JPH0249542Y2 - - Google Patents

Info

Publication number
JPH0249542Y2
JPH0249542Y2 JP15546884U JP15546884U JPH0249542Y2 JP H0249542 Y2 JPH0249542 Y2 JP H0249542Y2 JP 15546884 U JP15546884 U JP 15546884U JP 15546884 U JP15546884 U JP 15546884U JP H0249542 Y2 JPH0249542 Y2 JP H0249542Y2
Authority
JP
Japan
Prior art keywords
light
plate
light receiving
degrees
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15546884U
Other languages
Japanese (ja)
Other versions
JPS6170717U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15546884U priority Critical patent/JPH0249542Y2/ja
Publication of JPS6170717U publication Critical patent/JPS6170717U/ja
Application granted granted Critical
Publication of JPH0249542Y2 publication Critical patent/JPH0249542Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、軸の回動変位の検出器に関するもの
であり、例えば、ロボツトアームの支承軸、ある
いはエンジン等の原動機の回転軸に結合されてそ
の回動角度の検出に供され、この検出信号は前記
検出対象の回動角位置や回転速度の制御系におけ
る帰還信号やその表示に用いられる。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a detector for rotational displacement of a shaft, for example, a detector connected to a supporting shaft of a robot arm or a rotating shaft of a prime mover such as an engine. The rotation angle is detected, and this detection signal is used as a feedback signal or display in a control system for the rotation angle position and rotation speed of the object to be detected.

従来の技術 この種の検出器には、ロータリエンコーダやレ
ゾルバ等がある。中でもレゾルバは高い分解能を
もつにもかかわらず、比較的構造が簡単で、しか
も角度情報がその搬送波の周期ごとに取出せる特
徴を有している。
Prior Art This type of detector includes a rotary encoder, a resolver, and the like. Among them, resolvers have a relatively simple structure despite having high resolution, and have the characteristic that angular information can be extracted for each period of the carrier wave.

すなわち、レゾルバはステータの直交する2方
向の極にそれぞれ第1、第2のコイルを巻装し、
その内部で回転するロータには第3のコイルを巻
装し、第1、第2のコイルには相互に90度位相の
異なる搬送波Va,Vb、 Va=V2sinωt Vb=V2cosωt を供給して各極から搬送波Va,Vbに対応した磁
束を放射させるようにしたものである。ここに、
V2は搬送波の振幅、ωは角周波数を表す。した
がつて、このロータを被測定軸と結合して回動さ
せると、その回動角度θに応じてそれぞれの放射
磁束のうちロータと鎖交する磁束の割合が変わ
り、その結果、第3のコイルには回動角度θに応
じて位相の変わる位相信号Vc Vc=K2V2cosωtsinθ +K2V2sinωtcosθ =K3V2sin(ωt+θ) が誘起されることになる。ここに、K2,K3は比
例係数を表す。しかしながら、レゾルバは上記の
ように電磁的な信号発生手段を用いているため
に、そのコイルおよびコイルからの信号取出用ロ
ータリトランス等を必要とし、小型化するに際し
て制約を受けること、また、ロータの慣性モーメ
ントもロータリエンコーダに比べて大きいことな
どの問題点をもつ。また、製作に際して所定の磁
束分布を得るにはコイルの形状、配置位置に厳し
い精度が要求され、結果的に高価となる問題点も
ある。
That is, the resolver has first and second coils wound around poles in two orthogonal directions of the stator, respectively.
A third coil is wound around the rotor rotating inside the rotor, and the first and second coils are supplied with carrier waves Va, Vb, which have a phase difference of 90 degrees, Va=V 2 sinωt Vb=V 2 cosωt The magnetic flux corresponding to the carrier waves Va and Vb is radiated from each pole. Here,
V 2 represents the amplitude of the carrier wave, and ω represents the angular frequency. Therefore, when this rotor is connected to the shaft to be measured and rotated, the proportion of the magnetic flux interlinking with the rotor among the respective radiated magnetic fluxes changes depending on the rotation angle θ, and as a result, the third A phase signal Vc Vc=K 2 V 2 cosωtsin θ +K 2 V 2 sinωtcosθ = K 3 V 2 sin(ωt+θ) is induced in the coil, the phase of which changes according to the rotation angle θ. Here, K 2 and K 3 represent proportionality coefficients. However, since resolvers use electromagnetic signal generation means as described above, they require coils and rotary transformers for extracting signals from the coils, which imposes restrictions on downsizing. The problem is that the moment of inertia is also larger than that of a rotary encoder. Furthermore, in order to obtain a predetermined magnetic flux distribution during manufacture, strict precision is required in the shape and position of the coil, resulting in a problem of high cost.

