JPS6158338A - Spread spectrum phase encoding power communication system - Google Patents

Spread spectrum phase encoding power communication system

Info

Publication number
JPS6158338A
JPS6158338A JP59180066A JP18006684A JPS6158338A JP S6158338 A JPS6158338 A JP S6158338A JP 59180066 A JP59180066 A JP 59180066A JP 18006684 A JP18006684 A JP 18006684A JP S6158338 A JPS6158338 A JP S6158338A
Authority
JP
Japan
Prior art keywords
signal
spectrum
power
fed
spread spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59180066A
Other languages
Japanese (ja)
Inventor
Satoshi Hasegawa
聡 長谷川
Kaoru Endo
馨 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, NEC Corp, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP59180066A priority Critical patent/JPS6158338A/en
Publication of JPS6158338A publication Critical patent/JPS6158338A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation

Abstract

PURPOSE:To obtain high signal-to-noise ratio of received signal even under a peak power limiting condition by transmitting a narrow bankwidth information signal through multiplification modulation in a psuedo-random system and spectrum dispersion in a wide and and demodulating the received signal through correlation detection and spectrum inverse dispersion. CONSTITUTION:Signals 166(1)-166(N) on the terminal unit side are multiplexed (111) to be fed to a multiplying circuit 110. A signal 163 from a psuedo-random system series 109 and a clock 170 are fed to an exclusive OR gate 114, the output 171 of which is multiplied with a signal 166 of a circuit 110. The output of the circuit 110 is fed to a coupler 100 for attenuation of a low frequency component before being fed to a power transmission line. On the receiving side, the input signal from the power line is separated in a filter in a coupler 100 into commercial power and high frequency spectrum dispersion signal. The separated high frequency spectrum dispersion signal is fed to a synchronizing extractor 104, and a spectrum inverse diffusion demodulation 105 is effected through a psuedo-random series to obtain information signals 165(1)-165(N).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電力線を介して情報信号を伝送する通信方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a communication method for transmitting information signals via power lines.

(従来技術とその問題点) 従来、電力線を介した情報信号の伝送における通信方式
は、伝送路の種類によシ種々の変調方式が用いられてい
る。送電線伝送路の場合は、単側波帯変調方式、配電線
伝送路の場合は周波数変調方式あるいは位相変調方式が
採用されていた。
(Prior Art and its Problems) Conventionally, various modulation methods have been used in communication methods for transmitting information signals via power lines depending on the type of transmission path. Single-sideband modulation was used for power transmission lines, and frequency modulation or phase modulation was used for distribution lines.

例えば、アイトリプルイー・トランズアクションズ・オ
ン・コンシューマ−・エレクトロニクス?パートワンt
オーガスト11982 jcE−28jナンバー3 (
IFiEE Transactions on Con
s−umer Electronics p Part
 Lt August 1982*’Vo1.CB−2
8yNo、3)のミッチェル・リー(Mi tche 
l l Lee )著のア” = ユ’キャリア・カレ
ント・トランシーバ−アイシー(A NewCarri
er Current Transceiver I 
C) K記載されている方式は、周波数変調方式の一種
である周波数シフトキーインク変調(F8に変調)であ
る。しかし、電力線の伝送特性は大きな雑音、負荷時性
による伝送路特性の変動等非常に劣悪な伝送条件を呈し
ている。このような劣悪な伝送環境下で、特願昭58−
194908号明細書に示されているようなスペクトラ
ム拡散方式が有望視されている。しかしながら電力線伝
送の使用できる信号周波数帯域には制約があシ、低周波
領域及び高周波領域の使用は困難な状況にある。特にス
ペクトラム拡散信号にては、低域遮断による波形歪は同
期系に悪影響を及ぼし、特願昭58−194908に示
されているようなかなシ低い周波数まで信号成分がある
伝送路符号では安定な同期状態が保てない可能性があっ
た。更に、電力線の雑音スペクトラムは低周波領域に片
寄る傾向が強いため、信号対雑音比(SN几)の観点か
らも信号スペクトラムは低周波領域にては小さいことが
望ましい。
For example, iTriple E Transactions on Consumer Electronics? part one t
August 11982 jcE-28j number 3 (
IFiEE Transactions on Con
sumer Electronics p Part
Lt August 1982*'Vo1. CB-2
Mitchell Lee (8yNo, 3)
A New Carri
er Current Transceiver I
C) The method described in K is frequency shift key ink modulation (modulated to F8), which is a type of frequency modulation method. However, the transmission characteristics of power lines exhibit very poor transmission conditions such as large noise and fluctuations in transmission line characteristics due to load characteristics. Under such poor transmission environment, the patent application
A spread spectrum method as shown in the specification of No. 194908 is considered to be promising. However, there are restrictions on the signal frequency band that can be used for power line transmission, making it difficult to use low frequency and high frequency regions. Particularly in spread spectrum signals, waveform distortion due to low-frequency cutoff has a negative effect on the synchronization system, and transmission line codes with signal components down to very low frequencies, as shown in Japanese Patent Application No. 58-194908, are unstable. There was a possibility that synchronization could not be maintained. Furthermore, since the noise spectrum of a power line tends to be biased toward the low frequency region, it is desirable that the signal spectrum is small in the low frequency region from the viewpoint of signal-to-noise ratio (SN ratio).

