JPS60162326A - Power line communication system of spread spectrum multiple access and transmitter-receiver - Google Patents

Power line communication system of spread spectrum multiple access and transmitter-receiver

Info

Publication number
JPS60162326A
JPS60162326A JP59017353A JP1735384A JPS60162326A JP S60162326 A JPS60162326 A JP S60162326A JP 59017353 A JP59017353 A JP 59017353A JP 1735384 A JP1735384 A JP 1735384A JP S60162326 A JPS60162326 A JP S60162326A
Authority
JP
Japan
Prior art keywords
signal
pseudo
power line
power
random sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59017353A
Other languages
Japanese (ja)
Other versions
JPH024181B2 (en
Inventor
Satoshi Hasegawa
聡 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59017353A priority Critical patent/JPS60162326A/en
Priority to US06/662,111 priority patent/US4641322A/en
Publication of JPS60162326A publication Critical patent/JPS60162326A/en
Publication of JPH024181B2 publication Critical patent/JPH024181B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation

Abstract

PURPOSE:To attain data transmission system with high quality and at a high speed via a power line by superposing the synchronizing pseudo random series onto the signal which gave the spread spectrum modulation to the address and data of the remote side via a pseudo random series and transmitting these superposed signal and series to the power line. CONSTITUTION:The level of a high frequency signal received via a coupling circuit 500 and sent from a line is detected by a power detecting circuit 506. When this level is less than the prescribed value, a gate 510 is opened. Then a generator 514 for synchronizing pseudo random series P0 with a transmission request signal sent from a terminal. The series P0 is transmitted with a transmission clock. At the same time, a timer 513 is started to actuate a generator 511 for modulated pseudo radom series P1 after a time T0 elapses. The address and data information on the remote side sent via a signal line 563 are multiplied 512 for spread spectrum modulation. This modulated signal is added 515 with the series P1 given from the generator 511, and this addition signal is amplified 502 and transmitted to a power line via the circuit 500. In a reception mode a synchronizing signal series P0 is detected by a synchronizing signal extracting circuit 503. While the series P1 is detected by a generator 504 for demodulation pseudo random series and undergoes the reverse spread spectrum demodulation 505.

Description

【発明の詳細な説明】 (童業上の利用分野) 本発明は電力線を介して複数の送受信装置が情報信号の
やりとりを行なう通信方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application in Childcare) The present invention relates to a communication system in which a plurality of transmitting and receiving devices exchange information signals via a power line.

(従来技術とその問題点) 従来、電力線を介した情報信号の伝送における変調方式
、配電線伝送路の場合は周波数変調方式あるいは位相変
調方式が採用されていた。電力線の高周波特性は、送電
線、配電線を問わずコロナ雑音、負荷雑音が大きく、か
つ電力線の負荷状態によ#)@送特性も大きく変動する
。また、雑音、伝送特性とも負荷状態により長・短時間
及び瞬時的にも変動する。信号電力は、他システムへ悪
影響を及ぼさないように上限が定められてbる。このよ
うな非常に悪い伝送路条件下で、従来方式では伝送特性
の平滑化は困難であシ、信号スペクトラム密度を下げる
ため信号電力を下げる必要があった。このため信頼性の
高い通信を行なうことは困難で、特に高速データ伝送は
不可能であった。
(Prior Art and its Problems) Conventionally, modulation methods have been used for transmitting information signals via power lines, and frequency modulation methods or phase modulation methods have been adopted in the case of power distribution line transmission lines. The high-frequency characteristics of power lines, regardless of whether they are transmission lines or distribution lines, include large corona noise and load noise, and the transmission characteristics also vary greatly depending on the load condition of the power line. In addition, both noise and transmission characteristics fluctuate over a long period of time, a short period of time, and even instantaneously depending on the load condition. An upper limit is set for the signal power so as not to adversely affect other systems. Under such extremely poor transmission path conditions, it is difficult to smooth the transmission characteristics using conventional methods, and it is necessary to lower the signal power in order to lower the signal spectrum density. For this reason, it was difficult to perform highly reliable communications, and in particular, high-speed data transmission was impossible.

(発明の目的) 本発明の目的は、上記従来方式の欠点を除去せしめ、電
力線を介した高品質な高速データ伝送方式及び送受信装
置を供給することにある。
(Object of the Invention) An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional methods and to provide a high-quality high-speed data transmission method and a transmitting/receiving device via a power line.

(発明の構成) 本発明によれば、複数の送受信装置が同一電力線を介し
て情報信号の伝送を行なう電力線通信方式において、送
信側にて送信要求が生起すると電力線の受信信号パワー
を検出し、受信信号パワーがある値以上であるならば電
力線が既に使用されているものとして送信要求を棄却し
、ある値よシ小さければ同期用擬似ランダム系列をまず
送出しその後情報信号をスペクトラム拡散変調して送出
し、受信側にては送信されてきた同期用擬僚ランダム系
列から同期信号を抽出し、受信情報信号内に含まれるア
ドレスあるいけ変調用擬似ランダム系列より自送受信装
置あての信号か否かを判断し、自送受信装置あての情報
ならばデータ情報信号を受けとり通信を行なうことを特
徴とするスペクトラム拡散多元接続電力線通信方式及び
送受信装置が得られる。
(Structure of the Invention) According to the present invention, in a power line communication system in which a plurality of transmitting and receiving devices transmit information signals via the same power line, when a transmission request occurs on the transmitting side, the received signal power of the power line is detected, If the received signal power is above a certain value, it is assumed that the power line is already in use and the transmission request is rejected, and if it is smaller than a certain value, a pseudorandom sequence for synchronization is first sent, and then the information signal is spread spectrum modulated. On the transmitting and receiving sides, a synchronization signal is extracted from the transmitted pseudorandom sequence for synchronization, and based on the address or pseudorandom sequence for modulation contained in the received information signal, it is determined whether the signal is addressed to the own transmitting/receiving device. A spread spectrum multiple access power line communication system and a transmitting/receiving device are obtained, which are characterized in that the information is determined and if the information is addressed to the transmitting/receiving device, the data information signal is received and communication is performed.

(発明の原理)スペクトラム拡散通信方式は狭帯域情報
信号を高いクロック周波数を有する擬似ランダム系列に
て乗積変調することで広帯域にスペクトラム拡散して送
信し、受信側では受信信号を相関検波を用いてスペクト
ラム逆拡散することで復調し、ピーク電力制限下にても
高い受信SN(信号対雑音)比を得る方式である。擬似
ランダム系列としては、m系列(最大炎系列)がよく用
いられる。こうしたスペクトラム拡散通信は、狭帯域雑
音九強いこと、フェージング等伝送路変動に強いこと、
秘匿性が高いこと吟によシ、従来無線通信への適用がな
されてきた。有線通信への適用は、有線回線特性が無線
回路に比べ良好であることから符号多重による多元接続
に焦点がおかれた適用範囲の検討がなされているにすぎ
ない。しかし、電力mは本来商用電力信号の伝送を目的
として高周波伝送特性に関してはほとんど規定がない。
(Principle of the Invention) Spread spectrum communication method spreads the spectrum over a wide band by product modulating a narrowband information signal with a pseudo-random sequence with a high clock frequency and transmits the signal.The receiving side uses correlation detection to detect the received signal. This is a method that demodulates the signal by despreading the spectrum and obtains a high reception SN (signal-to-noise) ratio even under peak power limitations. As a pseudorandom sequence, an m sequence (maximum flame sequence) is often used. This kind of spread spectrum communication is resistant to narrowband noise, resistant to transmission path fluctuations such as fading, etc.
Due to its high level of confidentiality, it has been applied to wireless communications. As for application to wired communications, the scope of application has only been studied with a focus on multiple access using code multiplexing, since the characteristics of wired lines are better than those of wireless circuits. However, the power m is originally intended for the transmission of commercial power signals, and there are almost no regulations regarding high frequency transmission characteristics.

