JP2902062B2 - Smelting reduction method - Google Patents

Smelting reduction method

Info

Publication number
JP2902062B2
JP2902062B2 JP17371290A JP17371290A JP2902062B2 JP 2902062 B2 JP2902062 B2 JP 2902062B2 JP 17371290 A JP17371290 A JP 17371290A JP 17371290 A JP17371290 A JP 17371290A JP 2902062 B2 JP2902062 B2 JP 2902062B2
Authority
JP
Japan
Prior art keywords
coal
reduction furnace
smelting reduction
gas
smelting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17371290A
Other languages
Japanese (ja)
Other versions
JPH0463219A (en
Inventor
義雄 内山
慶吉 村上
充晴 岸本
健一 矢島
賢 滝浦
聡 辰田
幸彦 高座
寿美男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP17371290A priority Critical patent/JP2902062B2/en
Publication of JPH0463219A publication Critical patent/JPH0463219A/en
Application granted granted Critical
Publication of JP2902062B2 publication Critical patent/JP2902062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、予備還元炉を使用する溶融還元法につき、
石炭の有効利用を図る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a smelting reduction method using a preliminary reduction furnace,
The present invention relates to a method for effectively utilizing coal.

[従来の技術] 溶融還元製鉄法とは、溶融還元炉を用い、鉄鉱石を溶
融状態で還元して銑鉄を得る方法である。溶融還元炉
は、鉄鉱石を含む溶鉄中に、石炭や石灰を投入すると同
時に酸素(O2)を吹き込んで還元反応を起こさせるもの
で、反応が速やかで、生産量を弾力的に調整できるとい
った利点を有する。同還元炉において石炭は、鉄鉱石の
還元剤であるとともに、溶融還元炉内の高温条件下で熱
分解し、メタン(CH4)やタールなどの炭化水素のほか
水素(H2)・一酸化炭素(CO)などのガスを放出する。
この放出された炭化水素は、余剰の酸素と反応(部分酸
化反応)して、予備還元炉で有用な水素および一酸化炭
素ガスを生成する。
[Related Art] The smelting reduction iron making method is a method of obtaining pig iron by reducing iron ore in a molten state using a smelting reduction furnace. The smelting reduction furnace injects coal and lime into molten iron containing iron ore and simultaneously blows oxygen (O 2 ) to cause a reduction reaction. The reaction is rapid and the production volume can be adjusted flexibly. Has advantages. In the reduction furnace, coal is a reducing agent for iron ore, and thermally decomposes under high-temperature conditions in the smelting reduction furnace to produce hydrocarbons such as methane (CH 4 ) and tar, as well as hydrogen (H 2 ) and monoxide. Releases gases such as carbon (CO).
The released hydrocarbons react with excess oxygen (partial oxidation reaction) to generate useful hydrogen and carbon monoxide gas in the preliminary reduction furnace.

溶融還元炉そのものはエネルギー利用率が低いので、
これに予備還元炉が併設されて溶融還元系が構成される
ことが多い。上記した部分酸化反応等にともない溶融還
元炉からは、一酸化炭素や水素といった還元成分を多量
に含む高温ガスが発生するので、予備還元炉は、それら
を還元ガスとして炉内に導入することにより、鉄鉱石を
固体状態で予備的に還元したうえ溶融還元炉に供給す
る。
Since the smelting reduction furnace itself has a low energy utilization rate,
In many cases, a smelting reduction system is configured by adding a preliminary reduction furnace to this. A high-temperature gas containing a large amount of reducing components such as carbon monoxide and hydrogen is generated from the smelting reduction furnace due to the above-described partial oxidation reaction, etc., so that the preliminary reduction furnace introduces them as a reducing gas into the furnace. The iron ore is preliminarily reduced in a solid state and supplied to a smelting reduction furnace.

