JPS6157833A - Continuous measuring method of viscosity of coal and water slurry - Google Patents

Continuous measuring method of viscosity of coal and water slurry

Info

Publication number
JPS6157833A
JPS6157833A JP18008284A JP18008284A JPS6157833A JP S6157833 A JPS6157833 A JP S6157833A JP 18008284 A JP18008284 A JP 18008284A JP 18008284 A JP18008284 A JP 18008284A JP S6157833 A JPS6157833 A JP S6157833A
Authority
JP
Japan
Prior art keywords
slurry
viscosity
differential pressure
coal
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18008284A
Other languages
Japanese (ja)
Inventor
Yoshinori Otani
義則 大谷
Kazunori Shoji
正路 一紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP18008284A priority Critical patent/JPS6157833A/en
Publication of JPS6157833A publication Critical patent/JPS6157833A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • G01N11/04Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture

Abstract

PURPOSE:To measure continuously the viscosity of slurry by installing a pressure drop measuring instrument and a flow meter in some section of piping, and letting the slurry flow through the piping. CONSTITUTION:The flow meter 49 which measures the flow rate of the slurry is provided on a differential pressure measurement line 41 at the exit side of a pump 51. The differential pressure measurement line 41 has a smooth internal surface and a differential pressure gauge is fitted in some section by using a flange 43, etc. The differential pressure gauge 42 uses a diaphragm type so as to prevent the slurry from flowing in and freezing, and the pressure of the slurry is received by a diaphragm and sent to a differential pressure transmitter 46 through a capillary tube 44 which is charged with silicone oil. The slurry E is sucked from a samp tank 52 bu a pump 51 and admitted intp the measurement line 41, and its flow rate and differential pressure are measured by the flow meter 49 and differential pressure gauge 42. Signals from the differential pressure transmitter 46 and a flow rate oscillator 50 are processed by a computing element 47 to calculate and display the viscosity of the slurry on an indicator 48 as well as the slurry mean flow velocity and differential pressure in the piping.

Description

【発明の詳細な説明】 本発明は石炭・水スラリの連続式粘度測定法に係り、特
に濃度変化等による粘度変化の大きい1口1濃度石炭・
水スラリの粘度を連続的に測定する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous viscosity measurement method for coal/water slurry, and is particularly applicable to coal/water slurries that have large viscosity changes due to concentration changes.
This invention relates to a method for continuously measuring the viscosity of water slurry.

(従来の技術) 近年のエネルギー事情を背景に石油代替燃料として石炭
が見直され、その利用拡大のために各独利用技術に関す
る研究開発が活発に推進されているが、石炭は固体であ
るため、そのハンドリングが厄介であるという欠点があ
る。これを克服する技術として期待されているものが石
炭の流体利用技術である。石炭と油の混合燃料であるC
OM (Coal−O4l−Mixtures)や石炭
と水の混合燃料であるCWM (Co a I −Wa
 t er−Mixtures)がその代表例としてあ
げられるが、COMは石炭転換率が50%であるのに対
し、100%のCWMが注目を集めている。
(Conventional technology) Coal has been reconsidered as an alternative fuel to petroleum due to the recent energy situation, and research and development on technologies for its use are actively promoted in each country to expand its use. However, since coal is solid, The drawback is that it is difficult to handle. The technology that is expected to overcome this problem is the technology that utilizes coal as a fluid. C, a mixed fuel of coal and oil
OM (Coal-O4l-Mixtures) and CWM (Co a I-Wa), which is a mixed fuel of coal and water.
ter-Mixtures) is a typical example, but while COM has a coal conversion rate of 50%, CWM, which has a coal conversion rate of 100%, is attracting attention.

1刊期間安定で、かつ直接噴霧燃焼可能なCWMを製造
するための条件としては、(1)幅広い粒度分布の調製
により粒子の充虜密度を増加し、高凋度化を図る、(2
)界面活性剤等の添加により粒子表面に股を形成させる
と同時に粒子に帯電さ一1I、粒子同志を液中に均等に
分散させて低粘度化する、等が挙げられ°ζいる。この
ようにして製造されたCWMば、わ)体理論から期待し
うる極限にまで石炭濃度を高めているため、第11図に
示すようにごく僅かの石炭濃度の変化により粘度、すな
わら流動性が大きく変化する(第11図における測定条
件:温度28℃、せん断速度99sec−”)。従って
CWM製造プロセスにおいては、スラリの粘度の変動を
極力小さく抑えることが重要である。
The conditions for producing CWM that is stable for one period and capable of direct spray combustion are: (1) increasing the particle density by preparing a wide particle size distribution and achieving high intensity;
) Addition of a surfactant or the like to form crotches on the particle surface and at the same time charge the particles, and evenly disperse the particles in the liquid to lower the viscosity. In the CWM manufactured in this way, the coal concentration is increased to the maximum that can be expected from the body theory, so as shown in Figure 11, a very small change in coal concentration causes a change in viscosity, or fluidity. (Measurement conditions in FIG. 11: temperature 28° C., shear rate 99 sec-''). Therefore, in the CWM manufacturing process, it is important to suppress fluctuations in the viscosity of the slurry as small as possible.