よって電気機器の接続状態により前述したように大きく
高周波伝送特性が変動し、有線と言えども劣悪な高周波
回線環境となる。また、本来の電力線の目的である商用
電力信号への悪影響は極力小さく抑えねばならないし、
電気機器への影響も最小限に留めるべく、高周波信号パ
ワーも小さくせねばならない。このような劣悪な高周波
回線環境にて、スペクトラム拡散通信方式が良好な伝送
を行なえることは無線回線の例にょシ記述したが、更に
商用電力信号や電気機器への影響を最小限に抑える観点
からも、スペクトラム拡散通信では変調スペクトラムが
広帯域且つ白色に拡散されるのでスペクトラム密度が低
くなり良好な特性を呈する。
Therefore, as described above, the high frequency transmission characteristics vary greatly depending on the connection state of the electrical equipment, resulting in a poor high frequency line environment even though it is wired. In addition, the negative impact on commercial power signals, which is the original purpose of power lines, must be kept to a minimum.
In order to minimize the impact on electrical equipment, the power of high-frequency signals must also be reduced. As described above using the wireless link example, the spread spectrum communication method can perform good transmission in such a poor high-frequency line environment, but it is also important to minimize the impact on commercial power signals and electrical equipment. Also, in spread spectrum communication, the modulation spectrum is spread over a wide band and in white, so the spectrum density is low and good characteristics are exhibited.

以上のように考えると、電力線伝送にスペクト2ム拡散
通信方式を適用することで非常に有用且つ従来方式では
得られなかった新規な効果が得られることがわかる。
Considering the above, it can be seen that by applying the spread spectrum communication method to power line transmission, it is possible to obtain very useful and novel effects that could not be obtained with conventional methods.

次にスペクトラム拡散通信方式について図を参照しなが
ら説明する。第1図はスペクトラム拡散通信方式におけ
る変調過程を示すものである。スペクトラム拡散通信方
式における変調過程は、第1図(a)に示す狭帯域情報
信号を、’J1図(b)に−例として示す高いクロック
周波数にて生成される擬似ランダム系列にて乗積変調し
、広帯域にスペクトラムを拡散するものである。第1図
(C1にスペクトラム拡散変調された信号波形の一例を
示す。第2図では、スペクトラム拡散変調過程の信号の
周波数スペクトラムの例?示す。第2図(a)は狭帯域
情報信号のスペクトラムの一例であり、第2図(blは
擬似ランダム系列のスペクトラムの一例であり、第2図
(C1けスペクトラム拡散変調信号の一例である。なお
、第2図(C)は変調信号スペクトラムのメインローブ
のみを示している。第2図(C)にての拡散されたスペ
クトラム中の部分スペクトラム200(])〜200(
N)には、狭帯域情報信号の信号成分が均等に分散され
入っている。ここで、Nけ擬似ランダム系列の周期長を
示す。復調過程では、受信信号を変調側と同じ擬似ラン
ダム系列により相関検波を行ない第2図(clのスペク
トラムを有する拡散信号から第2図(alのスペクトラ
ムを有する狭帯域情報信号を得ることができる@ 前述の狭帯域情報信号が均等に拡散される性質は、特忙
電力線を用いた通信には大きな効果を発揮する。電力線
の伝送特性は、負荷状態により大きく変動し、複数の零
点を生じる可能性もある。
Next, the spread spectrum communication system will be explained with reference to the drawings. FIG. 1 shows the modulation process in the spread spectrum communication system. The modulation process in the spread spectrum communication system involves product modulation of the narrowband information signal shown in Figure 1(a) with a pseudo-random sequence generated at a high clock frequency as shown in Figure 1(b) as an example. It spreads the spectrum over a wide band. Figure 1 (C1) shows an example of a signal waveform subjected to spread spectrum modulation. Figure 2 shows an example of the frequency spectrum of a signal in the spread spectrum modulation process. Figure 2 (a) shows the spectrum of a narrowband information signal. Figure 2 (bl is an example of the spectrum of a pseudo-random sequence, and Figure 2 (C) is an example of a spread spectrum modulation signal. Figure 2 (C) is the main spectrum of the modulated signal spectrum. Only the lobes are shown. Partial spectra 200(]) to 200() in the spread spectrum in FIG.
N) contains the signal components of the narrowband information signal evenly distributed. Here, the period length of the N pseudorandom sequence is shown. In the demodulation process, the received signal is subjected to correlation detection using the same pseudo-random sequence as on the modulation side, and a narrowband information signal having a spectrum of Figure 2 (al) can be obtained from a spread signal having a spectrum of cl (Figure 2). The above-mentioned property that the narrowband information signal is spread evenly has a great effect on communication using a busy power line.The transmission characteristics of a power line vary greatly depending on the load condition, and there is a possibility that multiple zero points may occur. There is also.

第3図(alに、ある負荷状態における電力線の伝送特
性例を示す。第3図(a)の特性は、flの周波数位置
に伝送零点が生じた例である。いま、従来方式である振
幅変調、周波数変調、位相変調のいずれによっても、f
lの周波数が中心数であるならば、受信信号パワーは極
端に小さくなり、伝送品質は大きく劣化する。一方、本
発明におけるスペクトラム拡散電力線通信方式によると
、前述の狭帯域情報信号が均等に拡散される性質からf
、の周波数近傍の信号パワーが失われるだけで、はとん
ど全ての信号パワーが受信されることにkる。この効果
け、擬似ランダム系列の周期長Nが大きくなるにつれ顕
著なものとなる。第3図(bl 、 (c)に従来方式
による信号スペクトラムと第3図(alの伝送路を通し
て復調された復調スペクトラム例、第3図(d)、(e
lに本発明の方式による信号スペクトラムと第3図(a
lの伝送路を通して復調された復調信号スペクトラム例
を示す。第3図(cl 、 (elにて点線は送信情報
信号スペクトラム例である。また、電力線の伝送特性は
、負荷状態の変化に伴ない、時間的にも大きく変動する
。即ち、伝送零点の位置が時間的に変動するわけである
。このような状況で、従来方式によると時間的に受信信
号パワーが大きく変動しく中心周波数近傍に零点が存在
する時刻で受信信号パワーが急激に減少する。)、安定
した通信が不可能となることは明らかである。一方、本
発明のスペクトラム拡散電力線通信方式では、時間的に
伝送特性、特に伝送零点が変動してもはとんど受信信号
パワーは変化せず、安定した通信が可能となる。さらに
1本発明の方式では、復調過程にて電力線の雑音が白色
化されるので、特に周波数選択性のある雑音に対して耐
力がある通信が可能となる。また、同期をとるために、
情報信号に先立ち送出する同期用擬似ランダム系列を、
本発明で示すように電力線を専有するためのフラッグと
して用いることで、複数の端末間で伝送媒体としての電
力線を共有するシステムが得られ、システム運用の柔軟
性が大きく増す。
Figure 3 (al) shows an example of the transmission characteristics of a power line under a certain load condition. The characteristic in Figure 3 (a) is an example in which a transmission zero point occurs at the frequency position fl. Whether by modulation, frequency modulation, or phase modulation, f
If the frequency l is the center number, the received signal power will be extremely small and the transmission quality will be greatly degraded. On the other hand, according to the spread spectrum power line communication system of the present invention, due to the property that the narrowband information signal is spread evenly, f
, only the signal power near the frequencies of , is lost, so that almost all the signal power is received. This effect becomes more noticeable as the period length N of the pseudorandom sequence increases. Figure 3 (bl, (c) shows the signal spectrum according to the conventional method, and an example of the demodulated spectrum demodulated through the transmission line of Figure 3 (al), Figure 3 (d), (e
The signal spectrum according to the method of the present invention is shown in Fig. 3 (a).
1 shows an example of a demodulated signal spectrum demodulated through a transmission path of 1. In Figure 3 (cl, (el), the dotted line is an example of the transmitted information signal spectrum. Also, the transmission characteristics of the power line vary greatly over time as the load condition changes. That is, the position of the transmission zero point In this situation, according to the conventional method, the received signal power fluctuates greatly over time, and the received signal power decreases rapidly at the time when a zero point exists near the center frequency.) , it is clear that stable communication will be impossible.On the other hand, in the spread spectrum power line communication system of the present invention, even if the transmission characteristics, especially the transmission zero point, changes over time, the received signal power will hardly change. Furthermore, in the method of the present invention, power line noise is whitened during the demodulation process, making it possible to achieve communication that is especially resistant to frequency-selective noise. Also, in order to synchronize,
A pseudo-random sequence for synchronization that is sent out prior to the information signal,
As shown in the present invention, by using a power line as a flag for exclusive use, a system can be obtained in which a power line is shared as a transmission medium among a plurality of terminals, and flexibility in system operation is greatly increased.