石炭が、低温(常温)状態のまま、もしくは水分を付
着したまま溶融還元炉に投入されると、石炭の予熱およ
び水分放出に必要な熱エネルギーがロスとなるばかり
か、発生ガス中の水分濃度が高くなり還元ガスとしての
還元能力が低下するため、好ましくない。したがって石
炭は、予熱・乾燥を行い、熱分解により炭化水素や水素
・一酸化炭素が放出されやすい状態で炉内に投入される
のが望ましい。このためには、溶融還元系とは別の熱源
が使用されることもあるが、特開昭62−230921号公報に
記載の方法においては、予備還元炉からの排ガスを酸化
性ガスにより燃焼して熱源とする手段(石炭乾留流動
層)が用いられている。そして、石炭の乾留により副生
するチャーが炭材として溶融還元炉に投入される一方、
乾留中に熱分解した炭化水素類は、他の容器(炭素被覆
流動層)に送られて鉄鉱石表面に付着させられたうえ、
予備還元炉へ導入される。
When coal is put into a smelting reduction furnace in a low temperature (normal temperature) state or with moisture attached, not only the heat energy required for preheating coal and releasing moisture is lost, but also the moisture concentration in the generated gas And the reducing ability as a reducing gas decreases, which is not preferable. Therefore, it is desirable that the coal is preheated and dried, and is charged into the furnace in a state where hydrocarbons, hydrogen and carbon monoxide are easily released by thermal decomposition. For this purpose, a heat source different from the smelting reduction system may be used.However, in the method described in JP-A-62-230921, the exhaust gas from the preliminary reduction furnace is burned with an oxidizing gas. A heat source (coal dry-bed fluidized bed) is used. Then, while the char by-produced by the carbonization of coal is fed into the smelting reduction furnace as carbon material,
Hydrocarbons pyrolyzed during the carbonization are sent to another vessel (carbon-coated fluidized bed) and attached to the iron ore surface.
It is introduced into the preliminary reduction furnace.

[発明が解決しようとする課題] 上記公報に記載の方法は、予備還元炉からの排ガスの
エネルギーを利用するので、溶融還元系とは別の専用熱
源にたよる場合に比べ、トータルでの(たとえば製鉄所
全体の)エネルギー原単位が低いといえるが、石炭中の
成分のうち一部が利用されないで系外へ放出される、と
いう不都合が避けられない。なぜなら、十分な熱量を
補償される上記の乾留手段においては、炭化水素(重質
および軽質の炭化水素)や水素・一酸化炭素ガス等が石
炭の熱分解により放出されてしまう、メタンなどの軽
質炭化水素や水素・一酸化炭素ガス等は、鉄鉱石に接触
させても、その表面に付着することなく系外に逃げてし
まう、タールなど鉄鉱石に付着しやすい重質炭化水素
でも、すべてが付着するとはいえず、鉄鉱石とともに溶
融還元系で利用できる割合は高くない−からである。
[Problems to be Solved by the Invention] The method described in the above publication uses the energy of the exhaust gas from the pre-reduction furnace, so that the total amount of ( Although it can be said that the energy intensity (for example, the entire steelworks) is low, it is inevitable that some of the components in the coal are released from the system without being used. This is because, in the above-mentioned dry distillation means, which compensates for a sufficient amount of heat, hydrocarbons (heavy and light hydrocarbons), hydrogen and carbon monoxide gas, etc. are released by the thermal decomposition of coal, and light sources such as methane are released. Even if hydrocarbons, hydrogen, carbon monoxide gas, etc. come into contact with iron ore and escape to the system without adhering to the surface, even heavy hydrocarbons that easily adhere to iron ore such as tar It cannot be said that they adhere, and the proportion that can be used together with iron ore in the smelting reduction system is not high.

軽質および重質の炭化水素は、前述したように溶融還
元炉における部分酸化反応によって有用な還元ガスを発
生し得るため、水素および一酸化炭素等とともにこれら
が放出されることは、溶融還元系において石炭が十分に
有効利用されないことを意味する。
Since light and heavy hydrocarbons can generate useful reducing gas by partial oxidation reaction in the smelting reduction furnace as described above, their release together with hydrogen and carbon monoxide, etc. It means that coal is not fully utilized.

本発明は、以上の点を考慮し、溶融還元炉の熱効率を
改善するとともに石炭を有効利用できる溶融還元法を提
供しようとするものである。
The present invention has been made in consideration of the above points, and aims to improve the thermal efficiency of a smelting reduction furnace and to provide a smelting reduction method that can effectively use coal.