このようなレゾルバの欠点は、電磁的な信号発
生手段を採用していることに起因したものであ
り、その解決には光電的な信号発生手段の採用が
考えられる。
This drawback of the resolver is due to the use of electromagnetic signal generation means, and a possible solution to this problem is to use photoelectric signal generation means.

その種のものとしては、例えば米国特許第
3306159号に開示されたものがある。これは、回
転軸に固着した偏光板の一部分と対向状態に、第
1〜第4の4個の静止偏光板を配設し、その各静
止偏光板は相互にその透過軸を45度づつずらして
おき、その各静止偏光板と前記回転偏光板の各々
の外側で光源と受光部を対向配置したものであ
る。
Examples of this type include, for example, U.S. Patent No.
There is one disclosed in No. 3306159. In this system, four stationary polarizing plates, numbered 1 to 4, are arranged to face a portion of the polarizing plate fixed to the rotating shaft, and each stationary polarizing plate has its transmission axis shifted by 45 degrees from each other. A light source and a light receiving section are arranged facing each other on the outside of each of the stationary polarizing plates and the rotating polarizing plate.

以上のものにおいて、光源からの光は、回転偏
光板を通り、続いて第1〜第4の静止偏光板の各
一つを経由してそれぞれの受光部に達するが、こ
のとき、各受光部に達する光量は、回転偏光板と
各第1〜第4の静止偏光板の透過軸の交り角によ
り変わる。すなわち、光の透過率は、交り角の倍
角のコサイン関数に対応して変わる。したがつ
て、今、回転偏光板が角度θだけ回動すると、そ
の回転偏光板と第1〜第4の静止偏光板との各交
り角は、それぞれθ、θ+45゜、θ+90゜、θ+
135゜となり、その結果、それぞれの透過率は、
cos2θ、−sinθ、−cos2θ、sin2θに対応し、各受光
部にもそれらと対応した出力力が発生する。ただ
し、上記透過率は、必ず0より大であり、したが
つて、上記透過率を厳密に表わすと、交り角が90
度の場合、すなわち直交位透過率と上記した透過
率の和となり、各受光部も直交位透過率に対応し
た直流成分を含む。
In the above, light from the light source passes through the rotating polarizing plate, and then passes through each of the first to fourth stationary polarizing plates to reach each light receiving part, but at this time, each light receiving part The amount of light that reaches this value varies depending on the intersection angle of the transmission axes of the rotating polarizing plate and each of the first to fourth stationary polarizing plates. That is, the transmittance of light changes corresponding to a cosine function of the angle of intersection. Therefore, when the rotating polarizing plate is now rotated by an angle θ, the intersection angles between the rotating polarizing plate and the first to fourth stationary polarizing plates are θ, θ+45°, θ+90°, and θ+, respectively.
135°, and as a result, each transmittance is
Corresponding to cos2θ, -sinθ, -cos2θ, and sin2θ, corresponding output forces are generated in each light receiving section. However, the above transmittance is always greater than 0, so if the above transmittance is expressed strictly, the intersection angle is 90
In the case of 3 degrees, it is the sum of the orthogonal transmittance and the above-mentioned transmittance, and each light receiving section also includes a DC component corresponding to the orthogonal transmittance.

次に、各受光部出力には、搬送波sinωt、
cosωt、−sinωt、−cosωtが乗算され、その後加算
される。したがつて、前記の直流成分はこの加算
により相殺され、加算出力は、位相が回転偏光板
の回動角度θの倍角に対応して変わるsin(ωt+
2θ)となる。
Next, the carrier wave sinωt,
cosωt, −sinωt, and −cosωt are multiplied and then added. Therefore, the DC component mentioned above is canceled by this addition, and the added output is sin(ωt +
2θ).

考案が解決しようとする課題 しかし、これにおいては、第1〜第4の偏光板
をその透過軸が45度づつずれた状態に正確に配置
しおく必要があるが、それには、検出器の組立、
調整技術に熟練を要し、かつ多大の作業時間を要
することが避けられない。
However, in this case, it is necessary to accurately arrange the first to fourth polarizing plates so that their transmission axes are shifted by 45 degrees. ,
It is unavoidable that adjustment techniques require skill and a great deal of work time.

本考案は、偏光板の配置に際して、多数の偏光
板を位置決め調整しなければならない問題点を解
決しようとするものである。
The present invention is intended to solve the problem of having to adjust the position of a large number of polarizing plates when arranging them.