(発明の目的) 本発明の目的は、上記従来方式の欠点を除去せしめ、電
力線を介した高品質な高速データ伝送方式を供給するこ
とにある。
(Object of the Invention) An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional methods and provide a high-quality high-speed data transmission method via a power line.

(発明の構成) 本発明によれば、電力線を介して情報信号を伝送する電
力線通信方式において送信側にては前記情報信号を位相
符号化した擬似ランダム系列によってスペクトラム拡散
変調して結合器にて低周波数成分をフィルタによシ減衰
させた後電力線に送出し、受信側にては電力線からの入
力信号を結合器でフィルタによシ商用電力信号と高周波
スペクトラム拡散信号とに分離し、分離された該高周波
スペクトラム拡散信号を送信側と同じ位相符号化した擬
似ランダム系列によってスペクトラム逆拡散復調するこ
とで情報信号を得て通信を行なうことを特徴とするスペ
クトラム拡散位相符号化電力線通信方式が得られる。
(Structure of the Invention) According to the present invention, in a power line communication system that transmits an information signal via a power line, on the transmitting side, the information signal is spread spectrum modulated using a phase-encoded pseudo-random sequence, and then sent to the coupler. After the low frequency components are attenuated by a filter, they are sent to the power line, and on the receiving side, the input signal from the power line is separated into a commercial power signal and a high frequency spread spectrum signal by a filter using a coupler. A spread spectrum phase encoded power line communication system is obtained, which is characterized in that the high frequency spread spectrum signal is subjected to spectrum despread demodulation using a pseudorandom sequence that is phase encoded in the same manner as that on the transmitting side, thereby obtaining an information signal and performing communication. .

(発明の原理) 周波数拡散通信方式は狭帯域情報信号を高いクロック周
波数を有する擬似ランダム系列にて乗積変調することで
広帯域にスペクトラム拡散して送信し、受信側では受信
信号を相関検波を用いてスペクトラム逆拡散することで
復調し、ピーク電力制限下にても高い受信8N(信号対
雑音)比を得る方式である。擬似ランダム系列としては
m系列(最大長系列)がよく用いられる。こうした周波
数拡散通信は、狭帯域雑音に強いこと、フェージング等
伝送路変動に強いこと、秘匿性が高いこと等によシ、従
来無線通信への適用がなされてきた。
(Principle of the Invention) In the frequency spread communication system, a narrowband information signal is multiplied and modulated using a pseudo-random sequence with a high clock frequency to spread the spectrum over a wide band and then transmitted.The receiving side uses correlation detection to detect the received signal. This method demodulates the signal by despreading the spectrum and obtains a high reception 8N (signal-to-noise) ratio even under peak power limitations. An m-sequence (maximum length sequence) is often used as a pseudo-random sequence. Such frequency spread communication has been applied to wireless communication in the past because it is resistant to narrowband noise, resistant to transmission path fluctuations such as fading, and has high confidentiality.