[課題を解決するための手段] 本発明は、溶融還元炉と、そこでの発生ガスを還元ガ
スとする予備還元炉とを使用する鉄鉱石の溶融還元法に
おいて、予備還元炉からの排ガスにより、石炭乾燥
装置で200〜350℃の温度にて石炭を乾燥させたうえ、
その石炭を溶融還元炉へ投入するとともに、予備還元
炉からの上記の排ガスを、水分および二酸化炭素の除去
を行ったのち予備還元炉と上記石炭乾燥装置とのそれぞ
れへリサイクルさせる−ものである。なお、上記にお
ける「200〜350℃の温度にて石炭を乾燥させ」の意味
は、石炭乾燥装置においてガスと石炭の温度を200〜350
℃にして石炭乾燥を行うことを意味する。
[Means for Solving the Problems] The present invention provides a method for smelting reduction of iron ore using a smelting reduction furnace and a pre-reduction furnace using generated gas as a reducing gas. After drying the coal at a temperature of 200 to 350 ° C with a coal drying device,
The coal is put into a smelting reduction furnace, and the above-mentioned exhaust gas from the pre-reduction furnace is subjected to removal of water and carbon dioxide, and then recycled to the pre-reduction furnace and the coal drying device. The meaning of “drying the coal at a temperature of 200 to 350 ° C.” in the above means that the temperature of the gas and coal is set to 200 to 350 in a coal drying apparatus.
℃ to dry the coal.

[作用] 本発明の溶融還元法においては、石炭が、予熱され乾
燥させられ(上記)たうえ溶融還元炉に投入される
()ので、溶融還元炉において還元反応、熱分解およ
びその分解ガスによる部分酸化反応が進行しやすく、そ
の熱効率が改善される。しかも、予熱・乾燥用の熱源と
して予備還元炉の排ガスのエネルギーを利用する()
ため、系外に特別な熱源は不要である。
[Action] In the smelting reduction method of the present invention, coal is preheated, dried (described above), and then charged into the smelting reduction furnace (). The partial oxidation reaction proceeds easily, and the thermal efficiency is improved. In addition, the energy of exhaust gas from the pre-reduction furnace is used as a heat source for preheating and drying.
Therefore, no special heat source is required outside the system.

上記に示した乾燥温度(200〜350℃)においては、
付着した水分(もしくは湿分)のみが石炭から分離し、
炭化水素や水素は石炭内に保たれる。これは、200〜350
℃においては、石炭の付着水分(結晶水を除く)は当然
に放出されるものの、第2図(石炭の熱分解ガス発生量
と温度との関係図)に示すように、タール・メタン(CH
4)・一酸化炭素(CO)・水素などは熱分解(乾留)さ
れないからである。
At the drying temperature (200-350 ° C) shown above,
Only the attached moisture (or moisture) separates from the coal,
Hydrocarbons and hydrogen are kept in the coal. This is 200-350
At ℃, the adhering moisture (excluding crystallization water) of coal is naturally released, but as shown in Fig. 2 (relationship between the amount of pyrolysis gas generated from coal and temperature), tar methane (CH
4 ) Carbon monoxide (CO) and hydrogen are not pyrolyzed (distilled).

したがって、これら未分解の成分は、いずれも石炭と
ともに溶融還元炉に投入され、そこで鉄鉱石を還元する
とともに熱分解され、またその分解ガスが部分酸化され
て還元剤(還元ガス)となる。すなわち、石炭中の成分
が、溶融還元炉もしくは予備還元炉において有効に利用
される。
Therefore, all of these undecomposed components are put into a smelting reduction furnace together with coal, where they are reduced and thermally decomposed, and the decomposed gas is partially oxidized into a reducing agent (reducing gas). That is, the components in the coal are effectively used in the smelting reduction furnace or the preliminary reduction furnace.

また、上記のように、水分および二酸化炭素を除去
した排ガスを予備還元炉と石炭乾燥装置とへリサイクル
させるため、当該排ガスを一層有効に利用できることに
なる。
Further, as described above, since the exhaust gas from which water and carbon dioxide have been removed is recycled to the preliminary reduction furnace and the coal drying device, the exhaust gas can be used more effectively.

[実施例] 第1図は、本発明の溶融還元法につき一実施例を示す
系統図である。図中、太い実線(および矢印)は溶融還
元炉1から発生したガスの流れを表わし、それ以外は他
の原料の流れを表わす。
Example FIG. 1 is a system diagram showing one example of the smelting reduction method of the present invention. In the figure, the thick solid line (and arrow) represents the flow of the gas generated from the smelting reduction furnace 1, and the other represents the flow of other raw materials.