CWMを連続的に製造する場合、湿式粉砕機を用いる方
法が一般的であるが、湿式粉砕機入口の石炭の水分変化
等に、1、り石H,H!訓度が+l’li < irる
11−1湿式粉砕機内部のスラリ粘度がL b+’ I
/、〆I!?・lil+ 1’lが悪化して必要な粒度
に1′5)砕できなくなる。)1−人一〆Ni1度が低
くなり過ぎると期待する1′1γ度がiiIら扛イ:、
<るる。
When producing CWM continuously, it is common to use a wet pulverizer, but due to moisture changes in the coal at the entrance of the wet pulverizer, etc. The training is +l'li < ir11-1 Slurry viscosity inside the wet crusher is L b+'I
/,〆I! ?・lil+ 1'l deteriorates and cannot be crushed to the required particle size (1'5). ) 1-Ni 1 degree is expected to be too low, 1'1 γ degree is iiii et al.:,
<Ruru.

第10図に湿式粉砕機による代表的なCWM製造設備の
系統を示す。石炭Aはバンカ1から給炭機2を経て湿式
粉砕機3へ供給され、一方、添加剤タンク4からポンプ
6により添加剤Bが、また水タンク5からはポンプ7に
より水Cが回収タンク15に定量供給される。回収タン
ク15では粗粒分離機10で分離された粗粒スラリと撹
拌機16によって混合され、粗粒スラリ回収管14を経
て湿式粉砕機3に定量供給される。新式粉砕機3内で製
造したCWMはサンプタンク8からポンプ9によって粗
粒分離機10へ輸送され、スクリーン11の上に残った
CWMは回収タンク15へ、通過したCWMは排出口か
ら糸外へ製品CWM (D)として送り出される。
Figure 10 shows a typical CWM manufacturing equipment system using a wet crusher. Coal A is supplied from bunker 1 to wet crusher 3 via coal feeder 2, while additive B is supplied from additive tank 4 by pump 6, and water C is supplied from water tank 5 by pump 7 to recovery tank 15. will be supplied in fixed quantities to In the collection tank 15, the coarse slurry separated by the coarse grain separator 10 is mixed by an agitator 16, and the mixture is supplied in a fixed amount to the wet crusher 3 via a coarse slurry collection pipe 14. The CWM produced in the new type crusher 3 is transported from the sump tank 8 to the coarse particle separator 10 by the pump 9, the CWM remaining on the screen 11 is transferred to the recovery tank 15, and the CWM that has passed is discharged to the outside of the yarn from the discharge port. It is sent out as product CWM (D).

以上の方法でCWMは製造されるが、石炭への水分、精
度等が時々刻々と変化するため製品CWMr)のスラリ
濃度、粘度および粒度が変動し、高濃度で安定、良質な
CWMの確保が困難となるばかりでなく、粉砕機の閉塞
、停止トラブルに発展することがある。そのため従来、
サンプタンク8の出口に連続式粘度計を設置し、スラリ
の粘度を検知し、ミル入1’lの給水量(水タンクから
の給水量)を制御する方式をとっている。すなわち、ス
ラリ粘度が低い場合には水タンクからの給水量を低減し
、スラリ粘度が高い場合に、ミルへの給水量を増加して
いる。
CWM is produced using the above method, but as the moisture content in the coal, precision, etc. change from time to time, the slurry concentration, viscosity, and particle size of the product CWMr) fluctuate, making it difficult to secure a high-concentration, stable, and high-quality CWM. Not only is this difficult, but it can also lead to blockage and stoppage of the crusher. Therefore, conventionally,
A continuous viscometer is installed at the outlet of the sump tank 8 to detect the viscosity of the slurry and control the amount of water supplied to the 1'l mill (the amount of water supplied from the water tank). That is, when the slurry viscosity is low, the amount of water supplied from the water tank is reduced, and when the slurry viscosity is high, the amount of water supplied to the mill is increased.