有線通信への適用は、有線回線特性が無線回線に比べ良
好であることから、符号多重による多元接続に焦点がお
かれた適用範囲の検討がなされている。しかし、電力線
は本来商用電力信号の伝送を目的として高周波伝送特性
に関してはほとんど規定がない。よりて、電気機器の接
続状態によシ前述したように大きく高周波伝送特性が変
動し、有線と言えども劣悪な高周波回線環境となる。ま
た、本来の電力線の目的である商用電力信号への悪影響
は極力小さく抑えねばならないし、電気機器への影響も
最小限に留めるべく、高周波信号パワーも小さくせねば
ならない。
Regarding application to wired communication, since the characteristics of wired lines are better than those of wireless lines, studies are being conducted on the scope of application with a focus on multiple access using code multiplexing. However, since power lines are originally intended for transmitting commercial power signals, there are almost no regulations regarding high frequency transmission characteristics. Therefore, as described above, the high frequency transmission characteristics vary greatly depending on the connection state of the electrical equipment, resulting in a poor high frequency line environment even though it is wired. Furthermore, the adverse effect on commercial power signals, which is the original purpose of the power line, must be kept to a minimum, and the high-frequency signal power must also be kept low to minimize the influence on electrical equipment.

このような劣悪な高周波回線環境にて、周波数拡散通信
方式が良好な伝送を行なえることは無線回線の例によシ
記述したが、更に商用電力信号や電気機器への影響を最
小限に抑える観点からも、スペクトラム拡散通信では変
調スペクトラムが広帯域且つ白色に拡散されるのでスペ
クトラム密度が低くなシ良好な特性を呈する。以上のよ
うに考えると電力線伝送にスペクトラム拡散通信方式を
適用することで非常に有用且つ従来方式では得られなか
った新規な効果が得られることがわかる。さらに本発明
では、擬似ランダム系列を位相符号化することによシ、
伝送路特性及び電力線伝送における使用帯域の制約条件
(伝送できるのは仮に以降101GIz〜4501GI
zとする。)下において良好な伝送を実現できる。この
位相符号化をスペクトラム拡散電力線通信に適用する場
合の原理説明を、図を参照しながら行なう。ここで、位
相符号化には種々のものが存在し得るが、以降の説明で
は代表的な位相符号化法として知られているマンチェス
ター符号化に関して説明を行う。第5図はスペクトラム
拡散通信方式における変調過程を示すものである。スペ
クトラム拡散通信方式における変調過程は、第5図(a
)に示す狭帯域情報(it号を、第5図(b)に−例と
して示す高いクロック周波数にて生成される擬似ランダ
ム系列をマンチェスター符号化した系列(c)にて乗積
変調し、広帯域にスペクトラムを拡散するものである。
As described above using the wireless link example, we have shown that the frequency spread communication method can perform good transmission in such a poor high-frequency line environment, but it is also important to minimize the impact on commercial power signals and electrical equipment. From this point of view, in spread spectrum communication, the modulation spectrum is spread over a wide band and in white, so the spectrum density is low and good characteristics are exhibited. Considering the above, it can be seen that applying the spread spectrum communication method to power line transmission is extremely useful and provides novel effects that could not be obtained with conventional methods. Furthermore, in the present invention, by phase-encoding the pseudorandom sequence,
Transmission path characteristics and constraints on the band used in power line transmission (transmission is possible from 101GIz to 4501GIz)
Let it be z. ) good transmission can be achieved under The principle of applying this phase encoding to spread spectrum power line communication will be explained with reference to the drawings. Here, there may be various types of phase encoding, but in the following explanation, Manchester encoding, which is known as a typical phase encoding method, will be explained. FIG. 5 shows the modulation process in the spread spectrum communication system. The modulation process in the spread spectrum communication system is shown in Figure 5 (a
) is multiplicatively modulated using a sequence (c) obtained by Manchester encoding a pseudorandom sequence generated at a high clock frequency as shown in FIG. It spreads the spectrum.

第5図(d)にスペクトラム拡散変調された信号波形の
一例を示す。
FIG. 5(d) shows an example of a signal waveform subjected to spread spectrum modulation.

