JPS6157810A - Photoelectric displacement detector - Google Patents

Photoelectric displacement detector

Info

Publication number
JPS6157810A
JPS6157810A JP18007784A JP18007784A JPS6157810A JP S6157810 A JPS6157810 A JP S6157810A JP 18007784 A JP18007784 A JP 18007784A JP 18007784 A JP18007784 A JP 18007784A JP S6157810 A JPS6157810 A JP S6157810A
Authority
JP
Japan
Prior art keywords
light receiving
plate body
light
outputs
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18007784A
Other languages
Japanese (ja)
Other versions
JPH0263167B2 (en
Inventor
Takashi Hashizume
隆 橋詰
Kazuo Makishima
一雄 巻島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP18007784A priority Critical patent/JPS6157810A/en
Publication of JPS6157810A publication Critical patent/JPS6157810A/en
Publication of JPH0263167B2 publication Critical patent/JPH0263167B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/344Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using polarisation
    • G01D5/345Polarising encoders

Abstract

PURPOSE:To detect the relative rotational displacement between the 1st and the 2nd plate bodies by placing two polarizing plates of the 2nd plate body oppsite nonoverlap parts of two polarizing plates of the 1st plate body, and variation in the quantity of transmitted light between them and the quantity of transmitted light at the overlap part of the 1st plate body into electric signals and processing them. CONSTITUTION:A plate body 10 having a large-diameter polarizing disk 11 and a small-diameter polarizing disk 12 overlapping with each other concentrically while axes of transmission have a 45 deg. shift is fixed integrally on a shaft 1 which is supported rotatably. A plate body 40 is arranged facing nonoverlap parts composed of only a disk 11 and polarizing plates 41 and 42 are fixed to the plate body 40 so that axes of transmission shift by 45 deg. from each other. Light sources 21 and 23 and photodetection parts 31 and 32 are arranged opposite each other across the polarizing plates 41 and 42 and nonoverlap parts of the plate body 10, and a light source 23 and a photodetection part 33 are arranged opposite each other across the overlap part of the disks 11 and 12. The light source 21-23 are connected in series and turned on by a turn-on control part 50. An arithmetic part 60 processes photodetection outputs of the photodetection parts 31- 33 to detect the relative rotational displacement between the plate bodies 10 and 11.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、軸の回動変位の検出器に関するものであり、
例えば、ロボットアームの支承軸、あるいはエンジン等
の原動機の回転軸に結合されてその回動角度の検出に供
され、この検出信号は前記検出対象の回動角位置や回転
速度の制御系における帰還信号やその表示に用いられる
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a detector for rotational displacement of a shaft.
For example, it is connected to the support shaft of a robot arm or the rotating shaft of a prime mover such as an engine to detect its rotation angle, and this detection signal is fed back to the control system for the rotation angular position and rotation speed of the detection target. Used for signals and their displays.

従来の技術 この種の検出器には、ロータリエンコーグやレゾルバ等
がある。中でもレゾルバは高い分解能をもつにもかかわ
らず、比較的構造が簡単で、しかも角度情報がその搬送
波の周期ごとに取出せる特徴を有している。
2. Description of the Related Art Detectors of this type include rotary encoders, resolvers, and the like. Among them, resolvers have a relatively simple structure despite having high resolution, and have the characteristic that angular information can be extracted for each period of the carrier wave.

すなわち、レゾルバはステータの直交する2方向の極に
それぞれ第1、第2のコイルを巻装し、その内部で回転
するロータには第3のコイルを巻装し、第1、第2のコ
イルには相互に90度位相の搬送波\“a、\”1〕、
V a= V 2sinω+ V l]= V、、、cosω1 ここに、\72:搬送波の振幅 ω:搬送波の角速度を
供給して各様から搬送波\7a、\゛1〕に対応した磁
束を放射させるようにしたものである。したがって、こ
のロータを被測定軸と結合して回動させると、その回動
角度θに応じてそれぞれの放射磁束のうちロータと鎖交
する磁束の割合が変わり、その結果、第3のフィルには
回動角度θに応じて位相の変わる位相信号V c。
In other words, in the resolver, first and second coils are wound around the poles of the stator in two orthogonal directions, and a third coil is wound around the rotor rotating inside the resolver. are carrier waves \“a, \”1] that are 90 degrees in phase with each other,
V a = V 2 sin ω + V l] = V,,, cos ω1 Here, \72: Carrier wave amplitude ω: Carrier wave angular velocity is supplied to radiate magnetic flux corresponding to carrier waves \7a, \゛1〕 This is how it was done. Therefore, when this rotor is connected to the shaft to be measured and rotated, the proportion of the magnetic flux that interlinks with the rotor among the respective radiated magnetic fluxes changes depending on the rotation angle θ, and as a result, the proportion of the magnetic flux that interlinks with the rotor changes depending on the rotation angle θ. is a phase signal V c whose phase changes depending on the rotation angle θ.

