JPH0263167B2 - - Google Patents

Info

Publication number
JPH0263167B2
JPH0263167B2 JP18007784A JP18007784A JPH0263167B2 JP H0263167 B2 JPH0263167 B2 JP H0263167B2 JP 18007784 A JP18007784 A JP 18007784A JP 18007784 A JP18007784 A JP 18007784A JP H0263167 B2 JPH0263167 B2 JP H0263167B2
Authority
JP
Japan
Prior art keywords
light
outputs
plate
light receiving
receiving sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18007784A
Other languages
Japanese (ja)
Other versions
JPS6157810A (en
Inventor
Takashi Hashizume
Kazuo Makishima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP18007784A priority Critical patent/JPS6157810A/en
Publication of JPS6157810A publication Critical patent/JPS6157810A/en
Publication of JPH0263167B2 publication Critical patent/JPH0263167B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/344Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using polarisation
    • G01D5/345Polarising encoders

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、軸の回動変位の検出器に関するもの
であり、例えば、ロボツトアームの支承軸、ある
いはエンジン等の原動機の回転軸に結合されてそ
の回動角度の検出に供され、この検出信号は前記
検出対象の回動角位置や回転速度の制御系におけ
る帰還信号やその表示に用いられる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a detector for rotational displacement of a shaft. The rotation angle is detected, and this detection signal is used as a feedback signal or display in a control system for the rotation angle position and rotation speed of the object to be detected.

従来の技術 この種の検出器には、ロータリエンコーダやレ
ゾルバ等がある。中でもレゾルバは高い分解能を
もつにもかかわらず、比較的構造が簡単で、しか
も角度情報がその搬送波の周期ごとに取出せる特
徴を有している。
Prior Art This type of detector includes a rotary encoder, a resolver, and the like. Among them, resolvers have a relatively simple structure despite having high resolution, and have the characteristic that angular information can be extracted for each period of the carrier wave.

すなわち、レゾルバはステータの直交する2方
向の極にそれぞれ第1、第2のコイルを巻装し、
その内部で回転するロータには第3のコイルを巻
装し、第1、第2のコイルには相互に90度位相の
異なる搬送波Va、Vb、 Va=V2sinωt Vb=V2cosωt を供給して各極から搬送波Va、Vbに対応した磁
束を放射させるようにしたものである。ここに、
V2は搬送波の振幅、ωは角周波数を表す。した
がつて、このロータを被測定軸と結合して回動さ
せると、その回動角度θに応じてそれぞれの放射
磁速のうちロータと鎖交する磁束の割合が変わ
り、その結果、第3のコイルには回動角度θに応
じて位相の変わる位相信号Vc Vc=K2V2cosωtsinθ +K2V2sinωtcosθ =K3V2sin(ωt+θ) が誘起されることになる。ここに、K2、K3は比
例係数を表す。しかしながら、レゾルバは上記の
ように電磁的な信号発生手段を用いているため
に、そのコイルおよびコイルからの信号取出用ロ
ータリトランス等を必要とし、小型化するに際し
て制約を受けること、また、ロータの慣性モーメ
ントもロータリエンコーダに比べて大きいことな
どの問題をもつ。また、製作に際して所定の磁束
分布を得るにはコイルの形状、配置位置に厳しい
精度が要求され、結果的に高価となる問題点もあ
る。
That is, the resolver has first and second coils wound around poles in two orthogonal directions of the stator, respectively.
A third coil is wound around the rotor rotating inside the rotor, and the first and second coils are supplied with carrier waves Va, Vb, which have a phase difference of 90 degrees, Va=V 2 sinωt Vb=V 2 cosωt The magnetic flux corresponding to the carrier waves Va and Vb is radiated from each pole. Here,
V 2 represents the amplitude of the carrier wave, and ω represents the angular frequency. Therefore, when this rotor is connected to the shaft to be measured and rotated, the proportion of the magnetic flux interlinking with the rotor among the respective radiation magnetic velocities changes depending on the rotation angle θ, and as a result, the third A phase signal Vc Vc=K 2 V 2 cosωtsinθ +K 2 V 2 sinωtcosθ = K 3 V 2 sin(ωt+θ) is induced in the coil. Here, K 2 and K 3 represent proportionality coefficients. However, since resolvers use electromagnetic signal generation means as described above, they require coils and rotary transformers for extracting signals from the coils, which imposes restrictions on downsizing. The problem is that the moment of inertia is also larger than that of a rotary encoder. Furthermore, in order to obtain a predetermined magnetic flux distribution during manufacture, strict precision is required in the shape and position of the coil, resulting in a problem of high cost.