以上のように、従来方式では不可能であった商用電力線
を用いた高速データ伝送が本発明の方式では可能となる
。本発明のスペクトラム拡散多元接続電力線通信方式は
、負荷状態による伝送特性の変動の影響を最小限に留め
るため、信号を拡散し危険分散を行なうことで安定な高
い通信品質を確保し、電力線上の信号パワーを検出する
ことにより複数の端末間で電力線を共有する柔軟なシス
テムが得られ、その効果は多大である。
As described above, the method of the present invention enables high-speed data transmission using commercial power lines, which was impossible with conventional methods. The spread spectrum multiple access power line communication system of the present invention ensures stable high communication quality by spreading signals and distributing risks in order to minimize the influence of fluctuations in transmission characteristics due to load conditions. By detecting the signal power, a flexible system for sharing the power line between multiple terminals can be obtained, and its effects are significant.

(1!施例) 以下、本発明を実現する実施例を参照しながら説明する
。第4図は、本発明の電力線通信システムを示す図であ
る。図にお込て、400は電力線を示し、401(11
〜401(K)は送受信装置を示す。また、402+]
)〜402 (M)は端末管示す。401(11〜40
1(K)の各送受信装置は、400の電力線に受動的に
接続されており、該送受信装置間の通信を行なうため圧
電力線の高周波信号パワーを検出し、高周波信号が検出
されなければスペクトラム拡散変復調にて通信を実行す
る。即ち、ある時刻を観察すると、−組の送受信装置の
みが電力線を介して通信を行なっていることになる。ま
た、通信を行なう相手方のアドレスは、情報データ中に
組み込む方式、あるいは変調擬似ランダム系列を送受信
装置に固有に割りあてられた系列を選択する手法にて設
定することができる。以上のよう圧して、マルチアクセ
ス手法が実現可能となる。この手法によると電力線の伝
播遅延から非常圧小さな確率ではあるが信号の障突が起
こり得る。この障突確率は非ZVC小さいので端末間の
伝送制御手順により回避する手法をとっても実用上の性
能劣化はほとんどないと考えられる。
(1! Example) Hereinafter, the present invention will be described with reference to an example for realizing the present invention. FIG. 4 is a diagram showing a power line communication system of the present invention. In the figure, 400 indicates a power line, and 401 (11
~401(K) indicates a transmitting/receiving device. Also, 402+]
) to 402 (M) indicates a terminal tube. 401 (11-40
Each transmitting/receiving device of 1(K) is passively connected to 400 power lines, and in order to communicate between the transmitting/receiving devices, the high frequency signal power of the piezoelectric power line is detected, and if no high frequency signal is detected, a spread spectrum signal is detected. Communication is performed through modulation and demodulation. That is, when observing a certain time, only the - set of transmitting/receiving devices is communicating via the power line. Further, the address of the other party to communicate with can be set by incorporating it into the information data, or by selecting a modulated pseudo-random sequence uniquely assigned to the transmitting/receiving device. With the above-mentioned pressure, the multi-access method can be realized. According to this method, a signal failure may occur, albeit with a very small probability, due to the propagation delay of the power line. Since this failure probability is small for non-ZVC, it is thought that there will be almost no performance deterioration in practical use even if a method of avoiding it by a transmission control procedure between terminals is taken.

第5図は本発明を実現する送受信装置の一実施例を示す
ブロック図である。ここでは説明を簡単釦するために、
1台の送受信装置には1台の端末が接続されている場合
について説明するが、第4図に示すように1台の送受信
装置に複数台の端末が接続できることは以下の説明から
自明である。
FIG. 5 is a block diagram showing an embodiment of a transmitting/receiving device implementing the present invention. Here, to simplify the explanation,
Although we will explain the case where one terminal is connected to one transmitting/receiving device, it is obvious from the following explanation that multiple terminals can be connected to one transmitting/receiving device as shown in Fig. 4. .

500は電力線と送受信装置を結合するための、結合回
路であシ、信号線550はコンセントを介して電力線に
接続される。500の結合回路では、低周波電力信号と
高周波データ信号とを分離し、低周波商用電力信号は信
号線553を介して電気機器の電源に供給される。まず
、受信側の動作について図を参照しながら説明する。結
合回路500にて分離された高周波データ信号は、信号
線551に出力され自動利得制御増幅器501に人力さ
れる。自動利得制御増幅器501は、電力線の損失変動
を補償するに十分なダイナミックレンジ倉吉しており、
一定の電力を有する信号が信号線554に出力される。
500 is a coupling circuit for coupling the power line and the transmitting/receiving device, and the signal line 550 is connected to the power line via an outlet. The coupling circuit 500 separates the low frequency power signal and the high frequency data signal, and the low frequency commercial power signal is supplied to the power supply of the electrical equipment via the signal line 553. First, the operation on the receiving side will be explained with reference to the drawings. The high frequency data signal separated by the coupling circuit 500 is output to a signal line 551 and input to the automatic gain control amplifier 501 . The automatic gain control amplifier 501 has a dynamic range sufficient to compensate for loss fluctuations in the power line.
A signal with constant power is output to signal line 554.

