furnace or circulating gas heating furnace, so sufficient heat recovery can be achieved. .

() 還元鉄とチヤーの分離、抽出を容易に行う
ことができるうえ、チヤーによる浮遊層の形成
も容易に行うことができる。
() Reduced iron and chir can be easily separated and extracted, and a floating layer can be easily formed by chir.

() 浮遊層へは外部から炭素物を供給し、該炭
素物を加熱されたガスにより浮遊させるように
しているため、該浮遊層で還元ガスの製造が行
われる。このため、特別な還元ガス製造装置が
不要となり、設備の小型化、設備費、運転維持
費のダウンを図ることができる。
() Since carbon substances are supplied to the floating layer from the outside and the carbon substances are suspended by heated gas, reducing gas is produced in the floating layer. Therefore, a special reducing gas production device is not required, and it is possible to downsize the equipment and reduce equipment costs and operation and maintenance costs.

() 浮遊層へ循環させるガスの加熱を酸化鉄原
料予熱後の排ガス或いは浮遊層から出た排ガス
の一部で行うようにしているため省エネルギー
に貢献できる。
() The gas circulated to the floating layer is heated by the exhaust gas after preheating the iron oxide raw material or part of the exhaust gas discharged from the floating layer, which contributes to energy saving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の浮遊式直接製鉄方法の一実施
例の説明図、第2図は本発明の浮遊式直接製鉄方
法の他の実施例の説明図である。 図中1は微粉炭、2は還元炉、3は予備還元
炉、4,5,7,11,17は通風炉、8は予熱
炉、12は熱交換器、13は脱硫装置、14は昇
圧装置、15は加熱炉、16は導入管、18は粉
鉱、20は石炭ガス化器を示す。
FIG. 1 is an explanatory diagram of one embodiment of the floating direct steel manufacturing method of the present invention, and FIG. 2 is an explanatory diagram of another embodiment of the floating direct iron manufacturing method of the present invention. In the figure, 1 is pulverized coal, 2 is a reduction furnace, 3 is a preliminary reduction furnace, 4, 5, 7, 11, 17 is a ventilation furnace, 8 is a preheating furnace, 12 is a heat exchanger, 13 is a desulfurization device, 14 is a pressure booster The apparatus includes a heating furnace 15, an inlet pipe 16, ore powder 18, and a coal gasifier 20.

Claims (1)

【特許請求の範囲】 1 外部から供給された炭素物を加熱されたガス
により浮遊させるようにした、少くとも予備還元
用の浮遊層と還元用の浮遊層とから成る複数の浮
遊層を形成すると共に該浮遊層の間に酸化鉄原料
を沈降させ、前記ガスと反応させて還元鉄にし、
前記予備還元用の浮遊層から出た後の排ガスの一
部を再加熱して最終還元用の浮遊層へ循環させる
と共に該排ガスの残りを燃焼せしめて高温ガスと
し、該高温ガスによつて酸化鉄原料を予熱し、酸
化鉄原料予熱後の排ガスで浮遊層へ循環させるガ
スの加熱を行うことを特徴とする浮遊式直接製鉄
方法。 2 最終還元用の浮遊層には酸化鉄原料のほかに
チヤーを投入し、その他の浮遊層には酸化鉄原
料、生微粉炭の両者を投入する特許請求の範囲第
1項に記載の浮遊式直接製鉄方法。 3 最終還元用の浮遊層には酸化鉄原料のほかに
生微粉炭を投入し、予備還元用の浮遊層には酸化
鉄原料のほかにチヤー単体若しくはチヤーと生微
粉炭を投入する特許請求の範囲第1項に記載の浮
遊式直接製鉄方法。 4 最終還元用の浮遊層には、酸化鉄原料のほか
に生微粉炭を投入した浮遊層の排ガスからサイク
ロンで分離したチヤーを投入する特許請求の範囲
第1項に記載の浮遊式直接製鉄方法。 5 外部から供給された炭素物を加熱されたガス
により浮遊させるようにした、少くとも予備還元
用の浮遊層と還元用の浮遊層とから成る複数の浮
遊層を形成すると共に該浮遊層の間に酸化鉄原料
を沈降させ、前記ガスと反応させて還元鉄にし、
前記予備還元用の浮遊層から出た排ガスの一部に
空気及び水蒸気を混入して石炭ガス化器の作動を
させ、該排ガスの残りを浮遊層へ循環させるガス
の加熱に使用することを特徴とする浮遊式直接製
鉄方法。 6 最終還元用の浮遊層には酸化鉄原料のほかに
チヤーを投入し、その他の浮遊層には酸化鉄原
料、生微粉炭の両者を投入する特許請求の範囲第
5項に記載の浮遊式直接製鉄方法。 7 最終還元用の浮遊層には酸化鉄原料のほかに
生微粉炭を投入し、予備還元用の浮遊層には酸化
鉄原料のほかにチヤー単体若しくはチヤーと生微
粉炭を投入する特許請求の範囲第5項に記載の浮
遊式直接製鉄方法。 8 最終還元用の浮遊層には、酸化鉄原料のほか
に生微粉炭を投入した浮遊層の排ガスからサイク
ロンで分離したチヤーを投入する特許請求の範囲
第5項に記載の浮遊式直接製鉄方法。
[Claims] 1. A carbon material supplied from the outside is suspended by heated gas to form a plurality of floating layers consisting of at least a floating layer for preliminary reduction and a floating layer for reduction. At the same time, iron oxide raw material is precipitated between the floating layer and reacted with the gas to form reduced iron,
A part of the exhaust gas that has exited the floating layer for preliminary reduction is reheated and circulated to the floating layer for final reduction, and the remainder of the exhaust gas is combusted to form a high-temperature gas, which is oxidized by the high-temperature gas. A floating direct steel manufacturing method characterized by preheating the iron raw material and heating the gas circulated to the floating layer using the exhaust gas after preheating the iron oxide raw material. 2. The floating method according to claim 1, in which the floating layer for final reduction is charged with char in addition to the iron oxide raw material, and the other floating layers are charged with both the iron oxide raw material and raw pulverized coal. Direct iron making method. 3 In the patent claim, raw pulverized coal is charged in addition to the iron oxide raw material into the floating layer for final reduction, and chia alone or raw pulverized coal is charged in addition to the iron oxide raw material into the floating layer for preliminary reduction. Floating direct steelmaking method as described in Scope 1. 4. The floating direct steel manufacturing method according to claim 1, wherein the floating layer for final reduction is charged with char separated by a cyclone from the flue gas of the floating layer containing raw pulverized coal in addition to the iron oxide raw material. . 5 Forming a plurality of floating layers consisting of at least a floating layer for preliminary reduction and a floating layer for reduction, in which the carbon material supplied from the outside is suspended by heated gas, and a plurality of floating layers are formed between the floating layers. The iron oxide raw material is precipitated and reacted with the gas to form reduced iron,
A coal gasifier is operated by mixing air and water vapor into a part of the exhaust gas discharged from the floating layer for preliminary reduction, and the remainder of the exhaust gas is used to heat the gas to be circulated to the floating layer. A floating direct steelmaking method. 6. The floating method according to claim 5, in which the floating layer for final reduction is charged with char in addition to the iron oxide raw material, and the other floating layers are charged with both the iron oxide raw material and raw pulverized coal. Direct iron making method. 7 In the patent claim, raw pulverized coal is charged in addition to the iron oxide raw material into the floating layer for final reduction, and chia alone or raw pulverized coal is charged in addition to the iron oxide raw material into the floating layer for preliminary reduction. Floating direct steelmaking method as described in Scope 5. 8. The floating direct steel manufacturing method according to claim 5, wherein, in addition to the iron oxide raw material, raw pulverized coal is added to the floating layer for final reduction, and the char separated by a cyclone from the exhaust gas of the floating layer is charged. .
JP8272578A 1978-07-07 1978-07-07 Floating type direct iron making method Granted JPS5511122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8272578A JPS5511122A (en) 1978-07-07 1978-07-07 Floating type direct iron making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8272578A JPS5511122A (en) 1978-07-07 1978-07-07 Floating type direct iron making method