Vc = K 2 V 2cosωt s i nθ十
に2V2sinωt c o sθ ” K 3V 2sin(ωt+θ) ここに、K2、K3:  比例係数が誘起されることに
なる。しかしながら、レゾルバは」1記のように電磁的
な信号発生手段を用いているために、そのコイルおよび
コイルからの信号取出用ロークリトランス等を必要とし
、小型化するに際して制約を受けること、また、ロータ
の慣性モーメントもロータリエンコーグに比べて大きい
ことなどの問題点をもつ。
Vc = K 2 V 2 cos ωt s i n θ 2 V 2 sin ω t co s θ ” K 3 V 2 sin (ωt + θ) Here, K2, K3: Proportionality coefficients will be induced. However, the resolver is electromagnetic as described in 1. Since it uses a conventional signal generation means, it requires a coil and a low retransformer for taking out the signal from the coil, which imposes restrictions on miniaturization, and the moment of inertia of the rotor is also lower than that of a rotary encoder. It has problems such as being large and large.

また、製作に際して所定の磁束分布を得るにはコイルの
形状、配置位置に厳しい精度が要求され、結果的に高価
となる問題点もある。
Furthermore, in order to obtain a predetermined magnetic flux distribution during manufacture, strict precision is required in the shape and position of the coil, resulting in a problem of high cost.

このようなレゾルバの欠点は、電磁的な信号発生手段を
採用していることに起因したものであり、その解決には
光電的な信号発生手段の採用が考えられる。
This drawback of the resolver is due to the use of electromagnetic signal generation means, and a possible solution to this problem is to use photoelectric signal generation means.

その種のものとしては、例えば米国特許第3.306,
159号に開示されたものがある。これは、回転軸に固
着した偏光板の一部分と対向状態に、第1〜第4の4個
の静止偏光板を配設し、その各静止偏光板は相互にその
透過軸を45度づつずらしておき、その各静止偏光板と
前記回転偏光板の各々の外側で光源と受光部を対向配置
したものである。
Examples of this type include, for example, U.S. Pat.
There is one disclosed in No. 159. In this system, four stationary polarizing plates, numbered 1 to 4, are arranged to face a portion of the polarizing plate fixed to the rotating shaft, and each of the stationary polarizing plates has its transmission axis shifted by 45 degrees from each other. Then, a light source and a light receiving section are arranged facing each other on the outside of each of the stationary polarizing plates and the rotating polarizing plate.

以上のものにおいて、光源からの光は、回転偏光板を通
り、続いて第1〜第4の静止偏光板の各一つを経由して
それぞれの受光部に達するが、このとき、各受光部に達
する光量は、回転偏光板と各第1〜第4の静止偏光板の
透過軸の交り角により変わる。すなわち、光の透過率は
、交り角の倍角のコサイン関数に対応して変わる。した
がって、今、回転偏光板が角度θだけ回動すると、その
回転偏光板と第1〜第4の静止偏光板との各文り角は、
それぞれθ、θ+45°、θ+90°、θ+135°と
なり、その結果、それぞれの透過率は、cos 2θ、
−5in2θ、−cos 2θ、5in2θに対応し、
各受光部にもそれらと対応した出力が発生する。ただし
、上記透過率は、必ずOより大であり、したがって、上
記透過率を厳密に表わすと、交り角が90度の場合、す
なわち直交位透過率と上記した透過率の和となし各受光
部も直交位透過率に対応した直流成分を含む。
In the above, light from the light source passes through the rotating polarizing plate, and then passes through each of the first to fourth stationary polarizing plates to reach each light receiving part, but at this time, each light receiving part The amount of light that reaches this value varies depending on the intersection angle of the transmission axes of the rotating polarizing plate and each of the first to fourth stationary polarizing plates. That is, the transmittance of light changes corresponding to a cosine function of the angle of intersection. Therefore, now, when the rotating polarizing plate rotates by the angle θ, the angles between the rotating polarizing plate and the first to fourth stationary polarizing plates are as follows.
θ, θ+45°, θ+90°, and θ+135°, respectively, and as a result, the respective transmittances are cos 2θ,
-5in2θ, -cos 2θ, 5in2θ,
Each light receiving section also generates corresponding outputs. However, the above transmittance is always greater than O. Therefore, to express the above transmittance strictly, when the intersection angle is 90 degrees, it is the sum of the orthogonal transmittance and the above transmittance. The part also includes a DC component corresponding to the orthogonal transmittance.