信号線554の信号から、同期信号抽出回路503にて
同期用擬仰ランダム系列のクロック成分及び復調用擬タ
ランダム系列のフレーム信号が抽出され信号線555に
出力される。同期に要する時間はあらかじめ定められた
To 以下となるように設計されている。また、同期信
号抽出回路503では、同期信号の信号レベルも検出し
、信号線556に出力される。この同期信号の信号レベ
ル検出機能は、電力線に同期用擬似ランダム系列が既に
送出されているか否か、即ち電力線が既に他の送受信装
置により使用されているか否かを検出するためのもので
ある。復調用擬似ランダム系列発生器504には、信号
線555からのクロック信号及びフレーム信号が入力さ
れ信号線557に電力線を通って該送受信装置に入力し
てきた変調用擬似ランダム系列と同じ擬似ランダム系列
が出力される。擬似ランダム系列発生器は、シフトレジ
スタと排他的ma和ゲートを用いて通常の手法にて構成
される。信号線557からの擬似ランダム系列と信号線
554からの信号は乗算器505にて乗算がとられ信号
線558 K出力される。信号線558の信号は低域通
過フィルタ507により、復調低域データ信号成分が抽
出され、信号@ 560に出力される。信号@ 560
の復調低域データ信号はアドレス照合回路508に入力
さね、復調低域データ信号に含まねるアドレス情報から
、この送受信装置あてのデータか否かの検出がなされる
。アドレス照合回路508にては、データがこの送受信
装置あてのデータならば信号線561に論理的に“1”
(tたけ“0″)の信号を出力し、データがこの送受信
装置あてのデータでなけ名ば論理的に“θ″(または1
′)の信号を信号線561に出力する。ゲート509で
は、信号線561の信号が“1″(または“0″)なら
ば信号線560がらの復調低域データ信号を通して信号
線562に出力し、信号線561の信号が“0″(また
は“1″)ならは信号線560からの復調低域データ信
号を阻止し信号m562には出力しない。このようにし
て、復調低域データ信号中のアドレス情報を用いて、送
受信装置の選択が可能となる。506は同期用擬似ラン
ダム系列の信号パワーを検出するパワー検出回路で信号
$ 556からの同期用擬似ランダム系列の信号レベル
から信号パワーを検出し、もしこの信号パワーがあらか
じめ定められた値以上であれば信号線559に“0″を
送出し、あらかじめ定められた値より小さけhは“ピを
送出する。信号線559の信号は送受信装置に接続され
ている端末に知らされると共にゲート510に供給され
る。続−て送信側の動作について図を参照しながら説明
する。端末側から送信要求が生起すると、信号線564
の信号が論理的K“1″となシ、このとき信号線559
の信号が論理的にピ、即ち電力線が他の送受信装置によ
シ使用されていないならばアンドゲート510が開き、
信号@ 565の信号は論理的に“ビとなる。信号線5
65の信号が論理的K“1″と□なると、同期用擬似ラ
ンダム系列発生器514が作動し、信号線568からの
送信用クロックにより同期用擬似ランダム系列が信号線
570に出力される。
From the signal on the signal line 554, a clock component of the pseudo-random sequence for synchronization and a frame signal of the pseudo-random sequence for demodulation are extracted by the synchronization signal extraction circuit 503 and output to the signal line 555. The time required for synchronization is designed to be less than or equal to a predetermined To. The synchronization signal extraction circuit 503 also detects the signal level of the synchronization signal and outputs it to the signal line 556. This signal level detection function of the synchronization signal is for detecting whether a pseudorandom sequence for synchronization has already been sent to the power line, that is, whether the power line is already being used by another transmitting/receiving device. The demodulation pseudorandom sequence generator 504 receives a clock signal and a frame signal from a signal line 555, and a signal line 557 receives the same pseudorandom sequence as the modulation pseudorandom sequence input to the transmitter/receiver through the power line. Output. The pseudorandom sequence generator is constructed in the usual manner using shift registers and exclusive ma sum gates. The pseudorandom sequence from the signal line 557 and the signal from the signal line 554 are multiplied by the multiplier 505 and outputted to the signal line 558K. A demodulated low-pass data signal component is extracted from the signal on the signal line 558 by a low-pass filter 507 and output as a signal @560. Signal @ 560
The demodulated low-frequency data signal is input to an address verification circuit 508, and it is detected from the address information not included in the demodulated low-frequency data signal whether the data is addressed to this transmitting/receiving device. In the address verification circuit 508, if the data is addressed to this transmitting/receiving device, a logical “1” is sent to the signal line 561.
(t times “0”), and if the data is not addressed to this transmitting/receiving device, logically “θ” (or 1
') is output to the signal line 561. In the gate 509, if the signal on the signal line 561 is "1" (or "0"), it is output to the signal line 562 through the demodulated low-frequency data signal from the signal line 560, and the signal on the signal line 561 is "0" (or "0"). If it is "1"), the demodulated low frequency data signal from the signal line 560 is blocked and is not output to the signal m562. In this way, it is possible to select a transmitter/receiver using the address information in the demodulated low-band data signal. 506 is a power detection circuit that detects the signal power of the pseudo-random sequence for synchronization, which detects the signal power from the signal level of the pseudo-random sequence for synchronization from the signal $ 556, and if this signal power exceeds a predetermined value, If h is smaller than a predetermined value, it sends “0” to the signal line 559, and if h is smaller than a predetermined value, it sends “pi”. Next, the operation of the transmitting side will be explained with reference to the diagram.When a transmission request occurs from the terminal side, the signal line 564
When the signal on the signal line 559 becomes logical K “1”,
If the signal is logically P, i.e., the power line is not being used by any other transmitting/receiving device, the AND gate 510 opens;
Signal @ 565 signal is logically “B”. Signal line 5
When the signal 65 becomes logical K "1", the synchronization pseudo-random sequence generator 514 is activated, and the synchronization pseudo-random sequence is output to the signal line 570 by the transmission clock from the signal line 568.

また、信号線565の信号が論理的に“11となると、
513のタイマーが作動し、作動しはじめてから時間T
oが経過すると信号線566に変調用擬似ランダム系列
発生器511に一動作させるパルスを出力する。また信
号#!566の信号は端末にも知らされる。
Moreover, when the signal on the signal line 565 becomes logically "11",
The timer of 513 is activated, and time T has elapsed since it started working.
When o has elapsed, a pulse is output to the signal line 566 to cause the modulation pseudo-random sequence generator 511 to perform one operation. Signal # again! The 566 signal is also notified to the terminal.

変調用擬似ランダム系列発生器511 H,信号線56
6からの動作開始パルスが到着すると、信号線568か
らの送信用クロックにより信号線567に変調用擬似ラ
ンダム系列を出力する。端末側では、送信要求が生起し
、信号線566を介して動作開始パルスが到着すると、
信号線563に最初に送信を希望する相手方送受信装置
のアドレス、引き続いて情報データ信号を信号線563
に送出する。信号線563の信号は、乗算器512にて
信号線567からの変調用擬似ランダム系列と乗算さh
即ちスペクトラム拡散変調され、信号線569に出力さ
れる。
Pseudo-random sequence generator for modulation 511H, signal line 56
When the operation start pulse from 6 arrives, a pseudorandom sequence for modulation is output to the signal line 567 using the transmission clock from the signal line 568. On the terminal side, when a transmission request occurs and an operation start pulse arrives via signal line 566,
First send the address of the other party's transmitting/receiving device to the signal line 563, and then send the information data signal to the signal line 563.
Send to. The signal on the signal line 563 is multiplied by the modulation pseudorandom sequence from the signal line 567 in the multiplier 512.
That is, it is spread spectrum modulated and output to a signal line 569.

信号線569の信号は加算器515にて信号線570か
らの同期用擬似ランダム系列と加算がなされ信号線57
1に出力される。信号線571の信号は、増幅器502
にて十分に増幅された後信号線552に出力され、結合
器500を介して電力線に送出される。
The signal on the signal line 569 is added to the pseudorandom sequence for synchronization from the signal line 570 in the adder 515, and the signal is added to the signal line 57.
1 is output. The signal on the signal line 571 is transmitted to the amplifier 502.
After being sufficiently amplified, the signal is output to a signal line 552, and then sent to a power line via a coupler 500.