しかしながら、CWMの流動特性は炭種、製造条件、添
加剤等によって異なる。すなわち、第9図は、3種のC
WM (A)、(B)および(C)について、共軸2重
円筒型回転粘度計(Haal(e社!iJ)を使用して
各CWMのせん断速度りとせん断応力τの関係を求めた
ものであ・るが、流動性に大幅な差があることが分かる
。ここでAはDとての勾配が常に一定なニュートン流体
、Bはせん動速度の増加によってτが低下する、いわゆ
る擬塑性流体、Cはダイラタント流体と呼ばれるノ)の
である。ここでみかけ精度/IばτとDからで表される
However, the flow characteristics of CWM vary depending on the type of coal, manufacturing conditions, additives, etc. In other words, Figure 9 shows the three types of C
For WM (A), (B), and (C), the relationship between the shear rate and shear stress τ of each CWM was determined using a coaxial double cylinder rotational viscometer (Haal (e company! iJ)). However, it can be seen that there is a large difference in fluidity.Here, A is a Newtonian fluid in which the gradient of D is always constant, and B is a so-called pseudo-fluid in which τ decreases as the shearing speed increases. Plastic fluid, C, is called dilatant fluid. Here, apparent accuracy/I is expressed by τ and D.

第8図はHa a k e社の共軸20i同筒型回転粘
度針を使用して第9図のように流動曲線を求め、各CW
M (A−C)についてせん断速度と粘度の関係を求め
たものである。ニュー1−ン流体(A)はせん断速度が
変化しても粘度は一定であるが、擬塑流体(B)はせん
断速度の増加に伴い、粘度が低下し、一方、ダイラタン
ト流体(C)は逆に上昇することが示される。すなわち
、擬塑性流体(B)はタンク等における静止状態では一
見粘度が高い状態を示すが、ボンピング等によるCWM
の移送状態では低粘度の挙動を示す。逆にダイラタント
流体(C)ではタンク内の静置状態では低粘度であるが
、ボンピング等の移送条件下では高粘度の挙動を示す。
Figure 8 shows the flow curves as shown in Figure 9 obtained using a coaxial 20i rotary viscosity needle manufactured by Haake.
The relationship between shear rate and viscosity was determined for M (A-C). The viscosity of the new fluid (A) remains constant even if the shear rate changes, but the viscosity of the pseudoplastic fluid (B) decreases as the shear rate increases, while the viscosity of the dilatant fluid (C) decreases as the shear rate increases. On the contrary, it is shown to increase. In other words, the pseudoplastic fluid (B) appears to have a high viscosity at first glance in a stationary state in a tank, etc., but when CWM due to pumping etc.
It exhibits low viscosity behavior under transport conditions. On the other hand, dilatant fluid (C) has a low viscosity in a stationary state in a tank, but exhibits high viscosity behavior under transfer conditions such as bombing.

このようにCWMはせん断速度によってCWMの粘度が
変化するため、CWMの流動特性を迅速に検出すること
は、良質でかつ均一なCWMを製造する上で最も重要で
あることがわかった。
As described above, since the viscosity of CWM changes depending on the shear rate, it has been found that quickly detecting the flow characteristics of CWM is most important in producing a high-quality and uniform CWM.

従来法による連続式粘度計の構成を第7図に示ず。これ
は、いわゆる回転式オンライン粘度計(千野製作所、回
転連続粘度計)と称されるもので、同期モータ74、マ
グネット75、内筒76、ポテンションメータ81、変
換器80等で構成されている。原理はラボ用回転粘度肝
と同様で、CWM (1?、)が管83Aから流入し、
連続的に内筒76の周囲を通って管83Bから流出し、
一方、内筒76は同期モータ74の下部に設置したマグ
ネy I・75によって回転し、この回転時に発生ずる
l−ルクをポテンションメータ81で検出し、変換器8
0で信号処理し、指示計79で粘度として表示するよう
にしたものである。
The configuration of a conventional continuous viscometer is not shown in Figure 7. This is what is called a rotating online viscometer (Chino Seisakusho, rotating continuous viscometer), and is composed of a synchronous motor 74, a magnet 75, an inner cylinder 76, a potentiometer 81, a converter 80, etc. . The principle is the same as the rotational viscosity liver for laboratory use, where CWM (1?,) flows in from pipe 83A,
Continuously passes around the inner cylinder 76 and flows out from the pipe 83B,
On the other hand, the inner cylinder 76 is rotated by a magnet I-75 installed at the bottom of the synchronous motor 74, and the slip torque generated during this rotation is detected by a potentiometer 81, and a converter 8
The signal is processed at 0 and displayed as viscosity on an indicator 79.