次1こ、各受光部出力には、搬送波sinω1、CO2
O3、−5inω1、− cosω1が乗算され、その
後加算される。したがって、前記の直流成分はこの加算
により相殺され、加算出力は、位相が回転偏光板の回動
角θの倍角に対応して変わる5in(ωt+2θ)とな
る。
Next, each light receiving unit output has a carrier wave sinω1, CO2
O3, -5inω1, -cosω1 are multiplied and then added. Therefore, the above-mentioned DC component is canceled by this addition, and the added output becomes 5 inches (ωt+2θ) whose phase changes in accordance with the angle multiplied by the rotation angle θ of the rotating polarizing plate.

しかし、これにおいては、第1〜第4の偏光板をその透
過軸が45度づつずれた状態に正値に配置しておく必要
があるが、それには、検出器の組立、調整技術に熟練を
要し、かつ多大の作業時間を要することが避けられない
However, in this case, it is necessary to arrange the first to fourth polarizing plates so that their transmission axes are shifted by 45 degrees at positive values, but this requires skill in assembling and adjusting the detector. It is unavoidable that it requires a lot of time and a lot of work time.

発明が解決しようとする間亀久 ゛・′         本発明は、偏光板の配置に際
して、多数の偏光板を位置決め調整しなければならない
問題点を解決しようとするものである。
Problems to be Solved by the Invention The present invention attempts to solve the problem of having to adjust the position of a large number of polarizing plates when arranging them.

暉町漏り1綜(4力≠の手段 本発明は、前記問題点を解決するために、偏光板の透過
軸の位置調整を2ケ所に減少したものであり、透過軸を
・15度ずらして大小2枚の偏光板を重合した重合部分
と非重合部分とを有する第1の板体と、その重合部分と
対向して配設され、透過軸を45度ずらした第1、第2
の偏光板を有する第2の板体と、第2の板体(あるいは
第1の板体)と一体面に結合され、前記第2の板体の第
1、第2の偏光板またはそれと対向する非重合部分のい
ずれか一側と対向して配設された第1、第2の受光部お
よび重合部分と対向して配設された第3の受光部と、前
記第1、第2の板体を挟んで前記各受光部と対向して配
設された1または複数個の光源と、その光源に一定の点
灯信号を送出する点灯制御部と、前記第1〜第3の受光
部出力を演算して第1、@2の板体の相対回動変位に対
応した出力を形成する演=8− 鉢部とからなる。
In order to solve the above problem, the present invention reduces the position adjustment of the transmission axis of the polarizing plate to two places, and shifts the transmission axis by 15 degrees. A first plate body having a polymerized part and a non-polymerized part made by polymerizing two large and small polarizing plates, and a first plate body and a second plate body which are disposed opposite to the polymerized part and whose transmission axes are shifted by 45 degrees.
a second plate body having a polarizing plate, the second plate body (or the first plate body) being integrally connected to the first plate body, and the first and second polarizing plates of the second plate body or facing thereto; a first and second light receiving section disposed facing either side of the non-polymerized portion; a third light receiving portion disposed facing the overlapping portion; one or more light sources disposed opposite each of the light receiving sections with a plate in between, a lighting control section that sends a constant lighting signal to the light sources, and outputs of the first to third light receiving sections. , and forms an output corresponding to the relative rotational displacement of the first and second plates.