課題を解決するための手段 本考案は、前記問題点を解決するために、偏光
板の透過軸の位置調整を2ケ所に減少したもので
あり、透過軸を45度ずらして大小2枚の偏光板を
重ね合わせ、重合部分と非重合部分を形成した第
1の板体と、相互に透過軸を45度ずらして第1、
第2の偏光板が固定され、前記第1の板体の非重
合部分と対向して配設された第2の板体と、前記
第1の板体の非重合部分と前記第2の板体の第
1、第2の偏光板をはさんでそれぞれ対向して配
設された第1の光源と受光部、および第2の光源
と受光部と、前記第1の板体の重合部分をはさん
でそれぞれ対向して配設された第3の光源と受光
部、および第4の光源と受光部と、前記第1、第
2の光源に相互に90度の位相差を有する正弦波状
点灯信号をそれぞれ送出し、前記第3、第4の光
源に一定の直流点灯信号を送出する点灯制御部
と、前記第3、第4の受光部出力にそれぞれ相互
に90度の位相差を有する正弦波状キヤリアを乗じ
て変調する変調部およびその変調部出力と前記第
1、第2の受光部出力の差を算出する加減回路と
を有する演算部とからなるところの光電式変位検
出器である。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention reduces the position adjustment of the transmission axis of the polarizing plate to two locations, and shifts the transmission axis by 45 degrees to create polarized light from two large and small plates. A first plate body in which the plates are overlapped to form an overlapping part and a non-overlapping part, and a first plate body with the transmission axis shifted by 45 degrees from each other.
a second plate body to which a second polarizing plate is fixed and disposed opposite the non-overlapping portion of the first plate body; and a second plate body arranged to face the non-overlapping portion of the first plate body and the second plate A first light source and a light-receiving section, which are arranged to face each other across the first and second polarizing plates of the body, and an overlapping portion of the second light source and light-receiving section and the first plate body. A third light source and a light receiving section, which are arranged to face each other, and a fourth light source and a light receiving section, and a sine wave lighting having a phase difference of 90 degrees between the first and second light sources. a lighting control unit that sends out signals and sends a constant DC lighting signal to the third and fourth light sources, and a sine signal having a phase difference of 90 degrees between the outputs of the third and fourth light receiving units, respectively. This is a photoelectric displacement detector comprising a modulating section that performs modulation by multiplying by a wave-like carrier, and an arithmetic section that has an adding/subtracting circuit that calculates the difference between the output of the modulating section and the output of the first and second light receiving sections.

作 用 第1、第2の板体が相対的に回動変位θを生じ
ると、第1の板体の非重合部分の偏光板と第2の
板体の第1、第2の偏光板の各透過軸との交り角
がθだけずれ、その結果、それぞれの光の透過率
α1,α2は次のように変化する。
Effect When the first and second plates generate a relative rotational displacement θ, the polarizing plate of the non-polymerized portion of the first plate and the first and second polarizing plates of the second plate The intersection angle with each transmission axis is shifted by θ, and as a result, the transmittance α 1 and α 2 of each light changes as follows.

α1=(H0−H90)cos2θ+H90 =K1cos2θ+K2 …… α2=(H0−H90)cos2(θ+45゜)+H90 =K1cos2(θ+45゜)+K2 =−K1sin2θ+K2 …… ここに、 H0:平行位透過率 H90:直交位透過率 K1=(1/2)(H0−H90) K2=(1/2)(H0−H90) このとき、第1の板体の重合部分の透過率α3
は、第2の板体の回動変位θとは無関係に一定で
あり、次のとおりである。
α 1 = (H 0 − H 90 ) cos 2 θ + H 90 = K 1 cos2θ + K 2 ... α 2 = (H 0 − H 90 ) cos 2 (θ + 45°) + H 90 = K 1 cos2 (θ + 45°) + K 2 = −K 1 sin2θ+K 2 ... Here, H 0 : Parallel transmittance H 90 : Orthogonal transmittance K 1 = (1/2) (H 0 −H 90 ) K 2 = (1/2) (H 0 −H 90 ) At this time, the transmittance α 3 of the overlapping part of the first plate
is constant regardless of the rotational displacement θ of the second plate, and is as follows.