第2図では、スペクトラム拡散変調過程の信号の周波数
スペクトラムの例を示す。第2図(a)は狭帯域情報信
号のスペクトラムの一例でちゃ、第2図(b)は、マン
チェスター符号化された擬似ランダム系列のスペクトラ
ムの一例である。マンチェスター符号は公知のようにそ
の信号スペクトラムは低域成分が小さくなるのでマンチ
ェスター符号化さ一例である。なお、第2図(c)は変
調信号スペクトラムのメインロープのみを示している。
FIG. 2 shows an example of a frequency spectrum of a signal in a spread spectrum modulation process. FIG. 2(a) is an example of the spectrum of a narrowband information signal, and FIG. 2(b) is an example of the spectrum of a Manchester encoded pseudorandom sequence. As is well known, the Manchester code is an example of Manchester coding because its signal spectrum has small low-frequency components. Note that FIG. 2(c) shows only the main rope of the modulated signal spectrum.

第2図(c)にての拡散されたスペクトラム中の部分ス
ペクトラム200(1)〜200 (2N)には、電力
線に送出できる信号帯域に狭帯域情報信号の信号成分が
t’sは均等に分散しているが、本来使用できない低域
成分は小さなスペクトラムとなっており、伝送路特性と
整合した信号スペクトラムに整形されていることがわか
る。ここでNは擬似ランダム系列の周期長を示し、復調
過程では、受信信号を変調側と同じ擬似ランダム系列に
よシ相関検波を行ない第2図(c)のスペクトラムを有
する拡散信号から第2図(、)のスペクトラムを有する
狭帯域情報信号を得ることができる。
In the partial spectra 200(1) to 200(2N) in the spread spectrum in FIG. 2(c), the signal components of the narrowband information signal are distributed evenly in the signal band that can be sent to the power line. It can be seen that the low-frequency components, which are dispersed but cannot be used in the first place, have a small spectrum, and are shaped into a signal spectrum that matches the transmission path characteristics. Here, N indicates the period length of the pseudo-random sequence, and in the demodulation process, correlation detection is performed on the received signal using the same pseudo-random sequence as on the modulating side, and the spread signal having the spectrum shown in Fig. 2(c) is converted into a spread signal as shown in Fig. 2(c). A narrowband information signal having a spectrum of (, ) can be obtained.

前述の狭帯域情報信号がほぼ均等に拡散される性質は、
特に電力線を用いた通信には大きな効果を発揮する。電
力線の伝送特性は負荷状態により大きく変動し、複数の
零点を生じる可能性もある。
The above-mentioned property that the narrowband information signal is spread almost evenly is that
This is especially effective for communication using power lines. The transmission characteristics of power lines vary greatly depending on load conditions, and may produce multiple zero points.

第3図(、)に、ある負荷状態における電力線の伝送特
性例を示す。第3図(、)の特性は、flの周波数位置
に伝送零点が生じた例である。いま、従来方式である振
幅変調、周波数変調、位相変調のいずれによってもf、
の周波数が中心周波数であるならば、受信信号パワーは
極端に小さくなシ、伝送品質は大きく劣化する。一方、
本発明におけるスペクトラム拡散電力線通信方式による
と、前述の狭帯域情報信号が拡散される性質からflの
周波数近傍の信号パワーが失われるだけでほとんど全て
の信号パワーが受信されることになる。この効果は擬似
ランダム系列の周期長貧が大きくなるにつれ顕著なもの
となる。第3図(b) j (C)に従来方式による信
号スペクトラムと第3図(a)の伝送路を通して復調さ
れた復調スペクトラム例、第3図(d) l (e)に
本発明の方式による信号スペクトラム第3図(、)の伝
送路を通して復調された復調信号スペクトラム例を示す
。第3図(c) p(e)Kて点線は送信情報信号スペ
クトラム例である。また、電力線の伝送特性は、負荷状
態の、変化に伴ない、時間的にも大きく変動する。即ち
、伝送零点の位置が時間的に変動するわけである。この
ような状況で、従来方式によると時間的に受信信号パワ
ーが大きく変動しく中心周波数近傍に零点が存在する時
刻で受信信号パワーが急激に減少する。)、安定した通
信が不可能となることは明らかである。一方、本発明の
スペクトラム拡散電力線通信方式では、時間的に伝送特
性、特に伝送零点が変動してもほとんど受信信号パワー
は変化せず、安定した通信が可能となる。
FIG. 3(,) shows an example of the transmission characteristics of a power line in a certain load state. The characteristics shown in FIG. 3 (,) are an example in which a transmission zero point occurs at the frequency position fl. Currently, f,
If the frequency is the center frequency, the received signal power will be extremely small and the transmission quality will be greatly degraded. on the other hand,
According to the spread spectrum power line communication system of the present invention, almost all the signal power is received due to the above-mentioned nature of the narrowband information signal being spread, with only the signal power in the vicinity of the frequency fl being lost. This effect becomes more pronounced as the period length of the pseudorandom series increases. Fig. 3(b)j(C) shows the signal spectrum according to the conventional method and an example of the demodulated spectrum demodulated through the transmission line of Fig. 3(a), and Fig. 3(d)l(e) shows the signal spectrum according to the method of the present invention. Signal Spectrum An example of a demodulated signal spectrum demodulated through the transmission path shown in FIG. 3 (,) is shown. The dotted line in FIG. 3(c) p(e)K is an example of the transmission information signal spectrum. Furthermore, the transmission characteristics of the power line vary greatly over time as the load condition changes. That is, the position of the transmission zero point changes over time. Under such circumstances, according to the conventional method, the received signal power fluctuates greatly over time, and the received signal power sharply decreases at a time when a zero point exists near the center frequency. ), it is clear that stable communication will be impossible. On the other hand, in the spread spectrum power line communication system of the present invention, even if the transmission characteristics, particularly the transmission zero point, changes over time, the received signal power hardly changes, making stable communication possible.