第6図は、本発明を実現する送受信装置の中の同期信号
抽出回路の一実施例を示す詳細プロ、り図である。第5
図の503の回路に対応するものである。信号線554
からの自動利得制御増幅器からの出力信号は600,6
01,602の各乗算器圧入力される。6000乗算器
では信号線554からの入力信号と信号線659からの
信号の乗積がとられ信号線651に出力する。乗算器6
01では信号線554からの入力信号と信号9658か
らの信号の乗積がとられ信号線652に出力する。また
乗算器602では信号線554からの入力信号と信号線
657からの信号の乗積がとられ信号線6531C出力
する。信号線657.658,659の各信号は、擬似
ランダム系列発生器607の出力であり、擬似ランダム
系列発生器内のシフトレジスタの1ビツトずつずれた各
段の出力である。即ち、信号線659の擬似ランダム系
列は信号線658の擬似ランダム系列より1ビツト遅れ
たものであり、信号線658の擬似ランダム系列は信号
線657の擬似ランダム系列より1ピツト遅れたもので
ある。信号線652の信号は低域通過フィルタ604に
入力され、低域成分だけ抽出された後信号線556 K
出力される。信号線556の信号は同期信号の信号レベ
ルを示す信号として第5図のパワー検出回路506に入
力される。信号線651の信号と信号線653の信号は
減算器603にて減算が行なわれ信号線654に出力さ
れる。信号線654の信号は低域通過フィルタ605に
より低域成分だけ抽出された後信号線655に出力され
る。信号線655の信号は電圧可変発振器606に制御
信号として入力され、その電圧レベルに応じた周波数の
クロック信号が信号@ 656に出力される。信号線6
56のクロック信号は擬似ランダム系列発生器607に
入力される。このようにしてこの回路はループ系をなし
ておシ、擬似ランダム系列の同期をとることが可能とな
る。この回路の基本的な部分は通常遅延ロックループと
言われており公知の制御系である。
FIG. 6 is a detailed diagram showing one embodiment of a synchronization signal extraction circuit in a transmitting/receiving device that implements the present invention. Fifth
This corresponds to the circuit 503 in the figure. Signal line 554
The output signal from the automatic gain control amplifier from 600,6
Each multiplier pressure of 01 and 602 is input. The 6000 multiplier multiplies the input signal from the signal line 554 and the signal from the signal line 659 and outputs the product to the signal line 651. Multiplier 6
01, the product of the input signal from the signal line 554 and the signal from the signal 9658 is taken and output to the signal line 652. Further, the multiplier 602 multiplies the input signal from the signal line 554 and the signal from the signal line 657, and outputs the resultant product from the signal line 6531C. The signals on the signal lines 657, 658, and 659 are the outputs of the pseudo-random sequence generator 607, and are the outputs of each stage of the shift register in the pseudo-random sequence generator, shifted by one bit. That is, the pseudorandom sequence on signal line 659 is one bit behind the pseudorandom sequence on signal line 658, and the pseudorandom sequence on signal line 658 is one bit behind the pseudorandom sequence on signal line 657. The signal on the signal line 652 is input to a low-pass filter 604, and after extracting only low-frequency components, the signal is passed to the signal line 556K.
Output. The signal on signal line 556 is input to power detection circuit 506 in FIG. 5 as a signal indicating the signal level of the synchronization signal. The signal on signal line 651 and the signal on signal line 653 are subtracted by subtracter 603 and output to signal line 654. The signal on the signal line 654 is output to the signal line 655 after only the low frequency components are extracted by the low pass filter 605 . The signal on the signal line 655 is input as a control signal to the voltage variable oscillator 606, and a clock signal with a frequency corresponding to the voltage level is output as a signal @656. signal line 6
56 clock signals are input to a pseudo-random sequence generator 607. In this way, this circuit forms a loop system and can synchronize the pseudo-random series. The basic part of this circuit is usually called a delay locked loop and is a well-known control system.

第6図の回路構成は、公知の遅延ロックルーズに、本発
明にて用いるための同期信号レベルを検出するための乗
算器601及び低域通過フィルタ604を付加したもの
である。同期化の過程についての詳細な説明は省略する
が、同期がとられた後には信号線658からの擬似ラン
ダム系列と信号線554からの入力同期用擬似ランダム
系列は全く同一のものとなυ、結局乗算@601と低域
通過フィルタ604で相関受信がなされスペクトラム逆
拡散により直流成分、即ち同期用擬似ランダム系列のレ
ベルが得られる訳である。信号線658の信号は608
のフレーム同期信号抽出回路に入力され、信号線658
からの擬似ランダム系列のフレーム周期毎にフレーム信
号が信号線660に出力される。信号線658の擬似ラ
ンダム系列と、信号線554からの入力同期用擬似ラン
ダム系列とは同一であることから、信号線660のフレ
ーム信号はとりもなおさず信号線554からの入力同期
用擬似ランダム系列のフレーム信号である。信号線66
0のフレーム信号と信号線656からのクロック信号は
、信号線555を通シ第5図の復調用擬似ランダム系列
発生器に供給される。以上の同期化過程はToの時間内
に完結するように回路は設計されている。時間Toが経
過後は、信号線554からの入力信号に情報データ信ゞ
号がスペクトラム拡散された変調信号も同期用擬似ラン
ダム系列と重畳して入力されるが同期が確立された後で
は該変調信号は高周波雑音となシ低域通過フィルタ60
4及び605にて十分除去することが可能となる。
The circuit configuration shown in FIG. 6 is a known delay lock-loose circuit to which a multiplier 601 and a low-pass filter 604 for detecting the synchronizing signal level used in the present invention are added. A detailed explanation of the synchronization process will be omitted, but after synchronization is achieved, the pseudorandom sequence from the signal line 658 and the input synchronization pseudorandom sequence from the signal line 554 are exactly the same υ, After all, correlation reception is performed by the multiplication@601 and the low-pass filter 604, and the level of the DC component, that is, the pseudo-random sequence for synchronization, is obtained by spectrum despreading. The signal on signal line 658 is 608
is input to the frame synchronization signal extraction circuit of the signal line 658.
A frame signal is output to the signal line 660 every frame period of the pseudorandom sequence from . Since the pseudo-random sequence on the signal line 658 and the pseudo-random sequence for input synchronization from the signal line 554 are the same, the frame signal on the signal line 660 is the pseudo-random sequence for input synchronization from the signal line 554. This is the frame signal. signal line 66
The zero frame signal and the clock signal from signal line 656 are supplied through signal line 555 to the demodulation pseudo-random sequence generator shown in FIG. The circuit is designed so that the above synchronization process is completed within the time To. After the time To has elapsed, a modulated signal in which the information data signal is spread spectrum-spread on the input signal from the signal line 554 is also input superimposed on the pseudorandom sequence for synchronization, but after synchronization is established, the modulated signal is The signal is high frequency noise and low pass filter 60
4 and 605 can be sufficiently removed.