ここで管83A−Bにおけるせん断速度りは次式で示さ
れる。
Here, the shear velocity in the tubes 83A-B is expressed by the following equation.

v D=□ ここでV:管内CWM流速(m/S) 、d :’l’
1径 (m) 第6図は、連続式回転粘度計(NamcLore社、振
動球型粘度計)で円筒部に流れるスラリの流速を変化し
、せん断速度りと粘度の関係式を算出した結果を示した
ものである。なお、使用した流体は、第6図に示した3
種類のスラリA、+1、Cである。各スラリとも、せん
断速度りの変化にもかかわらずスラリ粘度はほとんど変
化しない結果が得られ、第6図に実線で示したスラリA
、B、Cの粘度と大きく異なっている。
v D=□ where V: CWM flow velocity in the pipe (m/S), d: 'l'
1 diameter (m) Figure 6 shows the results of calculating the relational expression between shear velocity and viscosity by changing the flow velocity of slurry flowing into the cylindrical part using a continuous rotational viscometer (NamcLore, vibrating sphere viscometer). This is what is shown. The fluid used was 3 shown in Figure 6.
These are slurries of types A, +1, and C. For each slurry, results were obtained in which the slurry viscosity hardly changed despite changes in shear rate, and slurry A shown by the solid line in Figure 6 was obtained.
, B, and C.

このように連続式回転速度計で得られた粘度はスラリの
正確な流動特性を代表していないことが明らかなった。
It has thus been found that the viscosity obtained with a continuous tachometer is not representative of the accurate flow characteristics of the slurry.

さらに第5図は、従来の振動型連続粘度計の構成を示す
図である。本粘度計は振動法21、コイル22)交流増
巾器23、可変パルス発振器29等で構成されている。
Furthermore, FIG. 5 is a diagram showing the configuration of a conventional vibrating continuous viscometer. This viscometer is composed of a vibration method 21, a coil 22), an AC amplifier 23, a variable pulse oscillator 29, etc.

振動法21はスラリ配管内にフランジ等で取り付けられ
スラリEが連続的に流れる。振動法21にパルス電流を
与えて振動法を瞬間的に駆動させ、その減衰振動を検出
して粘度を求める方式である。
In the vibration method 21, a flange or the like is installed in the slurry pipe, and the slurry E flows continuously. This is a method in which a pulse current is applied to the vibration method 21 to instantaneously drive the vibration method, and its damped vibration is detected to determine the viscosity.

この場合、粘度計内りのせん断速度りを考えると配管径
をd (m)とし、その管内流速をV (m/s)とす
ると で示される。
In this case, considering the shear velocity inside the viscometer, it is expressed as follows, where the pipe diameter is d (m) and the flow velocity inside the pipe is V (m/s).

管内流速Vを変化せしめてせん断速度りと粘度の関係を
求めた結果を第4図に示す。その結果、各流体とも低せ
ん断速度時に粘度が高く、各流体とも高せん断速度にな
るにつれて粘度は低下するが、途中で1つないし2つの
ピークをもつ特性がある。このように従来の連続式粘度
径は、せん断速度による粘度特性不明瞭で、正確な粘度
および流動特性を把握が困難である。
FIG. 4 shows the results of determining the relationship between shear rate and viscosity by varying the flow velocity V in the pipe. As a result, each fluid has a high viscosity at low shear rates, and the viscosity of each fluid decreases as the shear rate increases, but it has the characteristic of having one or two peaks in the middle. As described above, in the conventional continuous type viscosity diameter, the viscosity characteristics depending on the shear rate are unclear, and it is difficult to grasp accurate viscosity and flow characteristics.

(発明が解決しようとする問題点) 本発明の目的は、上記した従来技術の欠点をなくし、高
濃度石炭・水スラリの粘度を連続的に高精度で測定する
方法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a method for continuously measuring the viscosity of a highly concentrated coal/water slurry with high accuracy.