作用 第1、第2の板体が相対的に回動変位θを生じると、第
1の板体の非重合部分の偏光板と第2の板体の第1、第
2の各透過軸との交り角がθだけずれ、その結果、それ
ぞれの光の透過率a1、α2は次のように変化する。
Effect When the first and second plates produce a relative rotational displacement θ, the polarizing plate of the non-overlapping portion of the first plate and the first and second transmission axes of the second plate The intersection angles of the two are shifted by θ, and as a result, the respective light transmittances a1 and α2 change as follows.

α+= (HO−H90)c032θ十H90”Ktc
os2θ+に2 ・・・・■ α2” (Ho−H90)CO32(θ+45°)+H
9゜=に1cO82(θ+45°)十に2 =−Ksi口2 θ 十に2 ・ ・ ・ ・■ここに
、I(。:平行位透過率 H90:直交位透過率 に、=(1,/2)(Ho−H9,) K 2=(1/2 )(H,−890)このとき、第1
の板体の重合部分の透過率α3は、第2の板体の回動変
位θとは無関係に一定であり、次のとおりである。
α+= (HO-H90)c032θ+H90”Ktc
os2θ+2 ・・・■ α2” (Ho-H90) CO32(θ+45°)+H
9° = 1cO82 (θ+45°) 102 = -Ksi 2 θ 102 ・ ・ ・ ・■Here, I(.: Parallel transmittance H90: Orthogonal transmittance, = (1, / 2) (Ho-H9,) K 2 = (1/2) (H, -890) At this time, the first
The transmittance α3 of the overlapping portion of the plates is constant regardless of the rotational displacement θ of the second plate, and is as follows.

α3= (Ho−H9o) cos245°+I(90
二に2     ・・・・・・■ したがって、第1の板体の非重合部分と第2の板体の第
1、第2の偏光板を挟んで一側に配置された光源からの
光量は、それぞれの透過率α1.02倍されて他側に配
置された受光部に達し、また、重合部分を挟んで一側に
配置された光源からの光量は、一定の透過率α3倍され
て他側に配設された受光部に達する。
α3= (Ho−H9o) cos245°+I(90
2.2...■ Therefore, the amount of light from the light source placed on one side with the non-polymerized portion of the first plate and the first and second polarizing plates of the second plate in between is , the transmittance of each is multiplied by α1.02 and reaches the light receiving part placed on the other side, and the amount of light from the light source placed on one side with the overlapped part is multiplied by a certain transmittance α3 and reaches the other side. The light reaches the light receiving section located on the side.

この結果、今、その発光量をCとおき、受光部の光量と
電気信号との変換係数をβとおくと、第1〜第3の受光
部には、次のような出力e1〜e3がそれぞれ発生する
As a result, if the amount of light emitted is now set as C, and the conversion coefficient between the light amount of the light receiving section and the electric signal is set as β, the following outputs e1 to e3 are obtained from the first to third light receiving sections. Each occurs.

e、−a、Cβ=  K 3(!O32θ十K。e, -a, Cβ= K  3(!O32θ10K.

e2−α2Cβ= −K 3sin2θ十に、   ■
e3−α3Cβ=   K。
e2−α2Cβ= −K 3sin2θ, ■
e3−α3Cβ=K.

ここに、K3=に、Cβ に、=に2Cβ 以下、この出力e1〜e3は、演算部に導入され、先ず
加減回路において、(el−e3)+(e2−e3)の
演算が行なわれ、el182中の定数項に4が除去され
る。続いてこれらの差は変調回路に送られ、90度位相
の周期的信号、sinωtScosωtにより変調され
た後、加減算回路において、その各変調信号の加算が行
なわれ、次のように第1、第2の板体の相対回動変位θ
に対応した位相ずれをもつ出力e。が形成される。
Here, K3 =, Cβ, = 2Cβ Below, these outputs e1 to e3 are introduced into the calculation section, and first, the calculation of (el-e3)+(e2-e3) is performed in the adder/subtraction circuit, 4 is removed from the constant term in el182. These differences are then sent to a modulation circuit and modulated by a 90 degree phase periodic signal, sinωtScosωt.Then, each modulation signal is added in an adder/subtractor circuit, and the first and second Relative rotational displacement θ of the plate of
Output e with a phase shift corresponding to . is formed.

eo” (el−e3)S!nωt +(e2− e3
)cosωt= K 3sin(ω1.−2θ)   
      ■・尚、演算部における演算は、最初にe
l、e2e3を変調した後、加減算しても全く同様であ
る。
eo” (el-e3)S!nωt +(e2- e3
)cosωt=K3sin(ω1.-2θ)
■・In addition, the calculation in the calculation section is performed first by e.
After modulating l, e2e3, addition and subtraction are performed in exactly the same way.