第7図は本発明を実現する別の送受信装置の一実施例を
示すブロック図である。第5図の実施例とほぼ同じ構成
をしているので重複部分の説明は省略して動作説明を行
なう。まず受信受信側の動作説明を行なう。本実施例は
、各送受信装置には固定的に割シあてられた固有の擬似
ランダム系列がアドレスとして割りあてられており、送
信を行なう場合送信を希望する相手方送受信装置に前記
固有に割りあてられたアドレスとしての擬似ランダムで
情報データを変調することで送受信装置の選択を行なう
方式を実現するものである。よって復調用擬似ランダム
系列発生器504には、各端末に固有に割りあてられた
擬似ランダム系列を生成するために1信号線750から
、シフトレジスタの初期値信号が入力される。この初期
値信号によシ生成される擬似う/ダム系列にて相関受信
を行なうので送信側の変調擬似ランダム系列と受信側の
復調擬似ランダムが一致したときのみに507の低域通
過フィルタの出力の信号線560に復調低域情報データ
化“号が得らhる。よって第5図に示したアドレス照合
回路508とゲート509が不必要になる。次に送信側
では送信を希望する相手方送受信装置′f−同定するた
めに、アドレス情報として変調用擬似ランダム系列発生
器511にシフトレジスタの初期値が信号線751を介
して入力されるわけである。残りの処理は第5図と同一
であるので省略する。
FIG. 7 is a block diagram showing an embodiment of another transmitting/receiving device implementing the present invention. Since the configuration is almost the same as that of the embodiment shown in FIG. 5, the operation will be explained without repeating the explanation of the overlapping parts. First, the operation of the receiving side will be explained. In this embodiment, each transmitting/receiving device is assigned a fixed and unique pseudo-random sequence as an address, and when transmitting, the uniquely assigned pseudo-random sequence is assigned to the other party's transmitting/receiving device to which the transmission is desired. This method realizes a method of selecting a transmitting/receiving device by modulating information data with a pseudo-random address. Therefore, the demodulation pseudo-random sequence generator 504 receives the initial value signal of the shift register from the 1-signal line 750 in order to generate a pseudo-random sequence uniquely assigned to each terminal. Since correlation reception is performed using the pseudo-dumb/dumb sequence generated by this initial value signal, the low-pass filter 507 outputs only when the modulation pseudo-random sequence on the transmitting side and the demodulating pseudo-random sequence on the receiving side match. The demodulated low frequency information data signal is obtained on the signal line 560 of the signal line 560. Therefore, the address verification circuit 508 and gate 509 shown in FIG. In order to identify the device 'f-, the initial value of the shift register is input as address information to the modulation pseudo-random sequence generator 511 via the signal line 751.The remaining processing is the same as that in FIG. Since there is, I will omit it.

(発明の効果) 以上のようにして、簡単な手順で′4I数の送受信装置
を収容してマルチアクセスが可能なスペクトラム拡散電
力線通信システムが可能となる。スペクトラム拡散通信
方式による多元接続電力線通信方式は、伝送特性の変動
に強い点、周波数選択性の雑音に強い点、また変調スペ
クトラムが広帯域に拡散されスペクトラム密度が低くな
るので他機器に与える悪影響を大幅に軽減できる点等の
特長を有しており、従来方式では実現不可能アありた電
力線高速データ伝送に適用可能でその効果は絶大なもの
がある。
(Effects of the Invention) As described above, a spread spectrum power line communication system capable of accommodating as many as '4I transmitting/receiving apparatuses and allowing multi-access can be achieved through a simple procedure. The multiple-access power line communication method using the spread spectrum communication method is strong against fluctuations in transmission characteristics, strong against frequency-selective noise, and because the modulation spectrum is spread over a wide band and the spectrum density is low, there is no significant negative impact on other equipment. It has the advantage of being able to reduce the amount of energy required, and can be applied to power line high-speed data transmission, which was impossible with conventional methods, and its effects are tremendous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al 、 (bl 、 (clはスペクトラム
拡散通信方式における変調過程を示すタイミングチャー
トであり、第2図(a) 、 (bl 、 (clはス
ペクトラム拡散変調過程の信号の周波数スペクトラム會
示す図であシ、第3図(al〜(elは電力線の伝送特
性例及び本方式、従来方式の信号スペクトラムを示す図
であり、第4図は本方式におけるシステム構成例を示す
図であシ、第5図は本方式における送受信装置の一実施
例を示すブロック図であシ、第6図は本方式における送
受信装置の中の同期信号抽出回路を示すブロック図であ
シ、第7図は本方式における送受信装置の別の一実施例
を示すブロック図である。 図において、400−・・電力線、401(1)〜40
1(K)、・−送受信装置、402 (1)〜402(
M)−・・端末、500−・・結合器、soi・・・自
動利得制御増幅器、502・・・増幅器、503・・・
同期信号抽出回路、504,511,514゜607・
・・擬似ランダム系列発生器、505,512,600
゜[)1 、602・・・乗算器、506・・・パワー
検出回路、507604、fi05・・・低域通過フィ
ルタ、508・・・アドレス照合回路、509・・・ゲ
ー)、510・・・アンドゲート、513・・・タイマ
ー、515・・・加算器、606・・・電圧可変発振器
、603・・・減算器、608・・・フレーム同期信号
抽出回路をそれぞれ示す。 代理に打”−”−白眉 晋 オ (図 第4図 第5図
Figure 1 (al, (bl, (cl) is a timing chart showing the modulation process in the spread spectrum communication system, and Figure 2 (a), (bl, (cl) is a timing chart showing the frequency spectrum of the signal in the spread spectrum modulation process. Figures 3 and 3 (al to el are diagrams showing examples of transmission characteristics of power lines and signal spectra of this system and conventional system, and Figure 4 is a diagram showing an example of system configuration in this system. , FIG. 5 is a block diagram showing an embodiment of the transmitting/receiving device in this method, FIG. 6 is a block diagram showing a synchronization signal extraction circuit in the transmitting/receiving device in this method, and FIG. It is a block diagram showing another example of the transmitter/receiver in this system.
1(K), - transmitting/receiving device, 402 (1) to 402(
M)--Terminal, 500--Coupler, soi--Automatic gain control amplifier, 502--Amplifier, 503--
Synchronous signal extraction circuit, 504, 511, 514゜607・
...pseudo random sequence generator, 505,512,600
゜[)1, 602... Multiplier, 506... Power detection circuit, 507604, fi05... Low pass filter, 508... Address matching circuit, 509... Game), 510... AND gate, 513... timer, 515... adder, 606... voltage variable oscillator, 603... subtracter, 608... frame synchronization signal extraction circuit, respectively. Hit the deputy”-”- Shino Hakubi (Fig. 4, Fig. 5)

Claims (4)