(問題を解決するための手段) 上記目的を達成するため、本発明者らは鋭意61[究の
結果、高濃度CWMスラリの管内圧)月■失(差圧)が
、広範囲のせん断速度域でスラリの粘度と対応すること
を見出し、本発明に到達した。
(Means for Solving the Problem) In order to achieve the above object, the present inventors have made extensive research and found that the pressure loss (differential pressure) of high-concentration CWM slurry is It was discovered that this corresponds to the viscosity of the slurry, and the present invention was achieved.

本発明は、上記圧力損失測定器としては、差圧計が好ま
しく用いられるが、他の同様な測定手段も使用可能であ
る。
In the present invention, a differential pressure gauge is preferably used as the pressure loss measuring device, but other similar measuring means can also be used.

第1図は、本発明による連続式粘度計の一実施例を示す
説明図である。本装置は差圧測定ライン41、そのライ
ンの上流側および下流側に設けられた差圧計(ダイヤフ
ラム式)42)差圧伝送器46、指示計48、流量計4
9等で構成される。
FIG. 1 is an explanatory diagram showing an embodiment of a continuous viscometer according to the present invention. This device consists of a differential pressure measurement line 41, a differential pressure gauge (diaphragm type) 42, a differential pressure transmitter 46, an indicator 48, and a flow meter 4 installed on the upstream and downstream sides of the line.
It consists of 9 mag.

差圧測定ライン41にはポンプ51出口側にスラリの流
量を測定する流量計49が設置されている。
A flow meter 49 is installed in the differential pressure measurement line 41 on the outlet side of the pump 51 to measure the flow rate of the slurry.

差圧測定ライン41は内面の滑らかな口径30〜150
Aのものが使用され、差圧計42は一定区間にフランジ
43等で取り付けられる。差圧計42は、スラリの流入
、固結を防ぐためにダイヤスラム式になっており、スラ
リの圧力はダイヤフラムで受番」、シリ′:Iンオイル
の封入されたキャピラリチューブ44で差圧伝送器46
まで送られる。
The differential pressure measurement line 41 has a smooth inner diameter of 30 to 150 mm.
Type A is used, and the differential pressure gauge 42 is attached to a certain section with a flange 43 or the like. The differential pressure gauge 42 is of a diaphragm type to prevent slurry from flowing in and solidifying.
sent to.

スラリEはポンプ51でサンプタンク52から吸引j7
、差圧測定ライン41に導入され、流量計(電磁式また
は超音波式)49および差圧計42で流量および差圧が
測定される。差圧伝送器46および流量発振器50から
の信号は、演算器47で処理され、スラリの粘度を演算
し、指示計48に表示する。また同時に管内のスラリ平
均流速および差圧も表示される。なお、差圧計は、圧力
を伝送する導管に直接スラリか接触しないものであれば
、キャピラリチューブ式以外のものでもよい。
Slurry E is sucked from the sump tank 52 by the pump 51.
, is introduced into a differential pressure measurement line 41, and a flow meter (electromagnetic or ultrasonic type) 49 and a differential pressure gauge 42 measure the flow rate and differential pressure. Signals from the differential pressure transmitter 46 and the flow rate oscillator 50 are processed by a calculator 47 to calculate the viscosity of the slurry and display it on an indicator 48 . At the same time, the average flow velocity of the slurry in the pipe and the differential pressure are also displayed. Note that the differential pressure gauge may be of any type other than the capillary tube type, as long as it does not come into direct contact with the slurry or the conduit that transmits the pressure.

第2図は、第1図の装置を用いて測定したAlB、Cス
ラリ (第8図)の管内の流速と圧力損失の関係を両対
数で示したものである。使用した配管口径は50Aでス
ラリ流速は0.07m/S〜2m/sの範囲である。各
スラリとも流速が高くなるにつれて圧力1n失△Pも増
加しているが、それぞれの勾配が大きく異なり、Aのニ
ュートン流体のスラリは勾配が約45°であるが、Bの
擬塑性流体では約15〜30°で若干下に凸の挙動を示
し、さらにCのダイラタントの特性をもつスラリでは勾
配が50°以上になっている。ここで配管内のせん断速
度りは で求めることができる。
FIG. 2 shows the relationship between the flow velocity and pressure loss in the pipe of the AlB, C slurry (FIG. 8) measured using the apparatus shown in FIG. 1 in a logarithmic manner. The pipe diameter used was 50A, and the slurry flow rate was in the range of 0.07 m/s to 2 m/s. For each slurry, the pressure 1n loss △P increases as the flow rate increases, but the slopes of each slurry are significantly different. The Newtonian fluid slurry A has a slope of about 45°, while the pseudoplastic fluid B has a slope of about 45°. It exhibits a slightly downward convex behavior at 15 to 30 degrees, and in slurries with C dilatant characteristics, the slope is 50 degrees or more. Here, the shear velocity inside the pipe can be determined by:

また単位長さの圧力損失へP/L (mmH20/m)
は で示される。
Also, pressure loss per unit length P/L (mmH20/m)
is indicated by .