α3=(H0−H90)cos245゜+H90 =K2 …… したがつて、第1の板体の非重合部分と第2の
板体の第1、第2の偏光板を挟んで一側に配置さ
れた光源からの光量は、それぞれの透過率α1,α2
倍されて他側に配置された第1、第2の受光部に
達し、また、重合部分を挟んで一側に配置された
光源からの光量は、一定の透過率α3倍されて他側
に配設された受光部に達する。
α 3 = (H 0 − H 90 ) cos 2 45° + H 90 = K 2 ... Therefore, the non-polymerized portion of the first plate and the first and second polarizing plates of the second plate are The amount of light from the light sources placed on one side is determined by their respective transmittances α 1 and α 2
The amount of light from the light source placed on one side across the overlapping portion is multiplied by 3 and is multiplied by 3 to reach the first and second light receiving sections placed on the other side. The light reaches the light receiving section located at the

さて、第3、第4の光源は一定の、第1、第2
の光源は相互に位相が90度ずれた正弦波状の周期
的信号、例えば正弦波よりなる点灯信号、B
(Asinωt1)、B(Acosωt+1)により発光量が制
御され、それぞれ次のような光量C1,C2,C3
C4を発光する。
Now, the third and fourth light sources are constant, the first and second light sources are
The light source is a periodic signal in the form of a sine wave whose phase is shifted by 90 degrees from each other, for example, a lighting signal consisting of a sine wave, B
The amount of light emitted is controlled by (Asinωt1) and B(Acosωt+1), and the amount of light C 1 , C 2 , C 3 ,
Emit C 4 .

C1=E(Dsinωt+1) C2=E(Dcosωt+1) …… C3=C4=E ここに、A,B,D,Eは比例係数 このC1,C2,C3,C4は、第1、第2の板体を
介する際それぞれ前記の透過率α1,α2,α3,α3
され、各対応する第1〜第4の受光部に達し、そ
こで受光量に対応した電気信号e1〜e4に変換され
る。すなわち、 e1=K3sinωtcos2θ+K4cos2θ +K5sinωt+K6 e2=−K3cosωtsin2θ−K4sin2θ +K5cosωt+K6 e=K6 e4=K6 …… ここに、光量と電気信号の変換係数をβとおく
と、 K3=DEK1β K4=EK1β K5=DEK2β K6=EK2β 続いて、第3、第4の受光部出力e3,e4は、変
調部に導入され、相互に位相が90度ずれた正弦波
状キヤリア、例えば正弦波(1+Dsinωt)、(−
1+Dcosωt)によりそれぞれ変調され、次のよ
うな二つの変調出力e3′,e4′が形成される。
C 1 = E (Dsinωt+1) C 2 = E (Dcosωt+1) ... C 3 = C 4 = E Here, A, B, D, and E are proportional coefficients. These C 1 , C 2 , C 3 , and C 4 are When passing through the first and second plates, the transmittances α 1 , α 2 , α 3 , α 3 are multiplied by 3 , respectively, and reach the corresponding first to fourth light receiving sections, where the light beams correspond to the amount of light received. It is converted into electrical signals e 1 to e 4 . In other words, e 1 =K 3 sinωtcos2θ+K 4 cos2θ +K 5 sinωt+K 6 e 2 = −K 3 cosωtsin2θ−K 4 sin2θ +K 5 cosωt+K 6 e=K 6 e 4 = K 6 ...Here, the conversion coefficient between the light amount and electrical signal is set as β, K 3 = DEK 1 β K 4 = EK 1 β K 5 = DEK 2 β K 6 = EK 2 β Subsequently, the outputs e 3 and e 4 of the third and fourth light receiving sections are modulated. A sinusoidal carrier introduced into the section and out of phase with each other by 90 degrees, for example, a sine wave (1+Dsinωt), (-
1+Dcosωt), and the following two modulated outputs e 3 ′ and e 4 ′ are formed.

e3′=K5sinωt+K6 e4′=K5cosωt+K6 …… そして、前記第1、第2の受光部出力e1,e2
変調信号e3′,e4′は、演算部に導入されて加減算
され、次のように第1、第2の板体の相対回動変
位θに対応した位相ずれをもつ出力e0に変換され
る。
e 3 ′=K 5 sinωt+K 6 e 4 ′=K 5 cosωt+K 6 ...Then, the outputs e 1 and e 2 of the first and second light receiving sections and the modulation signals e 3 ′ and e 4 ′ are sent to the calculation section. is introduced, added and subtracted, and converted into an output e 0 having a phase shift corresponding to the relative rotational displacement θ of the first and second plates as follows.

e0=(e1+e2)−(e3′+e4′) =K3sin(ωt−2θ) +K5(cos2θ−sin2θ) …… ここで、点灯周波数(ω/2π)は、回動変位
速度dθ/dtに比べて十分高く選定されており、出
力e0をハイパスフイルタを介することによつて前
記式の第2項が除去される。
e 0 = (e 1 + e 2 ) − (e 3 ′ + e 4 ′) = K 3 sin (ωt − 2θ) + K 5 (cos2θ − sin2θ) ... Here, the lighting frequency (ω / 2π) is It is selected to be sufficiently high compared to the displacement speed dθ/dt, and the second term in the above equation is removed by passing the output e 0 through a high-pass filter.