本法において鉄鉱石は、まず流動層式の予備還元炉2
に投入されて固体状態の予備還元鉄にまで還元され、そ
れが、石炭や石灰・酸素とともに溶融還元炉1の溶鉄内
に装入されることにより、溶融した銑鉄およびスラグと
なる。前述のように、溶融還元炉1におけるこの反応の
際、一酸化炭素や水素を含む高温ガスが発生するため、
それが還元ガスとして予備還元炉2へ導入される。
In the present method, iron ore is first supplied to a fluidized bed prereduction furnace 2
And is reduced to solid-state pre-reduced iron, which is charged together with coal, lime and oxygen into the molten iron of the smelting reduction furnace 1 to form molten pig iron and slag. As described above, during this reaction in the smelting reduction furnace 1, a high-temperature gas containing carbon monoxide and hydrogen is generated.
It is introduced into the preliminary reduction furnace 2 as a reducing gas.

図示した溶融還元法の特徴は、予備還元炉2を出たあ
との排ガスを利用して、溶融還元炉1に投入される前に
石炭を効果的に予熱・乾燥させることである。すなわ
ち、予備還元炉2を出た排ガスを、冷却器4に送る前に
一部を流動層式の石炭乾燥装置3に導入し、そこで粉炭
状の上記石炭を乾燥させるのである。乾燥し予熱された
石炭が、そうでないものに比べ溶融還元炉1において利
用されやすいこと、つまり有効な反応が速やかに進行す
ることは、言うまでもない。
The feature of the illustrated smelting reduction method is that coal is effectively preheated and dried before being put into the smelting reduction furnace 1 by using exhaust gas after leaving the preliminary reduction furnace 2. That is, a part of the exhaust gas that has flowed out of the pre-reduction furnace 2 is introduced into the fluidized bed type coal drying device 3 before being sent to the cooler 4, where the pulverized coal is dried. It goes without saying that the dried and preheated coal is more easily used in the smelting reduction furnace 1 than that which is not so, that is, the effective reaction proceeds quickly.

石炭乾燥装置3への導入ガスについては、同装置3内
の温度(ガスと石炭の温度)が200〜350℃(好ましくは
250℃)となるよう、下記の手段によって温度調整を施
している。すなわち、650℃〜850℃で予備還元炉2を出
る前述の排ガスに対し、同じ予備還元炉2の排ガスで、
冷却器4を通して100℃以下にしたものを図のようにリ
サイクルさせ、開度可変ダンパ(図示せず)などを用い
て流量調整しながら混合している。混合する後者のガス
は、冷却器4のほか除塵装置5・昇圧機6・二酸化炭素
(CO2)除去装置7を通し、余剰ガスとしてガスホルダ
ー(図示せず)に送られるものの一部である。同装置3
内を上記の温度に調整するのは、その温度では、石炭か
ら付着水分のみが放出され、タール・メタン等の炭化水
素や水素・一酸化炭素など、鉄の還元に有用な成分は石
炭中に保たれるからである。
Regarding the gas introduced into the coal drying unit 3, the temperature (temperature of gas and coal) in the unit 3 is 200 to 350 ° C. (preferably
(250 ° C), the temperature is adjusted by the following means. That is, with respect to the above-mentioned exhaust gas which leaves the preliminary reduction furnace 2 at 650 ° C. to 850 ° C.,
What has been cooled to 100 ° C. or less through the cooler 4 is recycled as shown in the figure, and mixed while adjusting the flow rate using a variable opening damper (not shown). The latter gas to be mixed is a part of what is sent as a surplus gas to a gas holder (not shown) through a dust remover 5, a booster 6, and a carbon dioxide (CO 2 ) remover 7 in addition to the cooler 4. . The device 3
The reason for adjusting the inside to the above temperature is that at that temperature, only the attached moisture is released from the coal, and components useful for reducing iron, such as hydrocarbons such as tar and methane and hydrogen and carbon monoxide, are contained in the coal. Because it is kept.

なお上記の余剰ガスは、図のようにさらに一部を、溶
融還元炉1から予備還元炉2への還元ガス中にもリサイ
クルさせて混合している。これは、低温度の余剰ガスを
混合することにより、予備還元炉2への還元ガスを温度
調整するとともに、このガス中に含まれる還元ガスを有
効利用するのが目的である。
The surplus gas is partly recycled and mixed in the reducing gas from the smelting reduction furnace 1 to the preliminary reduction furnace 2 as shown in the figure. The purpose of this is to adjust the temperature of the reducing gas to the preliminary reducing furnace 2 by mixing a low-temperature surplus gas, and to effectively use the reducing gas contained in this gas.