Publications (2)

Publication Number Publication Date
JPS5511122A JPS5511122A (en) 1980-01-25
JPS6158521B2 true JPS6158521B2 (en) 1986-12-12

Family

ID=13782382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8272578A Granted JPS5511122A (en) 1978-07-07 1978-07-07 Floating type direct iron making method

Country Status (1)

Country Link
JP (1) JPS5511122A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735525B2 (en) * 1988-06-04 1995-04-19 川崎製鉄株式会社 Smelting reduction method of powdery ore and smelting reduction apparatus

Also Published As

Publication number Publication date
JPS5511122A (en) 1980-01-25

Similar Documents

Publication Publication Date Title
JP2768888B2 (en) Direct reduction method of fine iron oxide-containing material and production equipment for performing the method
GB2189814A (en) Method of producing iron
US3033673A (en) Process of reducing iron oxides
WO2022262812A1 (en) Straight grate-based pre-reduced pellet preparation device and method
US2696432A (en) Method for heating solids
US1864593A (en) Method of producing metal sponge
EP4353839A1 (en) Pre-reduced pellet preparation apparatus and method based on grate-rotary kiln
US1871848A (en) Process for producing metal sponge
CN114622051B (en) Direct reduction method and device for iron-containing pellets based on internal circulation of hot air at each section of rotary kiln
AU701539B2 (en) Process for producing sponge iron and plant for carrying out the process
CN115216574A (en) Direct reduction process and direct reduction device for iron-containing composite pellets
US3332770A (en) Apparatus for reduction firing of iron ore pellets
US3093474A (en) Process of reducing metal oxides
RU2213787C2 (en) Process and installation for direct reduction of free-flowing ferrous oxide- containing material
JPS6158521B2 (en)
JPH10506682A (en) Method for producing liquid pig iron or liquid pre-product and sponge and plant for carrying out this method
US1403576A (en) Process of reducing ores
US1447071A (en) Process of agglomerating mixtures of fine ore and fuel in shaft furnaces
JP2902062B2 (en) Smelting reduction method
US4369059A (en) Process of directly reducing iron oxide containing materials in a rotary kiln
RU2176672C2 (en) Method of manufacturing sponge iron
JPH0130888B2 (en)
JPH0639608B2 (en) Iron ore preheating / reducing device
AU2001265669B2 (en) Device for directly reducing ore fine and installation for carrying out said method
US2116679A (en) Process for the working up of lead ores