実施例 実施例の機構部分を示す第1,2図において、1は回動
自在に支承された軸であり、軸1」二には大径の偏光円
板11と小径の偏光円板12とを相互に透過軸を45度
ずらして同心状態で重合させた第1の板体10が一体的
に固着されている。
Embodiment In FIGS. 1 and 2 showing the mechanical part of the embodiment, 1 is a rotatably supported shaft, and the shaft 1"2 has a large diameter polarizing disc 11 and a small diameter polarizing disc 12. A first plate body 10 is integrally fixed to the first plate body 10, which is made by concentrically overlapping the two plates with their transmission axes shifted by 45 degrees.

その第1の板体の外周側に位置する大径の偏光円板]1
のみからなる非重合部分と対向して第2の板体40が配
設され、第2の板体40には、相互に透過軸を45度ず
らして第1、第2の偏光板41.42が固定されでいる
。そして、その第1、第2の偏光板41゜42と第1の
板体10の非重合部分とを挟んで対向状態に第1.第2
の光源21.22と第1、第2の受光部31.32(但
し、32は図示されていない。)が配設されている。
Large-diameter polarizing disc located on the outer peripheral side of the first plate] 1
A second plate body 40 is disposed to face the non-overlapping portion consisting of a non-polymerized portion, and the second plate body 40 has first and second polarizing plates 41 and 42 whose transmission axes are shifted by 45 degrees from each other. is fixed. Then, the first and second polarizing plates 41 and 42 are placed facing each other with the non-overlapping portion of the first plate 10 interposed therebetween. Second
A light source 21.22 and first and second light receiving sections 31.32 (32 is not shown) are provided.

また、第1の板体10の内周側に位置する大径と小径の
偏光円板11..12の重合部分を挟んで対向状態に第
3の光源23と第3の受光部33が配置されている。
Also, large diameter and small diameter polarizing discs 11 located on the inner peripheral side of the first plate body 10. .. A third light source 23 and a third light receiving section 33 are disposed facing each other with the overlapping portion of the light source 12 interposed therebetween.

しかして、この機構部においては、大小径の偏光円板1
1.12の重合に際して透過軸を45度に組立調整する
ことと、第2の板体において第1、第2の偏光板4.1
 、42の透過軸を45度だけずらして組立調整するこ
との二つの調整操作のみとなる。
Therefore, in this mechanism, the polarizing disk 1 of large and small diameters
During the polymerization of 1.12, the transmission axis is assembled and adjusted to 45 degrees, and the first and second polarizing plates 4.1 are attached to the second plate body.
, 42 are assembled and adjusted by shifting their transmission axes by 45 degrees.

次に、第3図は前記第1〜第3の光源の発光量を制御す
る点灯制御部と、前記第1〜第3の受光部の出力を演算
して第1の板体10の回動変位を算出する演算部の実施
例であり、第1,2図と同番号を付した第1〜第3の光
源21〜23、受光部31〜33は第1,2図と同一の
ものである。
Next, FIG. 3 shows a lighting control unit that controls the amount of light emitted from the first to third light sources, and a rotation of the first plate 10 by calculating the outputs of the first to third light receiving units. This is an example of a calculation unit that calculates displacement, and the first to third light sources 21 to 23 and light receiving units 31 to 33, which are given the same numbers as in Figures 1 and 2, are the same as in Figures 1 and 2. be.

これにおいては、定電流発生器よりなる点灯制御部50
の出力端が第1〜第3の光)原21〜23と直列に結線
され、常時、第1〜第3の光源21〜23から一定の光
量を発光させている。
In this case, a lighting control section 50 consisting of a constant current generator is used.
The output ends of are connected in series with the first to third light sources 21 to 23, and the first to third light sources 21 to 23 always emit a constant amount of light.