さらに、本発明の方式では、復調過程にて電力線の雑音
が白色化されるので、特に周波数選択性のある雑音に対
して耐力がある通信が可能となる。
Furthermore, in the method of the present invention, power line noise is whitened in the demodulation process, so communication that is especially resistant to frequency-selective noise becomes possible.

また、送出の時に減衰させられてしまう低周波数成分及
び高周波数成分は、本発明によシ全スペクトラム中のご
く一部となりパワーロスが最少におさえられる。
Further, according to the present invention, the low frequency components and high frequency components that are attenuated during transmission become a small part of the entire spectrum, and power loss can be minimized.

(発明の効果) 以上のように、従来方式では特に伝送路の低周波領域が
使用できないため低域遮断歪を受けやすく、また信号パ
ワー損失も大きかったが本方式によるマンチェスター符
号化を用いて信号の低周波数成分を小さくシ、伝送路の
特性と整合をとったことで、低域遮断歪を受けにくくま
た信号パワー損失も小さくでき、良好な通信が可能とな
り、その効果は多大である。
(Effects of the Invention) As described above, in the conventional method, the low frequency region of the transmission path cannot be used, so it is susceptible to low-frequency cutoff distortion, and the signal power loss is large. By reducing the low frequency component of the signal and matching it with the characteristics of the transmission path, it is less susceptible to low-frequency cut-off distortion, and the signal power loss can be reduced, allowing good communication, which has great effects.

(実施例) 以下、本発明を実現する一実施例を参照しながら説明す
る。
(Example) Hereinafter, an explanation will be given with reference to an example for realizing the present invention.

p44図は本発明の電力線通信システムを示す図である
。図において、400は電力巌を示し、401(1)ν
401(2)は変復調器を示す。402(1)〜402
 (N)及び403(1)〜403 (N)は端末を示
す。401(1) = 401(21の変復調器は、4
00の電力線に受動的に接続されており、該端末どうし
の通信を行なうための周波数拡散変復調を実行する。本
システム実施例では簡単のため変復調器は1mしか示し
ていないが、複数の変復調器を1システム中に収容する
ことも可能である。
Figure p. 44 is a diagram showing the power line communication system of the present invention. In the figure, 400 indicates electric power, and 401 (1) ν
401(2) indicates a modem. 402(1)-402
(N) and 403(1) to 403(N) indicate terminals. 401(1) = 401 (21 modems are 4
It is passively connected to the 00 power line and performs frequency spread modulation and demodulation for communication between the terminals. In this system embodiment, only 1 m of the modem is shown for simplicity, but it is also possible to accommodate a plurality of modems in one system.

第1図は本発明の方式を実現する変復調器の一例を示す
ブロック図である。100は電力線と変復調器を結合す
るための結合器であシ、信号線150はコンセントを介
して電力線に接続される。
FIG. 1 is a block diagram showing an example of a modulator/demodulator that implements the system of the present invention. Reference numeral 100 is a coupler for coupling a power line and a modem, and a signal line 150 is connected to the power line via an outlet.