以上、一実施例を紹介したが、本発明は下記のように
実施することもできる。
An embodiment has been described above, but the present invention can also be implemented as follows.

イ)石炭の乾燥は、流動層式の乾燥装置に限らず、移動
層式もしくは気流乾燥式の装置によっても行える。
B) Drying of coal is not limited to a fluidized bed type drying apparatus, but can also be performed by a moving bed type or flash drying type apparatus.

ロ)石炭の乾燥温度の調整は、上記のようなリサイクル
ガスの混合によらずとも、たとえば、未乾燥・常温の石
炭を乾燥装置内に投入する量(速度)によって行うこと
も可能である。
B) Adjustment of the drying temperature of coal is not limited to the above-mentioned mixing of the recycle gas, but can be performed by, for example, the amount (speed) of charging the undried / normal temperature coal into the drying device.

[発明の効果] 本発明の溶融還元法においては、有用な成分を保持し
たままの石炭が、乾燥・予熱されて反応しやすいかたち
で溶融還元炉に投入され、いわば石炭がフルに、かつ効
率的に利用されるうえ、系外に特別な熱源を必要とする
こともないので、熱および石炭の原単位を低くすること
ができる。排ガスを有効利用することからも同様のメリ
ットがもたらされる。
[Effects of the Invention] In the smelting reduction method of the present invention, coal containing useful components is introduced into a smelting reduction furnace in a form that is easily dried and preheated and reacted, so that the coal is fully and efficiently used. In addition, the heat and coal consumption can be reduced because no special heat source is required outside the system. A similar advantage is brought about by effective use of the exhaust gas.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例を示す溶融還元系統図であ
る。また第2図は、石炭の熱分解ガス発生量と加熱温度
との関係を示すグラフである。 1……溶融還元炉、2……予備還元炉、3……石炭乾燥
装置、4……冷却器。
FIG. 1 is a smelting reduction system diagram showing one embodiment of the present invention. FIG. 2 is a graph showing the relationship between the amount of pyrolysis gas generated from coal and the heating temperature. 1 ... Melting reduction furnace, 2 ... Preliminary reduction furnace, 3 ... Coal drying device, 4 ... Cooler.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢島 健一 兵庫県神戸市中央区東川崎町3丁目1番 1号 川崎重工業株式会社神戸工場内 (72)発明者 滝浦 賢 兵庫県神戸市中央区東川崎町3丁目1番 1号 川崎重工業株式会社神戸工場内 (72)発明者 辰田 聡 兵庫県神戸市中央区東川崎町3丁目1番 1号 川崎重工業株式会社神戸工場内 (72)発明者 高座 幸彦 兵庫県神戸市中央区東川崎町3丁目1番 1号 川崎重工業株式会社神戸工場内 (72)発明者 佐藤 寿美男 兵庫県神戸市中央区東川崎町3丁目1番 1号 川崎重工業株式会社神戸工場内 (56)参考文献 特開 昭63−60217(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21B 11/00 C22B 5/10 F27D 13/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenichi Yajima 3-1-1 Higashi Kawasaki-cho, Chuo-ku, Kobe City, Hyogo Prefecture Inside the Kobe Plant of Kawasaki Heavy Industries, Ltd. (72) Inventor Ken Takiura Higashi Kawasaki, Chuo-ku, Kobe City, Hyogo Prefecture 3-1-1, Kawamachi Kobe Plant, Kawasaki Heavy Industries, Ltd. (72) Inventor Satoshi Tatsuta 3-1-1, Higashikawasaki-cho, Chuo-ku, Kobe, Hyogo Prefecture Kobe Plant, Kawasaki Heavy Industries, Ltd. (72) Yukihiko Takaza, Inventor Kawasaki Heavy Industries, Ltd., Kobe Plant, Kobe Plant, Kobe City, Kobe City, Kobe City, Hyogo Prefecture, Japan 56) References JP-A-63-60217 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C21B 11/00 C22B 5/10 F27D 13/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶融還元炉と、そこでの発生ガスを還元ガ
スとする予備還元炉とを使用する鉄鉱石の溶融還元法に
おいて、 予備還元炉からの排ガスにより石炭乾燥装置で200〜350
℃の温度にて石炭を乾燥させたうえ、その石炭を溶融還
元炉へ投入するとともに、予備還元炉からの上記の排ガ
スを、水分および二酸化炭素の除去を行ったのち予備還
元炉と上記石炭乾燥装置とのそれぞれへリサイクルさせ
る ことを特徴とする溶融還元法。
1. A method for smelting and reducing iron ore using a smelting reduction furnace and a pre-reduction furnace using generated gas as a reducing gas.
After drying the coal at a temperature of ℃, the coal is put into a smelting reduction furnace, and the above-mentioned exhaust gas from the pre-reduction furnace is subjected to removal of water and carbon dioxide. A smelting reduction method characterized by recycling to each device.
JP17371290A 1990-06-29 1990-06-29 Smelting reduction method Expired - Lifetime JP2902062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17371290A JP2902062B2 (en) 1990-06-29 1990-06-29 Smelting reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17371290A JP2902062B2 (en) 1990-06-29 1990-06-29 Smelting reduction method