また、演算部60は、第1、第2の受光部31.32の
出力els e2と第3の受光部33の出力e3とのそ
れぞれ差を算出する第1、第2の加減回路61,62、
その加減回路61゜62の出力にキャリア発振器66か
ら送出されるキャリアsinωt、 eO3ωtを乗じ
る第1、第2の変調器63,64、その各変調器63゜
64の出力の和を算出する第3の加)威回路65とから
なる。
The calculation unit 60 also operates first and second addition/subtraction circuits 61 and 62 that calculate the difference between the output els e2 of the first and second light receiving units 31 and 32 and the output e3 of the third light receiving unit 33, respectively. ,
The first and second modulators 63 and 64 multiply the output of the adding/subtracting circuit 61°62 by the carrier sinωt and eO3ωt sent from the carrier oscillator 66, and the third modulator calculates the sum of the outputs of the respective modulators 63°64. (in addition) power circuit 65.

以上のものにおいて、軸1がθだけ回動変位すると、第
1の板体10も一体的にθだけ回動し、第1、第2の偏
光板41.42と偏光板11の非重合部分との透過軸の
交り角がそれぞれθ 、(θ+45゛)となり、その透
過率αl、α2は前記■、■式のように回動変位θに応
じて変化したものとなる。
In the above, when the shaft 1 is rotationally displaced by θ, the first plate body 10 is also rotated integrally by θ, and the non-overlapping portions of the first and second polarizing plates 41 and 42 and the polarizing plate 11 are The intersecting angles of the transmission axes with .theta. and (.theta.+45.degree.) are respectively .theta. and (.theta.+45.degree.), and the transmittances .alpha.l and .alpha.2 change according to the rotational displacement .theta., as in equations (1) and (2) above.

他方、第1の板体10の重合部の透過率は、軸1の回動
変位θとは無関係に一定であり、前記0式のよう1こな
る。
On the other hand, the transmittance of the overlapping portion of the first plate body 10 is constant regardless of the rotational displacement θ of the shaft 1, and is equal to 1 as shown in equation 0 above.

したか゛って、第1、第2、第3の光源21.22.2
3から発光された一定光量は、それぞれal、α2、α
3倍されて各対応する受光部31〜33に達し、受光部
31〜33はその受光量に対応した前記0式に示す電気
信号e1−・e、を発生する。
That is, the first, second, and third light sources 21.22.2
The constant amount of light emitted from 3 is al, α2, α, respectively.
The light is multiplied by three and reaches each of the corresponding light receiving sections 31 to 33, and the light receiving sections 31 to 33 generate electrical signals e1-.e shown in equation 0 above corresponding to the amount of light received.

そして、第1、第2の加)或回路61.62において、
第1、第2の受光部出力else2と第3の受光部出力
e3との差が算出され、続いて、その差は第1、第2の
変調器63.64において、90度位相の正弦波により
平衡変調された後、第3の加減回路65により加算され
、前記0式に示す出力e。が形成される。
Then, in the first and second addition circuits 61 and 62,
The difference between the first and second light receiving section output else2 and the third light receiving section output e3 is calculated, and then the difference is converted into a 90 degree phase sine wave in the first and second modulators 63 and 64. After being balanced modulated by , the third adding/subtracting circuit 65 adds the output e shown in the above equation 0. is formed.

尚、上記実施例において、光源と受光部は直接発光素子
と受光素子を用いた場合を例示したが、これらと光ファ
イバーを用いて構成しても同様である。
In the above embodiment, the light source and the light receiving section are exemplified using a direct light emitting element and a light receiving element, but the same effect can be obtained by using these and an optical fiber.

また、演算部60の各受光部出力に対する演算の順序は
上記実施例に限られるものでなく、前記0式の演算式を
満たすもの、例えば、el、e2を90度位相の周期的
信号により変調した後加算し、また、e3を90度位相
の周期的信号の和の信号により変調し、前記加算信号か
らその変調信号を差引いても同様である。
Furthermore, the order of calculations performed by the calculation unit 60 on the outputs of the respective light receiving units is not limited to the above embodiment, and may satisfy the calculation formula 0, for example, modulate el and e2 with a periodic signal with a 90 degree phase. The same effect can be obtained by adding the sum of the 90-degree phase periodic signals, and then modulating e3 with a signal that is the sum of periodic signals of 90 degrees phase, and subtracting the modulated signal from the added signal.