(2)式よりスラリ粘度μは で表すことができる。From equation (2), the slurry viscosity μ is It can be expressed as

ここでd: 管径    (m) g: 重力加速度 (m/ S ) /l: 粘度    (kg/m−3>■2:  管長
さ    (m) Δp: 圧力1■失  (mmH20)V: 流速  
  (m/ s ) したがって(1)、(3)式および第2図の実測データ
から、せん断速度りと粘度μを算出すれば、第3図のよ
うになる。実線は第8図で示した3種類の流体の流動特
性を示しているが、本発明による連続式粘度計により求
めた流動特性とDf i!一致することが確認された。
Here, d: Pipe diameter (m) g: Gravitational acceleration (m/S) /l: Viscosity (kg/m-3>■2: Pipe length (m) Δp: Pressure 1■ loss (mmH20) V: Flow rate
(m/s) Therefore, if the shear rate and viscosity μ are calculated from equations (1) and (3) and the measured data shown in FIG. 2, the result will be as shown in FIG. 3. The solid lines indicate the flow characteristics of the three types of fluids shown in FIG. 8, and the flow characteristics determined by the continuous viscometer according to the present invention and Df i! It was confirmed that they matched.

したがって本発明Gこよる粘度計を使用することにより
、ミル出口のスラリを連続的に広範囲のせん断速度域で
測定でき、スラリの流動特性も把握できることが明らか
Gこなった。
Therefore, it is clear that by using the viscometer according to the present invention, the slurry at the mill outlet can be continuously measured in a wide range of shear rates, and the flow characteristics of the slurry can also be grasped.

(発明の効果) 本発明によれば、製品スラリの粘度を連続的に測定でき
、しかもスラリの流動特性を把握することが容易になる
ため、CWM製造設備の粘度管理が高精度に実施できる
ばかりでなく、配管輸送においても最適設81条件を得
ることが容易となる。
(Effects of the Invention) According to the present invention, it is possible to continuously measure the viscosity of a product slurry, and it is also easy to understand the flow characteristics of the slurry, so the viscosity management of CWM manufacturing equipment can be carried out with high precision. In addition, it becomes easy to obtain the optimum 81 conditions even in piping transportation.