このようなレゾルバの欠点は、電磁的な信号発
生手段を採用していることに起因したものであ
り、その解決には光電的な信号発生手段の採用が
考えられる。
This drawback of the resolver is due to the use of electromagnetic signal generation means, and a possible solution to this problem is to use photoelectric signal generation means.

その種のものとしては、例えば米国特許第
3306159号に開示されたものがある。これは、回
転軸に固着した偏光板の一部分と対向状態に、第
1〜第4の4個の静止偏光板板を配設し、その各
静止偏光板は相互にその透過軸を45度づつずらし
ておき、その各静止偏光板と前記回転偏光板の
各々の外側で光源と受光部を対向配設したもので
ある。
Examples of this type include, for example, U.S. Patent No.
There is one disclosed in No. 3306159. In this system, four stationary polarizing plates, numbered 1 to 4, are arranged to face a part of the polarizing plate fixed to the rotating shaft, and each of the stationary polarizing plates has its transmission axis set at 45 degrees from each other. A light source and a light receiving section are disposed facing each other on the outside of each of the stationary polarizing plates and the rotating polarizing plate.

以上のものにおいて、光源からの光は、回転偏
光板を通り、続いて第1〜第4の静止偏光板の各
一つの経由してそれぞれの受光部に達するが、こ
のとき、各受光部に達する光量は、回転偏光板と
各第1〜第4の静止偏光板の透過軸の交り角によ
り変わる。すなわち、光の透過率は、交り角の倍
角のコサイン関数に対応して変わる。したがつ
て、今、回転偏光板が角度θだけ回動すると、そ
の回転偏光板と第1〜第4の静止偏光板との各交
り角は、それぞれθ、θ+45゜、θ+90゜、θ+
135゜となり、その結果、それぞれの透過率は、
cos2θ、−sin2θ、−cos2θ、sin2θに対応し、各受光
部にもそれらと対応した出力が発生する。ただ
し、上記透過率は、必ず0より大であり、したが
つて、上記透過率を厳密に表わすと、交り角が90
度の場合、すなわち直交位透過率と上記した透過
率の和となり、各受光部も直交位透過率に対応し
た直流成分を含む。
In the above, the light from the light source passes through the rotating polarizing plate and then reaches each light receiving part via each of the first to fourth stationary polarizing plates. The amount of light that arrives varies depending on the intersection angle of the transmission axes of the rotating polarizing plate and each of the first to fourth stationary polarizing plates. That is, the transmittance of light changes corresponding to a cosine function of the angle of intersection. Therefore, when the rotating polarizing plate is now rotated by an angle θ, the intersection angles between the rotating polarizing plate and the first to fourth stationary polarizing plates are θ, θ+45°, θ+90°, and θ+, respectively.
135°, and as a result, each transmittance is
Corresponding to cos2θ, -sin2θ, -cos2θ, and sin2θ, corresponding outputs are generated in each light receiving section. However, the above transmittance is always greater than 0, so if the above transmittance is expressed strictly, the intersection angle is 90
In the case of 3 degrees, it is the sum of the orthogonal transmittance and the above-mentioned transmittance, and each light receiving section also includes a DC component corresponding to the orthogonal transmittance.

次に、各受光部出力には、搬送波sinωt、
cosωt、−sinωt、−cosωtが乗算され、その後加算
される。したがつて、前記の直流成分はこの加算
により相殺され、加算出力は、位相が回転偏光板
の回転角θの倍角に対応して変わるsin(ωt+2θ)
となる。
Next, the carrier wave sinωt,
cosωt, −sinωt, and −cosωt are multiplied and then added. Therefore, the DC component mentioned above is canceled by this addition, and the added output is sin(ωt+2θ) whose phase changes corresponding to the rotation angle θ of the rotating polarizing plate.
becomes.