また、上記実施例は第1〜第3の別の光源を各受光部と
対向させた場合を例示したが、単一の光源を各受光部と
対向させても同様である。
Moreover, although the above-mentioned embodiment illustrated the case where the first to third different light sources were made to face each light receiving section, the same effect can be obtained even if a single light source is made to face each light receiving section.

また、演算部60の各受光部出力に対する演算の順序は
、」1記実施例に限られるものでなく、前記0式の演算
式を満たすもの、例えば、elle2を90度位相の周
期的信号の和の信号により変調し、前記加算信号からそ
の変調信号を差引いても同様である。
Furthermore, the order of calculations performed by the calculation unit 60 on the outputs of each light-receiving unit is not limited to the example described in 1. The same effect can be obtained by modulating the sum signal and subtracting the modulated signal from the sum signal.

また、上記実施例は第1〜第3の別の光源を各受光部と
対向させた場合を例示したが、単一の光源を各受光部と
対向させても同様である。
Moreover, although the above-mentioned embodiment illustrated the case where the first to third different light sources were made to face each light receiving section, the same effect can be obtained even if a single light source is made to face each light receiving section.

また、上記実施例においては第1の板体10を軸1に固
着して回動変位させた場合を例示したが、第2の板体4
0の第1.第2の偏光板をドーナッツ状とし、円板の異
なる半径上に設け、それを軸に固着して回動変位させて
も同様である。
Further, in the above embodiment, the case where the first plate body 10 is fixed to the shaft 1 and rotated is illustrated, but the second plate body 4
1st of 0. The same effect can be obtained even if the second polarizing plate is shaped like a donut, is provided on different radii of the disk, and is fixed to a shaft for rotational displacement.

発明の効果 以上のとおりであり、本発明は、2枚の偏光板を重合さ
せた部分と非重合の部分とを有する第1の板体の非重合
部分に対して第2の板体の2枚の偏光板を対向させ、そ
の間の透過光量の変化および第1の板体の重合部の透過
光量を電気信号に変換して処理し、第1と第2の板体の
回動変位に対応した出力を形成するので、偏光板の透過
軸の調整は、2対の偏光板に対して行なうだけでよく、
全体の組立調達が簡略化され、作業性が向」ニする。
The effects of the invention are as described above, and the present invention provides that the non-polymerized portion of the first plate has a polymerized portion of two polarizing plates and a non-polymerized portion of the second plate. Two polarizing plates are placed facing each other, and changes in the amount of transmitted light between them and the amount of transmitted light at the overlapping portion of the first plate are converted into electrical signals and processed, corresponding to the rotational displacement of the first and second plates. Therefore, the transmission axis of the polarizing plate only needs to be adjusted for two pairs of polarizing plates.
Overall assembly and procurement is simplified and work efficiency is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の機構部の実施例を示す正面図、第2図
は第1図の左側面図、第3図は本発明の点灯制御部、演
算部の実施例を示すブロック線図である。
FIG. 1 is a front view showing an embodiment of the mechanism section of the present invention, FIG. 2 is a left side view of FIG. 1, and FIG. 3 is a block diagram showing an embodiment of the lighting control section and calculation section of the present invention. It is.

Claims (1)