100の結合器では、低周波商用電力信号とW6周波デ
ータ信号とを分離し、低周波商用電力信号は信号線15
3を介して電気機器の1α源に供給される。まず、復調
側の動作について説明する。100の結合器にて分離さ
れた高周波データ信号は信号線151に出力され増幅器
101を通過した後、自動利得制御増幅器103に入力
される。103の自動利得制御増幅器は、電力線の底積
の変動を補償するに十分なダイナミックレンジを有して
おシ、一定の電力を有する信号が信号線155に出力さ
れる。信号線155の信号から同期信号抽出回路104
にて復調用擬似ランダム信号のクロック成分及びフレー
ム信号が抽出され信号線156に出力される。105の
復調用擬似ランダム系列発生器には、信号@156から
のクロック信号及びフレーム信号、また信号@issか
らの送信側変調擬似ランダム系列の初期位相信号が入力
され、信号線157に変調擬似ランダム系列と同じ擬似
ランダム系列が出力される。マンチェスター符号化器1
13では、信号線157からの復調用擬似ランダム系列
と156からのクロック信号との排他的論理和演算が行
われマンチェスター符号化された擬似ランダム系列を信
号線169に出力する。
The coupler 100 separates the low frequency commercial power signal and the W6 frequency data signal, and the low frequency commercial power signal is connected to the signal line 15.
3 to the 1α source of the electrical equipment. First, the operation on the demodulation side will be explained. The high frequency data signal separated by the coupler 100 is outputted to the signal line 151, passes through the amplifier 101, and then inputted to the automatic gain control amplifier 103. The automatic gain control amplifier 103 has a dynamic range sufficient to compensate for fluctuations in the base product of the power line, and a signal having constant power is output to the signal line 155. Synchronous signal extraction circuit 104 from the signal on signal line 155
The clock component and frame signal of the pseudo-random signal for demodulation are extracted and output to the signal line 156. The clock signal and frame signal from the signal @156 and the initial phase signal of the modulated pseudo-random sequence on the transmitting side from the signal @iss are input to the demodulation pseudo-random sequence generator 105, and the modulated pseudo-random sequence generator is input to the signal line 157. The same pseudo-random sequence as the sequence is output. Manchester encoder 1
At 13, the demodulation pseudorandom sequence from the signal line 157 and the clock signal from 156 are subjected to an exclusive OR operation, and a Manchester encoded pseudorandom sequence is output to the signal line 169.

信号線169の信号と信号線155からの入力信号は、
106の乗算器にて乗算がとられ信号線159に出力さ
れる。信号線159の信号は507の低域通過フィルタ
によシ、データ信号成分が抽出され、信号線160に出
力後多重分離回路108により各端末への信号に分離さ
れる。
The signal on the signal line 169 and the input signal from the signal line 155 are
A multiplier 106 performs the multiplication and outputs the result to a signal line 159. The data signal component of the signal on the signal line 159 is extracted by a low-pass filter 507, and after being outputted to the signal line 160, it is separated into signals sent to each terminal by the demultiplexing circuit 108.