また従来の連続式粘度計に比べて低価格で製作できる利
点もある。
It also has the advantage of being cheaper to manufacture than conventional continuous viscometers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、差圧型粘度針を用いた本発明による連続式粘
度測定装置の構成図、第2図は、本発明の実施例におけ
る流速と圧力損失の関係を示す説明図、第3図は、本発
明の粘度計より測定した各スラリのせん断速度とスラリ
粘度の関係を示す説明図、第4図は、第5図の粘度計を
使用して求めたせん断速度とスラリ粘度の関係を示す説
明図、第5図は、従来法の連続式振動球型粘度計の構成
図、第6図は、第7図の粘度計によるせん断速度とスラ
リ粘度の関係を示す説明図、第7図は、従来法の連続式
回転粘度針の構成図、第8図は、せん断速度とスラリ粘
度の関係を示す説明図、第9図は、スラリの流動特性の
説明図、第10図は、湿式粉砕機によるCWM製造設備
の系統図、第11図は、石炭濃度とスラリ粘度の関係を
示す説明図である。 41・・・差圧測定ライン、42・・・差圧針、43・
・・フランジ、44・・・キャピラリチューブ、46・
・・差圧伝送器、47・・・演算器、48・・・指示計
、49・・・流は計、50・・・流量発振器、51・・
・ポンプ、52・・・サンプタンク。 代理人 弁理士 川 北 武 長 第1図 41−一一ン貝弄キ?さ; 第3図 せん[Fr速度D(S−’) 第5図 第6図 第4図 せん断速度D(S−’) せん断速度口(S−’) 第7図 第8図 第9図 せん断遼、買D(S−”) 第10図 1 B 】3工丁シξ−二、J へ 、     、o  45 くヲ16L12 ・ □D 67
FIG. 1 is a block diagram of a continuous viscosity measuring device according to the present invention using a differential pressure type viscosity needle, FIG. 2 is an explanatory diagram showing the relationship between flow velocity and pressure loss in an embodiment of the present invention, and FIG. , An explanatory diagram showing the relationship between the shear rate of each slurry and the slurry viscosity measured by the viscometer of the present invention, FIG. 4 shows the relationship between the shear rate and the slurry viscosity determined using the viscometer of FIG. Explanatory diagram: Figure 5 is a configuration diagram of a conventional continuous vibrating sphere viscometer; Figure 6 is an explanatory diagram showing the relationship between shear rate and slurry viscosity using the viscometer in Figure 7; , a configuration diagram of a conventional continuous rotary viscosity needle, FIG. 8 is an explanatory diagram showing the relationship between shear rate and slurry viscosity, FIG. 9 is an explanatory diagram of the flow characteristics of slurry, and FIG. 10 is a diagram of wet pulverization. FIG. 11, which is a system diagram of CWM manufacturing equipment using a machine, is an explanatory diagram showing the relationship between coal concentration and slurry viscosity. 41... Differential pressure measurement line, 42... Differential pressure needle, 43...
...Flange, 44...Capillary tube, 46.
... Differential pressure transmitter, 47 ... Arithmetic unit, 48 ... Indicator, 49 ... Flow meter, 50 ... Flow rate oscillator, 51 ...
・Pump, 52...Sump tank. Agent Patent Attorney Takenaga Kawakita Figure 1 41-11 Is it fun? Figure 3 [Fr speed D (S-') Figure 5 Figure 6 Figure 4 Shear speed D (S-') Figure 7 Figure 8 Figure 9 Shear Liao, buy D (S-”) Fig. 10 1 B ] 3 工 TING shi ξ-2, J to , , o 45 Kuwo 16L12 ・ □D 67

Claims (3)

【特許請求の範囲】[Claims] (1)配管の一定区間に圧力損失測定器および流量計を
設置し、配管内にスラリを流通することにより、圧力損
失測定器で検出した圧力損失および流量計で検出した流
量(管内流速)からスラリの粘度を連続的に測定するこ
とを特徴とする石炭・水スラリの連続式粘度測定法。
(1) By installing a pressure loss measuring device and a flow meter in a certain section of the piping and circulating slurry within the piping, the pressure loss detected by the pressure loss measuring device and the flow rate (flow velocity in the pipe) detected by the flow meter are calculated. A continuous viscosity measurement method for coal/water slurry, which is characterized by continuously measuring the viscosity of the slurry.
(2)特許請求の範囲第1項において圧力損失測定器に
差圧計を使用する石炭・水スラリの連続式粘度測定法。
(2) A continuous viscosity measuring method for coal/water slurry according to claim 1, which uses a differential pressure gauge as a pressure loss measuring device.
(3)特許請求の範囲第2項において、スラリの粘度は
下式に従って算出されることを特徴とする石炭・水スラ
リの連続式粘度測定法。 μ=(Δp)/L・(d^2g)/(32v)d:管径
(m) g:重力加速度(m/s) μ:粘度(kg/m・s) L:管長さ(m) Δp:圧力損失(mmH_2O) v:流速(m/s)
(3) A continuous viscosity measuring method for coal/water slurry according to claim 2, characterized in that the viscosity of the slurry is calculated according to the following formula. μ=(Δp)/L・(d^2g)/(32v) d: Pipe diameter (m) g: Gravitational acceleration (m/s) μ: Viscosity (kg/m・s) L: Pipe length (m) Δp: Pressure loss (mmH_2O) v: Flow velocity (m/s)
JP18008284A 1984-08-29 1984-08-29 Continuous measuring method of viscosity of coal and water slurry Pending JPS6157833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18008284A JPS6157833A (en) 1984-08-29 1984-08-29 Continuous measuring method of viscosity of coal and water slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18008284A JPS6157833A (en) 1984-08-29 1984-08-29 Continuous measuring method of viscosity of coal and water slurry

Publications (1)

Publication Number Publication Date
JPS6157833A true JPS6157833A (en) 1986-03-24

Family

ID=16077136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18008284A Pending JPS6157833A (en) 1984-08-29 1984-08-29 Continuous measuring method of viscosity of coal and water slurry

Country Status (1)