ところで、第1〜第4の光源の光量C1〜C4
変化した場合、受光部出力e1〜e4もそれに対応し
て変化する。このように光量変化の起こる恐れの
ある場合には、第3、第4の受光部出力e3,e4
一方または両方を予め設定された一定の設定値と
比較し、その設定値からのずれの発生の有無によ
り光量変化の有無を、またずれの大きさから光量
の変化量を検知すると共に、そのずれが0になる
ように点灯制御部から光源に送出している点灯信
号の大きさを変える光量補正部を点灯制御部内に
設けてもよい。
By the way, when the light quantities C 1 to C 4 of the first to fourth light sources change, the light receiving section outputs e 1 to e 4 also change correspondingly. If there is a possibility that a change in light intensity may occur in this way, compare one or both of the third and fourth light receiving section outputs e 3 and e 4 with a fixed preset value, and calculate the change from that set value. It detects the presence or absence of a change in light intensity based on the presence or absence of deviation, and detects the amount of change in light intensity based on the size of deviation, and also determines the magnitude of the lighting signal sent from the lighting control unit to the light source so that the deviation becomes zero. A light amount correction section that changes the amount of light may be provided within the lighting control section.

また、この光量補正部において、e3,e4を比較
することにより、第3、第4の光源と受光部間に
特性変化が生じたか否かの監視も行なうことがで
きる。
Furthermore, by comparing e 3 and e 4 in this light amount correction section, it is possible to monitor whether or not a characteristic change has occurred between the third and fourth light sources and the light receiving section.

実施例 以下、実施例として、第1の板体を大小2枚の
偏光円板の重ね合わせにより形成し、第2の板体
を2枚の偏光板の並列配置により形成したものを
例にとり、本考案の詳細に説明する。
EXAMPLE Hereinafter, as an example, a first plate body is formed by overlapping two large and small polarizing discs, and a second plate body is formed by arranging two polarizing plates in parallel. The present invention will be explained in detail.

実施例の機構部分を示す第1,2図において、
1は回動自在に支承された軸であり、軸1上には
大径の偏光円板11と小径の偏光円板12とを相
互に透過軸を45度ずらして同心状態で重合させた
第1の板体10が一体的に固着されている。
In FIGS. 1 and 2 showing the mechanical parts of the embodiment,
Reference numeral 1 denotes a rotatably supported shaft, and on the shaft 1 there is provided a large-diameter polarizing disc 11 and a small-diameter polarizing disc 12, which are superimposed concentrically with their transmission axes shifted by 45 degrees. One plate body 10 is integrally fixed.

その第1の板体の外周側に位置する大径の偏光
円板11のみからなる非重合部分と対向して第2
の板体40が配設され、第2の板体40には、相
互に透過軸を45度ずらして第1、第2の偏光板4
1,42が固定されている。そして、その第1、
第2の偏光板41,42と第1の板体10の非重
合部分とを挟んで対向状態に第1、第2の光源2
1,22と第1、第2の受光部31,32(但
し、32は図示されていない。)が配設されてい
る。
A second plate is located opposite to a non-overlapping portion consisting only of the large-diameter polarizing disc 11 located on the outer circumferential side of the first plate.
A plate body 40 is disposed, and the second plate body 40 includes first and second polarizing plates 4 whose transmission axes are shifted by 45 degrees from each other.
1 and 42 are fixed. And the first one,
The first and second light sources 2 are placed facing each other with the second polarizing plates 41 and 42 and the non-overlapping portion of the first plate body 10 in between.
1 and 22, and first and second light receiving sections 31 and 32 (however, 32 is not shown) are provided.

また、第1の板体10の内周側に位置する大径
と小径の偏光円板11,12の重合部分を挟んで
対向状態に第3、第4の光源23,24と第3、
第4の受光部33,34が配置されている。
In addition, third and fourth light sources 23 and 24 and a third,
Fourth light receiving sections 33 and 34 are arranged.