発明が解決しようとする課題 しかし、これにおいては、第1〜第4の偏光板
をその透過軸が45度づつずれた状態に正確に配置
しておく必要があるが、それには、検出器の組
立、調整技術に熟練を要し、かつ多大の作業時間
を要することが避けられない。
Problem to be Solved by the Invention However, in this case, it is necessary to accurately arrange the first to fourth polarizing plates so that their transmission axes are shifted by 45 degrees. It is unavoidable that assembly and adjustment techniques require skill and a large amount of work time.

本発明は、偏光板の配置に際して、多数の偏光
板を位置決め調整しなければならない問題点を解
決しようとするものである。
The present invention aims to solve the problem of having to adjust the position of a large number of polarizing plates when arranging them.

課題を解決するための手段 本発明は、前記問題点を解決するために、偏光
板の透過軸の位置調整を2ケ所に減少したもので
あり、透過軸を45度ずらして大小2枚の偏光板を
重ね合わせ、重合部分と非重合部分を形成した第
1の板体と、相互に透過軸を45度ずらして第1、
第2の偏光板が固定され、前記第1の板体の非重
合部分と対向して配設された第2の板体と、前記
第1の板体の非重合部分と前記第2の板体の第
1、第2の偏光板をはさんでそれぞれ対向して配
設された第1の光源と第1の受光部、および第2
の光源と第2の受光部と、前記第1の板体の重合
部分をはさんで対向して配設された第3の光源と
第3の受光部と、前記第1、第2、第3の光源に
一定の直流点灯信号を送出し、光源から一定の光
量を発光させる点灯制御部と、前記第1、第2、
第3の受光部出力e1、e2、e3を入力してe0=(e1
e3)sinωt+(e2−e3)cosωt[ここに、e0:出力、
ω:変調用の正弦波状周期的信号の角周波数]の
演算を行う変調回路および加減回路を備えた演算
部とからなるところの光電式変位検出器である。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention reduces the position adjustment of the transmission axis of the polarizing plate to two locations, and shifts the transmission axis by 45 degrees to produce polarized light from two large and small plates. A first plate body in which the plates are overlapped to form an overlapping part and a non-overlapping part, and a first plate body with the transmission axis shifted by 45 degrees from each other.
a second plate body to which a second polarizing plate is fixed and disposed opposite the non-overlapping portion of the first plate body; and a second plate body arranged to face the non-overlapping portion of the first plate body and the second plate A first light source and a first light receiving section, which are arranged to face each other across first and second polarizing plates of the body, and a second light receiving section.
a third light source and a third light receiving section, which are arranged to face each other across the overlapped portion of the first plate; and the first, second, and third light receiving sections. a lighting control unit that sends a constant DC lighting signal to the light source of No. 3 to cause the light source to emit a constant amount of light;
Input the outputs e 1 , e 2 , e 3 of the third light receiving section and calculate e 0 = (e 1
e 3 ) sinωt + (e 2 − e 3 ) cosωt [where, e 0 : output,
ω: angular frequency of a sinusoidal periodic signal for modulation] This is a photoelectric displacement detector consisting of a modulation circuit that calculates the angular frequency of a sinusoidal periodic signal for modulation, and a calculation unit equipped with an addition/subtraction circuit.

尚、上記第1、第2、第3の光源は、各別の光
源であつても、あるいはその二つまたは全部を共
用の同一光源としても同様である。また、上記演
算部での演算順序は、最初に入力の差を算出後変
調、加算しても、あるいは最初に各入力を変調後
に加減算をしても、いずれでも同様である。
The first, second, and third light sources may be different light sources, or two or all of them may be the same light source. Furthermore, the order of calculation in the calculation section is the same regardless of whether the input difference is first calculated and then modulated and added, or whether each input is first modulated and then added and subtracted.

作 用 第1、第2の板体が相対的に回動変位θを生じ
ると、第1の板体の非重合部分の偏光板と第2の
偏光板の板体の第1、第2の各透過軸との交り角
がθだけずれ、その結果、それぞれの光の透過率
α1、α2は次のように変化する。
Effect When the first and second plates generate a relative rotational displacement θ, the polarizing plate of the non-polymerized portion of the first plate and the first and second plates of the second polarizing plate The intersection angle with each transmission axis is shifted by θ, and as a result, the transmittances α 1 and α 2 of each light change as follows.