【特許請求の範囲】 1、透過軸を45度ずらして2枚の偏光板を重合した重
合部分と非重合部分とを有する第1の板体と、その非重
合部分と対向して配設され、透過軸を45度ずらした第
1、第2の偏光板を有する第2の板体と、第1、第2の
板体のいずれかと一体的に結合され、前記第1、第2の
偏光板またはそれと対向する非重合部分のいずれか一側
と対向して配設された第1、第2の受光部および重合部
分と対向して配設された第3の受光部と、その第1〜第
3の受光部と一体的に結合されると共に、第1、第2の
板体を挟んで前記各受光部と対向して配設された一また
は複数個の光源と、その光源に一定の点灯信号を送出す
る点灯制御部と、前記第1〜第3の受光部出力を演算し
て第1、第2の板体の相対回動変位に対応した出力を形
成する演算部とからなるところの光電式変位検出器。 2、演算部は、第1、第3の受光部出力と第2、第3の
受光部出力を90度位相の周期的信号によりそれぞれ変
調する変調回路と、その同一変調の第1、第3の受光部
出力の変調信号の差および第2と第3の受光部出力の変
調信号の差との和を算出する加減回路としたところの特
許請求の範囲第1項に記載の光電式変位検出器。 3、演算部は、第1、第3の受光部出力の差および第2
、第3の受光部出力の差を算出する加減回路と、その各
差を90度位相の同期的信号によりそれぞれ変調する変
調回路と、その各変調信号の和を算出する加減回路とし
たところの特許請求の範囲第1項に記載の光電式変位検
出器。
[Claims] 1. A first plate member having a polymerized portion and a non-polymerized portion, which are formed by polymerizing two polarizing plates with their transmission axes shifted by 45 degrees; , a second plate body having first and second polarizing plates whose transmission axes are shifted by 45 degrees; and a second plate body which is integrally coupled with either the first or second plate body, and which transmits the first and second polarized light. a first and second light receiving section disposed facing either one side of the plate or the non-overlapping portion facing it; a third light receiving section disposed opposite the overlapping portion; - One or more light sources integrally coupled with the third light receiving section and disposed facing each of the light receiving sections with the first and second plates in between, and a constant light source for the light source. a lighting control section that sends out a lighting signal; and a calculation section that calculates the outputs of the first to third light receiving sections to form an output that corresponds to the relative rotational displacement of the first and second plates. However, it is a photoelectric displacement detector. 2. The arithmetic unit includes a modulation circuit that modulates the outputs of the first and third light receiving sections and the outputs of the second and third light receiving sections, respectively, using periodic signals with a 90 degree phase, and a modulation circuit that modulates the outputs of the first and third light receiving sections and the outputs of the second and third light receiving sections, respectively, and The photoelectric displacement detection according to claim 1, which is an adjustment circuit that calculates the difference in the modulation signal of the output of the light receiving section and the sum of the difference of the modulation signal of the output of the second and third light receiving sections. vessel. 3. The calculation unit calculates the difference between the first and third light receiving unit outputs and the second
, an adding/subtracting circuit that calculates the difference between the outputs of the third light-receiving section, a modulating circuit that modulates each difference with a 90-degree phase synchronous signal, and an adding/subtracting circuit that calculates the sum of each of the modulated signals. A photoelectric displacement detector according to claim 1.
JP18007784A 1984-08-29 1984-08-29 Photoelectric displacement detector Granted JPS6157810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18007784A JPS6157810A (en) 1984-08-29 1984-08-29 Photoelectric displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18007784A JPS6157810A (en) 1984-08-29 1984-08-29 Photoelectric displacement detector

Publications (2)

Publication Number Publication Date
JPS6157810A true JPS6157810A (en) 1986-03-24
JPH0263167B2 JPH0263167B2 (en) 1990-12-27

Family

ID=16077051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18007784A Granted JPS6157810A (en) 1984-08-29 1984-08-29 Photoelectric displacement detector

Country Status (1)

Country Link
JP (1) JPS6157810A (en)

Also Published As

Publication number Publication date
JPH0263167B2 (en) 1990-12-27

Similar Documents

Publication Publication Date Title
US8723511B2 (en) Absolute encoder
US5150115A (en) Inductive type incremental angular position transducer and rotary motion encoder having once-around index pulse
CA1286385C (en) Variable reluctance position transducer
JPS6243426B2 (en)
US4008425A (en) Motor servo system with multiplier means to drive and servo the motor
EP0133581B1 (en) Angle transducer employing polarized light
EP2815211B1 (en) Rotary position sensor device
JPS6288917A (en) Rotational position detecting device
JP2001183169A (en) Position detector
JPS6157810A (en) Photoelectric displacement detector
US6326908B1 (en) Precision position encoder using coarse position indicator
JPH0249543Y2 (en)
JPH0249542Y2 (en)
JPH0342774B2 (en)
JPH0263168B2 (en)
JPH0263169B2 (en)
JPH0263170B2 (en)
JPS61246620A (en) Detecting apparatus of rotational angle
JPH06235646A (en) Rotary angle detector
JP7314426B2 (en) Resolver
JPH0132449B2 (en)
JPH10267609A (en) Rotational amount-measuring instrument
JPS636417A (en) Rotational position detecting device
WO2022124413A1 (en) Resolver
JPH01207628A (en) Encoder