しかして、この機構部においては、大小径の偏
光円板11,12の重合に際して透過軸を45度に
組立調整することと、第2の板体において第1、
第2の偏光板41,42の透過軸を45度だけずら
して組立調整することの二つの調整操作のみとな
る。
Therefore, in this mechanism part, when the large and small diameter polarizing disks 11 and 12 are superposed, the transmission axis is assembled and adjusted to 45 degrees, and the first and second plates in the second plate are assembled and adjusted.
There are only two adjustment operations: shifting the transmission axes of the second polarizing plates 41 and 42 by 45 degrees and assembling and adjusting them.

次に、第3図は前記第1〜第4の光源21〜2
4の発光量を制御する点灯制御部と、その第1〜
第4の受光部31〜34の出力を演算して第1の
板体10の回動変位を算出する演算部の実施例で
あり、前記第1,2図と同番号を付した第1〜第
4の光源21〜24、受光部31〜34は第1,
2図と同一のものである。
Next, FIG. 3 shows the first to fourth light sources 21 to 2.
a lighting control section that controls the amount of light emitted by the first to fourth lights;
This is an embodiment of a calculation unit that calculates the rotational displacement of the first plate body 10 by calculating the outputs of the fourth light receiving units 31 to 34, and the calculation units 1 to 3 with the same numbers as in FIGS. The fourth light sources 21 to 24 and the light receiving sections 31 to 34 are the first,
This is the same as Figure 2.

これにおいて、点灯制御部50は、第3、第4
の光源23,24に一定の直流点灯信号を、第
1、第2の光源21,22に相互間に90度の位相
差を有する正弦波信号よりなる周期的点灯信号、
B(Asinωt+l),B(Acosωt+1)をそれぞれ
送出し、前記式に示す光量C1〜C4を発光させ
る。
In this case, the lighting control section 50 controls the third and fourth lights.
A constant DC lighting signal is sent to the light sources 23 and 24, and a periodic lighting signal is made of a sine wave signal having a phase difference of 90 degrees between the first and second light sources 21 and 22.
B(Asinωt+l) and B(Acosωt+1) are sent out, respectively, and the light amounts C 1 to C 4 shown in the above formula are emitted.

また、演算部60は、前記第3、第4の受光部
出力をそれぞれキヤリア発振器66から送出され
る相互間に90度の位相差を有する正弦波のキヤリ
ア(1+Dsinωt)、(1+Dcosωt)によりそれぞ
れ変調する第1、第2の変調部61,62と、第
1の受光部31の出力と第1の変調部61の出力
差、第2の受光部32の出力と第2の変調部62
の出力差をそれぞれ算出する第1、第2の加減回
路63,64、その両加減回路63,64の出力
の和を算出する第3の加減回路65とからなる。
Further, the calculation unit 60 modulates the outputs of the third and fourth light receiving units with sine wave carriers (1+Dsinωt) and (1+Dcosωt), respectively, which are sent from the carrier oscillator 66 and have a phase difference of 90 degrees. the first and second modulating sections 61 and 62, the difference between the output of the first light receiving section 31 and the first modulating section 61, the output of the second light receiving section 32 and the second modulating section 62
It consists of first and second adder/subtractor circuits 63, 64 which respectively calculate the output difference of , and a third adder/subtractor 65 which calculates the sum of the outputs of both adder/subtractor circuits 63, 64.

以上のものにおいて、軸1がθだけ回動変位す
ると、第1の板体10も一体的にθだけ回動し、
第1、第2の偏光板41,42と偏光板11の非
重合部分との透過軸の交り角がそれぞれθ、(θ
+45゜)となり、その透過率α1,α2は前記,
式のように回動変位θに応じて変化したものとな
る。
In the above, when the shaft 1 is rotationally displaced by θ, the first plate 10 is also rotated integrally by θ,
The intersection angles of the transmission axes of the first and second polarizing plates 41 and 42 and the non-overlapping portion of the polarizing plate 11 are θ and (θ
+45°), and its transmittance α 1 and α 2 are as above,
It changes according to the rotational displacement θ as shown in the equation.

他方、第1の板体10の重合部の透過率は、軸
1の回動変位θとは無関係に一定であり、前記
式のようになる。
On the other hand, the transmittance of the overlapping portion of the first plate 10 is constant regardless of the rotational displacement θ of the shaft 1, and is expressed by the above equation.