Publications (2)

Publication Number Publication Date
JPH0463219A JPH0463219A (en) 1992-02-28
JP2902062B2 true JP2902062B2 (en) 1999-06-07

Family

ID=15965735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17371290A Expired - Lifetime JP2902062B2 (en) 1990-06-29 1990-06-29 Smelting reduction method

Country Status (1)

Country Link
JP (1) JP2902062B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528064A (en) * 2008-07-17 2011-11-10 シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー Methods and equipment for steelmaking with optimized energy and carbon dioxide emissions
WO2017052112A1 (en) * 2015-09-21 2017-03-30 주식회사 포스코 Molten iron manufacturing apparatus and molten iron manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100380752B1 (en) * 2000-12-20 2003-04-18 주식회사 포스코 apparatus for calcining additive material and drying ore using off-gas in fludizied bed reactor
KR101322903B1 (en) * 2011-12-22 2013-10-29 주식회사 포스코 Apparatus for manufacturing molten iron and method for manufacturing the same
JP5967616B2 (en) * 2013-01-25 2016-08-10 株式会社日向製錬所 How to operate the rotary kiln
JP7292581B2 (en) * 2019-07-24 2023-06-19 住友金属鉱山株式会社 Method for smelting oxide ore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528064A (en) * 2008-07-17 2011-11-10 シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー Methods and equipment for steelmaking with optimized energy and carbon dioxide emissions
WO2017052112A1 (en) * 2015-09-21 2017-03-30 주식회사 포스코 Molten iron manufacturing apparatus and molten iron manufacturing method

Also Published As

Publication number Publication date
JPH0463219A (en) 1992-02-28

Similar Documents

Publication Publication Date Title
US4913733A (en) Process for producing pig iron
US9377242B2 (en) Method for treating waste gases from plants for pig iron production
KR920009995A (en) Manufacturing method of pig iron and sponge iron
KR20160029150A (en) Method for melting raw iron while recirculating blast furnace gas by adding hydrocarbons
US3264091A (en) Process for producing highly metallized pellets
US6251162B1 (en) Process for the production of liquid pig iron or liquid intermediate products of steel
US1864593A (en) Method of producing metal sponge
JPS6254163B2 (en)
WO1997032048A1 (en) Method and apparatus for treating ironmaking dust
JP2902062B2 (en) Smelting reduction method
US1742750A (en) Production and utilization of carbon monoxide
JPS6220809A (en) Melt reduction method of iron ore
JPH10506682A (en) Method for producing liquid pig iron or liquid pre-product and sponge and plant for carrying out this method
RU2176672C2 (en) Method of manufacturing sponge iron
SU1641194A3 (en) Process for producing hot metal or steel semiproducts from ferriferrous lump material
US1334004A (en) Process for the treating of titaniferous iron ore
US839126A (en) Process of smelting iron ores.
JPS63216934A (en) Fluidized-bed reducing method for chromium ore or the like
JPH06346126A (en) Metallurgic method and equipment
JPS62243706A (en) Method for circulating gas generated in melt reduction smelting
JPH11217614A (en) Smelting reduction method of metal
JPH0689391B2 (en) Fluidized bed reduction method for iron ore
JPS62230924A (en) Manufacture of smelted and reduced iron
JPH0426713A (en) Smelting reduction iron-making method
JPS5928605B2 (en) Metal oxide smelting method and device