Country Link
JP (1) JPS6157833A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378245U (en) * 1989-11-30 1991-08-07
JPH04147034A (en) * 1990-10-09 1992-05-20 Toda Constr Co Ltd Device for measuring viscosity of muddy water in shield excavation machine
JPH04209294A (en) * 1990-11-30 1992-07-30 Toda Constr Co Ltd Viscosity controller of mud slurry in shielding excavator
JP2008309743A (en) * 2007-06-18 2008-12-25 Asahi Sunac Corp Device and method for measuring viscosity
WO2009034236A1 (en) * 2007-09-14 2009-03-19 Kemira Oyj Apparatus and method for monitoring deposition in systems containing process liquids
JP2011512538A (en) * 2008-02-21 2011-04-21 ジルソン エス.アー.エス. Pipette system and method for measuring viscosity
CN102374961A (en) * 2010-08-06 2012-03-14 克朗斯股份公司 Method and device for determining viscosity
EP3633345A1 (en) * 2018-10-05 2020-04-08 Atlas Copco IAS GmbH Device and method for measuring the viscosity of a viscous material
CN111175189A (en) * 2020-02-25 2020-05-19 中国石油大学(华东) Bi-component quick-setting slurry rheological parameter testing device and testing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378245U (en) * 1989-11-30 1991-08-07
JPH04147034A (en) * 1990-10-09 1992-05-20 Toda Constr Co Ltd Device for measuring viscosity of muddy water in shield excavation machine
JPH04209294A (en) * 1990-11-30 1992-07-30 Toda Constr Co Ltd Viscosity controller of mud slurry in shielding excavator
JP2008309743A (en) * 2007-06-18 2008-12-25 Asahi Sunac Corp Device and method for measuring viscosity
WO2009034236A1 (en) * 2007-09-14 2009-03-19 Kemira Oyj Apparatus and method for monitoring deposition in systems containing process liquids
JP2011512538A (en) * 2008-02-21 2011-04-21 ジルソン エス.アー.エス. Pipette system and method for measuring viscosity
CN102374961A (en) * 2010-08-06 2012-03-14 克朗斯股份公司 Method and device for determining viscosity
EP3633345A1 (en) * 2018-10-05 2020-04-08 Atlas Copco IAS GmbH Device and method for measuring the viscosity of a viscous material
CN111175189A (en) * 2020-02-25 2020-05-19 中国石油大学(华东) Bi-component quick-setting slurry rheological parameter testing device and testing method
CN111175189B (en) * 2020-02-25 2022-04-29 中国石油大学(华东) Bi-component quick-setting slurry rheological parameter testing device and testing method

Similar Documents

Publication Publication Date Title
US10598581B2 (en) Inline rheology/viscosity, density, and flow rate measurement
CN102625905B (en) Multi-phase fluid measurement apparatus and method
JPS6157833A (en) Continuous measuring method of viscosity of coal and water slurry
US4198860A (en) Method and apparatus for measuring particulate matter flow rate
JPS6352015A (en) Mass flow measuring device
CN101280680B (en) Three-phase flow measuring device
US10670441B2 (en) Apparatus and method for measuring a gas volume fraction of an aerated fluid in a reactor
CN110220819A (en) A method of based on tuning fork densimeter measurement direct flotation feed thickness
Cengel et al. Laminar and turbulent flow of unstable liquid‐liquid emulsions
Carleton et al. A study of factors affecting the performance of screw conveyers and feeders
CN104589513A (en) Three-level rapid metering device for binding material
CN109382215B (en) Automatic lime milk adding system
CN104614019A (en) Metering device for liquid
Graham et al. An investigation of complex hybrid suspension flows by magnetic resonance imaging
CA1220646A (en) Two phase flowmeter
JPS58223039A (en) Method for measuring density of slurry
CN207556960U (en) A kind of high temperature crystallization slurry pH value detection device
JPS63303615A (en) Automatic concentration measuring method for roll coolant
Kerekes Turbulent drag reduction in pipe flow of ideal fibre suspensions.
Al-lababidi et al. Non-invasive and non-intrusive ultrasonic techniques with slug closure model for two-phase gas/liquid flowrate measurements
JP3473708B2 (en) Capillary tube viscometer, viscosity measuring method using capillary viscometer, and fluid quality control method
SU830220A1 (en) Slurry moisture-content measuring device
Zhang et al. Online rheological measurement of dilute liquid-solid two-phase flow with ultrasound Doppler technique
GB734992A (en) Improvements relating to a mass-flow measuring device
CN105241789A (en) Non-Newtonian fluid density on-line measuring equipment and method thereof