したがつて、第1〜第4の光源21〜24から
発光された一定量は、それぞれα1〜α3倍されて各
対応する受光部31〜34に達し、受光部31〜
34はその受光量に対応した前記式に示す電気
信号e1〜e4を発生する。
Therefore, the constant amount of light emitted from the first to fourth light sources 21 to 24 is multiplied by α 1 to α 3 and reaches the corresponding light receiving sections 31 to 34, respectively.
34 generates electric signals e 1 to e 4 shown in the above equations corresponding to the amount of light received.

そして、第3、第4の受光部33,34の出力
e3,e4は、第1、第2の変調部61,62により
それぞれ変調されて前記式に示す変調出力e3′,
e4′となり、その変調出力e3′,e4′はそれぞれ各対
応する第1、第2の加減回路63,64に減算信
号として加えられ、そこに入力されている第1、
第2の受光部出力との差(e1−e3′)、(e2−e4′)
が算出され、続いて、両信号の和が第3の加減回
路65において算出され、前記式に示す第1の
板体10の回動変位に対応した出力e0が形成され
る。
Then, the outputs of the third and fourth light receiving sections 33 and 34
e 3 and e 4 are modulated by the first and second modulation sections 61 and 62, respectively, and the modulated outputs e 3 ',
e 4 ′, and the modulated outputs e 3 ′ and e 4 ′ are added as subtraction signals to the corresponding first and second adding/subtracting circuits 63 and 64, respectively, and the first,
Difference from the output of the second light receiving section (e 1 − e 3 ′), (e 2 − e 4 ′)
is calculated, and then the sum of both signals is calculated in the third addition/subtraction circuit 65 to form an output e 0 corresponding to the rotational displacement of the first plate 10 shown in the above equation.

尚、上記実施例において、光源と受光部は直接
発光素子と受光素子を用いた場合を例示したが、
これらと光フアイバーを用いて構成しても同様で
ある。
In addition, in the above embodiment, the light source and the light receiving section are exemplified using a direct light emitting element and a light receiving element.
The same effect can be obtained by using these and optical fibers.

また、演算部60の各受光部出力に対する演算
の順序は上記実施例に限られるものでなく、前記
式の演算式を満たすものであればよい。
Further, the order of calculations performed by the calculation section 60 on the outputs of the light receiving sections is not limited to the above embodiment, and may be any order as long as it satisfies the above calculation formula.

また、上記実施例は第1〜第4の光源に対し各
受光部を対向させた場合を例示したが、第1と第
2の光源と各共通の受光部を対向させ、(e1+e2
の出力を直接発生させてもよい。
Further, in the above embodiment, each light receiving section is made to face the first to fourth light sources, but if the first and second light sources and each common light receiving part are made to face each other , )
It is also possible to generate the output directly.

また、上記実施例においては第1の板体10を
軸1に固着して回動変位させた場合を例示した
が、第2の板体40の第1、第2の偏光板をドー
ナツツ状とし、円板の異なる半径上に設け、それ
を軸に固着して回動変位させても同様である。
Further, in the above embodiment, the first plate 10 is fixed to the shaft 1 and rotated, but the first and second polarizing plates of the second plate 40 are shaped like donuts. The same effect can be achieved by providing the discs on different radii and fixing them to a shaft for rotational displacement.