次に変調側の動作について説明する。端末側からの信号
166(1)〜166 (N)は多重化回路111で多
重化され、信号線161に出力される。109の擬似ラ
ンダム系列発生器は信号線162から入力される相手方
変復調器のアドレスに対応する初期位相信号と570か
ら入力されるクロックを用いて擬似ランダム系列を生成
し信号線163に出力する。信号!’J!163の信号
は114のマンチェスター符号化器により、信号線17
0のクロックと排他的論理和演算がとられマンチェスタ
ー符号化された擬似ランダム系列が信号線171に出力
される。信号線171のマンチェスター符号化された変
調用擬似ランダム系列と信号線161のデータ信号は、
110の乗算器によシ乗積変調が行なわれ信号線164
に出力される。112の加算器では、信号線164から
の変調信号と信号線168からの同期信号の和がとられ
信号線167に出力後、102の増幅器にて十分に増幅
され、結合器100で商用電力信号の周波数と重ならな
いよう低周波成分を減衰した後電力線に送出される。
Next, the operation on the modulation side will be explained. Signals 166(1) to 166(N) from the terminal side are multiplexed by multiplexing circuit 111 and output to signal line 161. The pseudo-random sequence generator 109 generates a pseudo-random sequence using the initial phase signal corresponding to the address of the other modem modulator input from the signal line 162 and the clock input from 570, and outputs it to the signal line 163. signal! 'J! The signal 163 is sent to the signal line 17 by the Manchester encoder 114.
An exclusive OR operation is performed with the 0 clock and a Manchester-encoded pseudorandom sequence is output to the signal line 171. The Manchester encoded pseudorandom sequence for modulation on the signal line 171 and the data signal on the signal line 161 are as follows:
Multiply product modulation is performed by the multiplier 110 and the signal line 164
is output to. In the adder 112, the sum of the modulation signal from the signal line 164 and the synchronization signal from the signal line 168 is calculated, and after outputting it to the signal line 167, it is sufficiently amplified by the amplifier 102. After attenuating low frequency components so that they do not overlap with the frequency of the signal, the signal is transmitted to the power line.

以上のようにして、スペクトラム拡散電力線通信が可能
となる。本方式による電力線搬送方式は、変調の際のマ
ンチェスター符号化された擬似ランダム系列の初期位相
が複数棟類とれるので複数種類の変復調器の選択が可能
となシ、iルチアクセス系も拡張構成できる。また、ス
ペクトラム拡散変調では、変調スペクトラムが広帯域に
拡散されるので、スペクトラム密度が低くな)、他機器
への悪影響が大幅に軽減される。
As described above, spread spectrum power line communication becomes possible. In this power line transport system, the initial phase of the Manchester-encoded pseudo-random sequence during modulation can take multiple types, so multiple types of modulators can be selected, and multi-access systems can also be configured in an expanded manner. . In addition, in spread spectrum modulation, the modulation spectrum is spread over a wide band, so the spectrum density is low), and the negative impact on other devices is significantly reduced.

ノψ21ノψ21

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するだめの図、第2図
(a)〜(c)はスペクトラム拡散変調過程の信号の周
波数スペクトラムを示す図、第3図(a)〜(e)は電
力線の伝送特性例及び本方式、従来方式の信号スペクト
ラムを示す図、第4図は本方法を用いたシステム構成例
を示す図、第5図(a)〜(+()はスペクトラム拡散
通信方式における変調過程のタイミングを示す図である
。 図において、 400・・・電力線、401(1)p401(2)・・
・変彷調器、402(11〜402(N)、403(1
1〜403 (N)・・・端末、100・・・結合器、
101,102・・・増幅器、103・・・自動利得制
御増幅器、104・・・同期抽出回路、105ν109
・・・擬似ランダム系列発生器、106r110・・・
乗算器、112・・・加算器、1131114・・・マ
ンチェスター符号化器、107・・・低域通過フィルタ
、108・・・多重化分離回路、111・・・多重化回
路 昭2図 −Ω                 iツ第4図 第5図
FIG. 1 is a diagram for explaining one embodiment of the present invention, FIGS. 2(a) to (c) are diagrams showing frequency spectra of signals in the spread spectrum modulation process, and FIGS. 3(a) to (e) ) is a diagram showing an example of power line transmission characteristics and the signal spectrum of this method and the conventional method. Figure 4 is a diagram showing an example of a system configuration using this method. Figure 5 (a) to (+() are spread spectrum diagrams. It is a diagram showing the timing of the modulation process in the communication system. In the diagram, 400...power line, 401(1) p401(2)...
・Henjinchoki, 402 (11-402 (N), 403 (1
1 to 403 (N)...Terminal, 100...Coupler,
101, 102... Amplifier, 103... Automatic gain control amplifier, 104... Synchronization extraction circuit, 105ν109
...pseudo random sequence generator, 106r110...
Multiplier, 112...Adder, 1131114...Manchester encoder, 107...Low pass filter, 108...Muxing/demultiplexing circuit, 111...Multiplexing circuit Show 2 diagram-Ω i Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 送信側にては情報信号を位相符号化した擬 似ランダム系列によってスペクトラム拡散変調し、結合
器にて低周波数成分をフィルタにより減衰させた後電力
線に送出し、受信側にては電力線からの入力信号を結合
器でフィルタにより商用電力と高周波スペクトラム拡散
信号とに分離し、分離された該高周波スペクトラム拡散
信号を送信側と同じ位相符号化した擬似ランダム系列に
よってスペクトラム逆拡散復調することで情報信号を得
て通信を行なうことを特徴とするスペクトラム拡散電力
線通信方法。
[Claims] On the transmitting side, the information signal is spread spectrum modulated using a phase-encoded pseudo-random sequence, and after attenuating low frequency components with a filter in the coupler, it is sent to the power line, and on the receiving side. The input signal from the power line is separated into commercial power and a high frequency spread spectrum signal by a filter in a coupler, and the separated high frequency spread spectrum signal is despread spectrum demodulated using a pseudorandom sequence encoded with the same phase as that on the transmitting side. A spread spectrum power line communication method characterized by obtaining information signals and performing communication.
JP59180066A 1984-08-29 1984-08-29 Spread spectrum phase encoding power communication system Pending JPS6158338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59180066A JPS6158338A (en) 1984-08-29 1984-08-29 Spread spectrum phase encoding power communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59180066A JPS6158338A (en) 1984-08-29 1984-08-29 Spread spectrum phase encoding power communication system