【特許請求の範囲】[Claims] (1) 曹数の送受イサ装置が同一電力線を介して情報
信号の伝送を行なう電力線通信号式において、送信側に
て送信要求が生起すると、電力線からの受信信号パワー
を検出し該受信信号パワーがあらかじめ定めらねた値以
上であるならば、電力線が既に使用されているものとし
て送信要求を棄却し、前記受信信号パワーが前!5あら
かじめ定められた値より小さければまず同期用擬似ラン
ダム系列P。 を低周波数成分を減衰させた後電力線に送出し、あらか
じめ定められた一定時間経過後、前記同期用擬似ランダ
ム系列P0とは異なる擬似ランダム系列PIにて相手方
アドレス情報とデータ情報信号をスペクトラム拡散変調
し前記同期用擬似ランダム系列P0と重畳し低周波数成
分を減衰させた後電力線に送出し、受信側にては電力線
からの入力信号をフィルタにより商用電力信号と高周波
スペクトラム拡散信号とに分離し、分離された該高周波
スペクトラム拡散信号から前記同期用擬似ランダム系列
P0を用いて同期信号を抽出し、該同期信号により同期
がとられた前記擬似ランダム系列P、でスペクトラム逆
拡散復調することで情報信号?得、該情報信号に含まれ
るアドレス情報から自送受信装置あての情報ならば、デ
ータ情報信号を受けとり通信を行なうことを特徴とする
スペクトラム拡散多元接続電力線通信方式。
(1) In a power line communication system in which a number of transmitting and receiving devices transmit information signals via the same power line, when a transmission request occurs on the transmitting side, the received signal power from the power line is detected and the received signal power is is greater than a predetermined value, the power line is considered to be already in use and the transmission request is rejected, and the received signal power is higher than the previous value. 5 If the value is smaller than a predetermined value, a pseudo-random sequence P for synchronization is first generated. is transmitted to the power line after attenuating low frequency components, and after a predetermined period of time has elapsed, the other party's address information and data information signal are spread spectrum modulated using a pseudo-random sequence PI different from the synchronization pseudo-random sequence P0. The signal is superimposed on the synchronization pseudo-random sequence P0 to attenuate low frequency components, and then sent to the power line, and on the receiving side, the input signal from the power line is separated into a commercial power signal and a high frequency spread spectrum signal by a filter, A synchronization signal is extracted from the separated high-frequency spread spectrum signal using the synchronization pseudo-random sequence P0, and spectrum despread demodulation is performed using the pseudo-random sequence P synchronized by the synchronization signal to generate an information signal. ? A spread spectrum multiple access power line communication system characterized in that if the address information contained in the information signal is addressed to the own transmitting/receiving device, the data information signal is received and communication is performed.
(2)複数の送受信装置が同一電力線を介し、て情報信
号の伝送を行なう電力線通信方式において、送信側に送
信要求が生起すると、電力線からの受信信号パワーを検
出し、該受信信号パワーがあらかじめ定められた値以上
であるならば、電力線が既に使用されているものとして
送信要求を棄却し、前記受信信号パワーが前記あらかじ
め定められた値より小さければまず同期用擬似ランダム
系列P0を低周波数成分を減衰させた後電力線に送出し
、あらかじめ定められた一定時間紅過後、通信を希望し
ている相手方送受信装置に割りあてられた擬似ランダム
系列Pn にてデータ情報信号をスペクトラム拡散変調
し前記同期用擬似ランダム系列P。 と重畳して低周波数成分を減衰させた後電力線に送出し
、受信側にては電力線からの入力信号をフィルタにより
商用電力信号と高周波スペクトラム拡散信号とに分離し
、分離された該高周波スペクトラム拡散信号から前記同
期用擬似ランダム系列P0を用いて同期信号を抽出し、
該同期信号により同期がとられた自送受信装置に固有に
割り当てられり&似うンダム系列Pn でスペクトラム
逆拡散復調することで通信を行なうことを特徴とするス
ペクトラム拡散多元接続電力線通信方式。
(2) In a power line communication system in which multiple transmitting and receiving devices transmit information signals via the same power line, when a transmission request occurs on the transmitting side, the power of the received signal from the power line is detected, and the power of the received signal is determined in advance. If the received signal power is greater than or equal to the predetermined value, it is assumed that the power line is already in use and the transmission request is rejected, and if the received signal power is less than the predetermined value, the synchronization pseudorandom sequence P0 is first changed to the low frequency component. After attenuating the signal, it is sent to the power line, and after a predetermined period of time, the data information signal is spread spectrum modulated using a pseudo-random sequence Pn assigned to the other party's transmitter/receiver with which communication is desired. Pseudo-random sequence P. The input signal from the power line is separated into a commercial power signal and a high frequency spread spectrum signal by a filter on the receiving side, and the separated high frequency spread spectrum signal is Extracting a synchronization signal from the signal using the synchronization pseudorandom sequence P0,
A spread spectrum multiple access power line communication system characterized in that communication is performed by despread spectrum demodulation using a random sequence Pn that is uniquely assigned to and similar to a self-transmitting/receiving device synchronized by the synchronization signal.
(3)複数の送受信装置が同一電力線を介して情報信号
の伝送を行なう電力線通信方式の送受信装置において、
電力線と送受信装置を結合し商用電力信号と高周波スペ
クトラム拡散信号を分離するためのフィルタを含む結合
手段と、核結合手段からの信号を増幅する第1の増幅手
段と、第1の増幅手段から同期信号及び受信同期信号レ
ベルを抽出するための同期信号抽出手段と、該同期信号
抽出手段の受信同期信号レベルからパワー検出するため
のパワー検出手段と、復調用の前記同期信号抽出手段よ
シ抽出された同期信号とクロック信号より第1の擬似ラ
ンダム系列を生成する第1の擬似ランダム系列生成手段
と、第1の擬似ランダム系列生成手段の出力と第1の増
幅手段の出力を乗積する第1の乗算器と、第1の乗算器
の出力の低周波数成分を抽出するための低域通過フィル
タと、該低域通過フィルタの出力信号から自己の送受信
装置あての情報信号かどうかを検出するアドレス検出手
段と、該アドレス検出手段の出力信号により前記低域通
過フィルタの出力を開閉するためのスイッチ手段と、送
信要求が生起したとき前記パワー検出手段によりパワー
が検出されない場合起動されるタイマ一手段と、該タイ
マ一手段が起動されてからあらかじめ定められた一定時
間T0経過−したときに動作を開始する送信用クロック
によ妙変調用の第2の擬似ランダム系列を生成する第2
の擬似ランダム系列生成手段と、第2の擬似ランダム系
列生成手段の出力と送信情報データとの乗fiIを行な
う第2の乗積器と、前記タイマ一手段が起動されてから
前記Toの時間送信用クロックによル同期用の第3の擬
似ランダム系列を生成する同期信号生成手段と、該同期
信号生成手段の出力と第2の乗算器の出力を加算する加
算手段と、該加算手段の出力を増幅し前記結合手段を介
して電力線に送出するための第2の増幅手段とを具備す
ることを特徴とするスペクトラム拡散多元接続電力線通
信における送受信装置。
(3) In a power line communication type transmitting/receiving device in which multiple transmitting/receiving devices transmit information signals via the same power line,
a coupling means including a filter for coupling a power line and a transmitting/receiving device and separating a commercial power signal and a high frequency spread spectrum signal; a first amplifying means for amplifying the signal from the nuclear coupling means; and a synchronizing means from the first amplifying means. a synchronizing signal extracting means for extracting the signal and a received synchronizing signal level, a power detecting means for detecting power from the received synchronizing signal level of the synchronizing signal extracting means, and a synchronizing signal extracting means for demodulating the received synchronizing signal. a first pseudo-random sequence generation means for generating a first pseudo-random sequence from a synchronization signal and a clock signal; and a first pseudo-random sequence generation means for multiplying an output of the first pseudo-random sequence generation means and an output of the first amplification means. a multiplier, a low-pass filter for extracting the low frequency component of the output of the first multiplier, and an address for detecting whether the output signal of the low-pass filter is an information signal addressed to the own transmitting/receiving device. detection means, switch means for opening and closing the output of the low-pass filter according to the output signal of the address detection means, and a timer means that is activated when no power is detected by the power detection means when a transmission request occurs. and a second device that generates a second pseudo-random sequence for subtle modulation on the transmission clock that starts operating when a predetermined period of time T0 has elapsed since the timer means was activated.
a second multiplier for multiplying the output of the second pseudo-random sequence generating means by the transmission information data; synchronization signal generation means for generating a third pseudo-random sequence for synchronization using a reliable clock; addition means for adding the output of the synchronization signal generation means and the output of the second multiplier; and the output of the addition means. and second amplifying means for amplifying and transmitting the amplified signal to the power line via the coupling means.
(4)複数の送受信装置が同一電力線を介して情報信号
の伝送を行なう電力線通信方式の送受信装置において、
電力線と送受信装置を結合し商用電力信号と高周波スペ
クトラム拡散信号を分離するためのフィルタを含む結合
手段と、該結合手段からの信号を増幅する第1の増幅手
段と、第1の増幅手段から同期信号及び受信同期信号レ
ベルを抽出するための同期信号抽出手段と、該同期信号
抽出手段の受信同期信号レベルからパワー検出手段と、
前記抽出された同期信号を用いあらかじめ各送受信装置
に固有に割り当てられた第1の擬似ランダム系列を生成
する復調用の第1の擬似ランダム系列生成手段と、第1
の擬似ランダム系列生成手段と第1の増幅手段の出力を
乗積するための第1の乗算器と、第1の乗算器の出力の
低周波成分を抽出するための低域通過フィルタと、送信
要求が生起したとき前記パワー検出手段によりパワーが
検出されない場合起動されるタイム一手段と、該タイマ
一手段が起動されてからあらかじめ定められた一定時間
To経過したときに動作を開始する送信用クロックによ
り送信を希望する相手方送受信装置に固有に割シあてら
れた変調用の第2の擬似ランダムを生成する第2の擬似
ランダム系列生成手段と、第2の擬似ランダム系列生成
手段の出力と送信情報データとの乗積を行なう第2の乗
算器と、前記タイマ一手段が起動されてから前記Toの
時間送信用クロックにより同期用の第3の擬似ランダム
系列を生成する同期信号生成手段と、該同期信号生成手
段の出力と第2の乗算器の出力を加算する加算手段と、
該加算手段を増幅し前記結合手段を介して電力線に送出
するための第2の増幅手段とを具備することを特徴とす
るスペクトラム拡散多元接続電力線通信における送受信
装置。
(4) In a power line communication type transmitting/receiving device in which multiple transmitting/receiving devices transmit information signals via the same power line,
a coupling means including a filter for coupling a power line and a transmitting/receiving device and separating a commercial power signal and a high frequency spread spectrum signal; a first amplifying means for amplifying a signal from the coupling means; and a synchronizing means from the first amplifying means. a synchronizing signal extracting means for extracting the signal and a received synchronizing signal level; a power detecting means from the received synchronizing signal level of the synchronizing signal extracting means;
a first pseudo-random sequence generating means for demodulation that generates a first pseudo-random sequence uniquely assigned to each transmitting/receiving device in advance using the extracted synchronization signal;
a first multiplier for multiplying the output of the pseudorandom sequence generation means and the first amplification means; a low-pass filter for extracting the low frequency component of the output of the first multiplier; A timer means that is activated when power is not detected by the power detection means when a request occurs; and a transmission clock that starts operating when a predetermined period of time To has elapsed after the timer means was activated. a second pseudo-random sequence generating means for generating a second pseudo-random for modulation that is uniquely assigned to the other party's transmitting/receiving device that desires transmission; and the output of the second pseudo-random sequence generating means and transmission information. a second multiplier for performing multiplication with data; a synchronization signal generation means for generating a third pseudo-random sequence for synchronization using the time transmission clock of the To after the timer means is activated; addition means for adding the output of the synchronization signal generation means and the output of the second multiplier;
and second amplification means for amplifying the adding means and transmitting the amplified signal to the power line via the coupling means.
JP59017353A 1983-10-18 1984-02-02 Power line communication system of spread spectrum multiple access and transmitter-receiver Granted JPS60162326A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59017353A JPS60162326A (en) 1984-02-02 1984-02-02 Power line communication system of spread spectrum multiple access and transmitter-receiver
US06/662,111 US4641322A (en) 1983-10-18 1984-10-18 System for carrying out spread spectrum communication through an electric power line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59017353A JPS60162326A (en) 1984-02-02 1984-02-02 Power line communication system of spread spectrum multiple access and transmitter-receiver