考案の効果 以上のとおりであり、本考案は、2枚の偏光板
を重合させた部分と非重合の部分とを有する第1
の板体の非重合部分に対して第2の板体の2枚の
偏光板を対向させ、その間の透過光量の変化およ
び第1の板体の重合部の透過光量を電気信号に変
換して処理し、第1と第2の板体の回動変位に対
応した出力を形成するので、偏光板の透過軸の調
整は、2対の偏光板に対して行なうだけでよく、
全体の組立調達が簡略化され、作業性が向上す
る。
Effects of the invention As described above, the present invention provides a first polarizing plate having a polymerized portion and a non-polymerized portion of two polarizing plates.
The two polarizing plates of the second plate are opposed to the non-overlapping portion of the first plate, and the changes in the amount of transmitted light between them and the amount of transmitted light at the overlapping portion of the first plate are converted into electrical signals. processing to form an output corresponding to the rotational displacement of the first and second plates, the transmission axes of the polarizing plates only need to be adjusted for the two pairs of polarizing plates.
Overall assembly and procurement is simplified and work efficiency is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の機構部の実施例を示す正面
図、第2図は第1図の左側面図、第3図は本考案
の点灯制御部、演算部の実施例を示すブロツク線
図である。 10……第1の板体、40……第2の板体、2
0……光源、30……受光部、60……演算部、
50……点灯制御部。
Fig. 1 is a front view showing an embodiment of the mechanism section of the present invention, Fig. 2 is a left side view of Fig. 1, and Fig. 3 is a block diagram showing an embodiment of the lighting control section and calculation section of the present invention. It is. 10...first plate body, 40...second plate body, 2
0... Light source, 30... Light receiving section, 60... Calculating section,
50...Lighting control section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 透過軸を45度ずらして大小2枚の偏光板を重ね
合わせ、重合部分と非重合部分とを形成した第1
の板体と、相互に透過軸を45度ずらして第1、第
2の偏光板が固定され、前記第1の板体の非重合
部分と対向して配設された第2の板体と、前記第
1の板体の非重合部分と前記第2の板体の第1、
第2の偏光板をはさんでそれぞれ対向して配設さ
れた第1の光源と受光部、および第2の光源と受
光部と、前記第1の板体の重合部分をはさんでそ
れぞれ対向して配設された第3の光源と受光部、
および第4の光源と受光部と、前記第1、第2の
光源に相互に90度の位相差を有する正弦波状点灯
信号をそれぞれ送出し、前記第3、第4の光源に
一定の直流点灯信号をそれぞれ送出する点灯制御
部と、前記第3、第4の受光部出力にそれぞれ相
互に90度の位相差を有する正弦波状キヤリアを乗
じて変調する変調部およびその変調部出力と前記
第1、第2の受光部出力の差を算出する加減回路
とを有する演算部とからなる光電式変位検出器。
The first one consists of overlapping two large and small polarizing plates with their transmission axes shifted by 45 degrees to form an overlapping part and a non-overlapping part.
a second plate body, to which first and second polarizing plates are fixed with their transmission axes shifted by 45 degrees from each other, and which is disposed facing the non-overlapping portion of the first plate body; , a non-polymerized portion of the first plate and a first portion of the second plate,
A first light source and a light-receiving section are arranged to face each other with a second polarizing plate in between, and a second light source and a light-receiving part are arranged to face each other with an overlapping portion of the first plate in between. a third light source and a light receiving section arranged as
and transmits a sinusoidal lighting signal having a phase difference of 90 degrees to the fourth light source, the light receiving unit, and the first and second light sources, respectively, and lights the third and fourth light sources with a constant DC current. a lighting control unit that sends out signals, a modulation unit that modulates the third and fourth light receiving unit outputs by multiplying them by sinusoidal carriers having a phase difference of 90 degrees, and the modulation unit output and the first light receiving unit; , and an arithmetic unit having an addition/subtraction circuit that calculates the difference between the outputs of the second light receiving unit.
JP15546884U 1984-10-15 1984-10-15 Expired JPH0249542Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15546884U JPH0249542Y2 (en) 1984-10-15 1984-10-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15546884U JPH0249542Y2 (en) 1984-10-15 1984-10-15

Publications (2)

Publication Number Publication Date
JPS6170717U JPS6170717U (en) 1986-05-14
JPH0249542Y2 true JPH0249542Y2 (en) 1990-12-27

Family

ID=30713479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15546884U Expired JPH0249542Y2 (en) 1984-10-15 1984-10-15

Country Status (1)

Country Link
JP (1) JPH0249542Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015107908A1 (en) * 2015-02-25 2016-08-25 Günter Grau Device for measuring rotary angles in counters and multistage encoders and associated sensors

Also Published As

Publication number Publication date
JPS6170717U (en) 1986-05-14

Similar Documents

Publication Publication Date Title
US20110260716A1 (en) Absolute encoder
US4772815A (en) Variable refluctance position transducer
EP0133581B1 (en) Angle transducer employing polarized light
US4008425A (en) Motor servo system with multiplier means to drive and servo the motor
EP2815211B1 (en) Rotary position sensor device
JP4362711B2 (en) Unbalanced dynamic load generator
JPH0249542Y2 (en)
JPH0249543Y2 (en)
JP2001183169A (en) Position detector
WO2000014885A1 (en) Precision position encoder using coarse position indicator
JPH0263167B2 (en)
JPH0263168B2 (en)
JPH0263169B2 (en)
WO2022124413A1 (en) Resolver
JPH0263170B2 (en)
JPH0342774B2 (en)
WO2003040662A1 (en) Non-contact optical polarization angle encoder
JP5343887B2 (en) Rotation angle detection device, motor and rotary table device
JPH0132449B2 (en)
GB2137755A (en) Position Encoder System having Quadrature Outputs
JP7314426B2 (en) Resolver
JPH0349043B2 (en)
JPH10213405A (en) Spherical body sensor
NL2029491B1 (en) Motor system, stepper motor and rotor
JPH0358444B2 (en)