Publications (1)

Publication Number Publication Date
JPS6158338A true JPS6158338A (en) 1986-03-25

Family

ID=16076870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59180066A Pending JPS6158338A (en) 1984-08-29 1984-08-29 Spread spectrum phase encoding power communication system

Country Status (1)

Country Link
JP (1) JPS6158338A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373233U (en) * 1989-07-20 1991-07-24
JPH04125208U (en) * 1991-04-30 1992-11-16 芳秋 和田 Transport vehicle
CN108549221A (en) * 2018-03-30 2018-09-18 广东工业大学 A kind of filtering method and relevant apparatus of linear stochaastic system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148435A (en) * 1983-02-15 1984-08-25 Matsushita Electric Works Ltd Power line carrier system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148435A (en) * 1983-02-15 1984-08-25 Matsushita Electric Works Ltd Power line carrier system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373233U (en) * 1989-07-20 1991-07-24
JPH04125208U (en) * 1991-04-30 1992-11-16 芳秋 和田 Transport vehicle
CN108549221A (en) * 2018-03-30 2018-09-18 广东工业大学 A kind of filtering method and relevant apparatus of linear stochaastic system
CN108549221B (en) * 2018-03-30 2020-11-10 广东工业大学 Filtering method and related device of linear stochastic system

Similar Documents

Publication Publication Date Title
JP2998204B2 (en) Method and apparatus for canceling spread spectrum noise
EP0454913A1 (en) Compensating for distortion in a communication channel
EP0836303A2 (en) Reduction of peak to average power ratio in MCM systems
Abramson VSAT data networks
KR20000052914A (en) Method of transmission and device to carry out said method
Utlaut Spread spectrum: Principles and possible application to spectrum utilization and allocation
JPH09504670A (en) Spread spectrum spectral density technology
EP0589683B1 (en) Method for frequency comb spread spectrum modulation
US5852636A (en) Method of and apparatus for modulation of FSK carrier in a very narrow band
US5668806A (en) Spread spectrum communication apparatus
US20030128657A1 (en) Rotate shift code division multiplex communication system
JPS6158338A (en) Spread spectrum phase encoding power communication system
JP2850858B2 (en) CDMA transmission / reception method
JP2600518B2 (en) Parallel spread spectrum modulation demodulator
Kochevar Spread spectrum multiple access communications experiment through a satellite
JPS6086935A (en) Communication system for spread spectrum power line
JPS6083444A (en) Power line communication device
HISHINAGA et al. The synchronization acquisition of M-ary/SS communication system with differential detector
JPS60162326A (en) Power line communication system of spread spectrum multiple access and transmitter-receiver
US7190897B2 (en) Optical channel operating parameters monitoring
JPS639698B2 (en)
JPS61150535A (en) Spread spectrum power line communicating method
JPS639699B2 (en)
JPS6133025A (en) Method and device for automatic gain control of spread spectrum signal
JPH0344125A (en) Power line carrier communication equipment