Publications (2)

Publication Number Publication Date
JPS60162326A true JPS60162326A (en) 1985-08-24
JPH024181B2 JPH024181B2 (en) 1990-01-26

Family

ID=11941678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59017353A Granted JPS60162326A (en) 1983-10-18 1984-02-02 Power line communication system of spread spectrum multiple access and transmitter-receiver

Country Status (1)

Country Link
JP (1) JPS60162326A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125136A (en) * 1987-11-10 1989-05-17 Japan Radio Co Ltd Spread spectrum communication synchronizing acquisition demodulator
US6021137A (en) * 1996-08-27 2000-02-01 Uniden Corporation Data collection system
US6747226B2 (en) 2002-09-20 2004-06-08 Yamaha Corporation Illuminated switch construction and pushbutton unit for illuminated switches
JP2007252573A (en) * 2006-03-23 2007-10-04 Aloka Co Ltd Wireless ultrasonic diagnostic apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125136A (en) * 1987-11-10 1989-05-17 Japan Radio Co Ltd Spread spectrum communication synchronizing acquisition demodulator
JP2601667B2 (en) * 1987-11-10 1997-04-16 日本無線株式会社 Spread spectrum communication synchronous acquisition demodulator
US6021137A (en) * 1996-08-27 2000-02-01 Uniden Corporation Data collection system
US6747226B2 (en) 2002-09-20 2004-06-08 Yamaha Corporation Illuminated switch construction and pushbutton unit for illuminated switches
JP2007252573A (en) * 2006-03-23 2007-10-04 Aloka Co Ltd Wireless ultrasonic diagnostic apparatus

Also Published As

Publication number Publication date
JPH024181B2 (en) 1990-01-26

Similar Documents

Publication Publication Date Title
US5748687A (en) Spreading code sequence acquisition system and method that allows fast acquisition in code division multiple access (CDMA) systems
USRE38523E1 (en) Spreading code sequence acquisition system and method that allows fast acquisition in code division multiple access (CDMA) systems
US4280222A (en) Receiver and correlator switching method
Abramson VSAT data networks
EP0817396B1 (en) Spread spectrum communications system with transmitted reference
JPS60162326A (en) Power line communication system of spread spectrum multiple access and transmitter-receiver
US5715244A (en) Receiving apparatus for a base station in a code division multiple access system and signal receiving method therefor
JPS6083444A (en) Power line communication device
JP2823341B2 (en) Spread spectrum communication system and apparatus
JPH0530079A (en) Spectrum diffusion modulator
JP3276856B2 (en) Wireless transceiver
JP2885211B2 (en) Spread spectrum modem
JP2000022593A (en) Spread spectrum transmission and reception system
JPS6133025A (en) Method and device for automatic gain control of spread spectrum signal
JPH0344125A (en) Power line carrier communication equipment
JPS6086935A (en) Communication system for spread spectrum power line
JP2901844B2 (en) Frequency hopping radio
JPS6158338A (en) Spread spectrum phase encoding power communication system
RU2185658C2 (en) Method for correlating broadband signal processing
RU2166232C2 (en) Structural noise suppressing device for broadband signal receivers
JPH0435332A (en) Spread spectrum communication system
RU2233028C2 (en) Space-division radio link
EP0915585A1 (en) Method of transmitting and receiving data
RU2127022C1 (en) Asynchronous wide-band communication system
KR940007672B1 (en) Multi-access system using pilot signal in ds communications and accessing method therefor