α1=(H0−H90)cos2θ+H90 =K1cos2θ+K2 …… α2=(H0−H90)cos2(θ+45゜)+H90 =K1cos2(θ+45゜)+K2 =K1sin2θ+K2 …… ここに、H0:平行位透過率 H90:直交位透過率 K1=(1/2)(H0−H90) K2=(1/2)(H0−H90) このとき、第1の板体の重合部分の透過率α3
は、第2の板体の回動変位θとは無関係に一定で
あり、次のとおりである。
α 1 = (H 0 − H 90 ) cos 2 θ + H 90 = K 1 cos2θ + K 2 ... α 2 = (H 0 − H 90 ) cos 2 (θ + 45°) + H 90 = K 1 cos2 (θ + 45°) + K 2 = K 1 sin2θ+K 2 ... Here, H 0 : Parallel transmittance H 90 : Orthogonal transmittance K 1 = (1/2) (H 0 − H 90 ) K 2 = (1/2) (H 0 − H 90 ) At this time, the transmittance of the overlapping part of the first plate α 3
is constant regardless of the rotational displacement θ of the second plate, and is as follows.

α3=(H0−H90)cos245゜+H90=K2 …… したがつて、第1の板体の非重合部分を第2の
板体の第1、第2の偏光板を挟んで一側に配置さ
れた第1、第2の光源からの光量は、それぞれの
透過率α1、α2倍されて他側に配置された受光部に
達し、また、重合部分を挟んで一側に配置された
光源からの光量は、一定の透過率α3倍されて他側
に配置された受光部に達する。
α 3 = (H 0 − H 90 ) cos 2 45° + H 90 = K 2 ... Therefore, the non-polymerized portion of the first plate is connected to the first and second polarizing plates of the second plate. The amount of light from the first and second light sources placed on one side is multiplied by their respective transmittances α 1 and α 2 and reaches the light receiving part placed on the other side. The amount of light from the light source placed on one side is multiplied by a certain transmittance α by 3 and reaches the light receiving section placed on the other side.

この結果、今、その発光量をCとおき、受光部
の光量と電気信号との変換係数をβとおくと、第
1〜第3の受光部には、次のような出力e1〜e3
それぞれ発生する。
As a result, if the amount of light emitted is now set as C, and the conversion coefficient between the light amount of the light receiving section and the electric signal is set as β, then the first to third light receiving sections have the following outputs e 1 to e 3 occur respectively.

e1=α1Cβ=K3cos2θ+K4 e2=α2Cβ=−K3sin2θ+K4 …… e3=α3Cβ=K4 ここに、K3=K1Cβ K4=K2Cβ 以下、この出力e1〜e3は、演算部に導入され、
先ず加減回路において、(e1−e3)、(e2−e3)の
演算が行なわれ、e1、e2中の定数項K4が除去され
る。続いてこれらの差は変調回路に炭られ、相互
に位相が90度ずれた正弦波状の周期的信号、
sinωt、cosωtにより変調された後、加減算回路
において、その各変調信号の加算が行なわれ、次
のように第1、第2の板体の相対回動変位θに対
応した位置ずれをもつ出力e0が形成される。
e 1 = α 1 Cβ = K 3 cos2θ + K 4 e 2 = α 2 Cβ = −K 3 sin2θ + K 4 ... e 3 = α 3 Cβ = K 4Here , K 3 = K 1 Cβ K 4 = K 2 Cβ Below , these outputs e 1 to e 3 are introduced into the calculation section,
First, in the adder/subtractor circuit, the calculations (e 1 -e 3 ) and (e 2 -e 3 ) are performed, and the constant term K 4 in e 1 and e 2 is removed. These differences are then converted into a modulation circuit, producing periodic sinusoidal signals that are 90 degrees out of phase with each other.
After being modulated by sinωt and cosωt, the respective modulated signals are added in an adder/subtractor circuit, and an output e with a positional shift corresponding to the relative rotational displacement θ of the first and second plates is obtained as follows. 0 is formed.

e0=(e1−e3)sinωt+(e2−e3)cosωt =K3sin(ωt−2θ) …… 尚、演算部における演算は、最初にe1、e2、e3
を変調した後、加減算しても全く同様である。
e 0 = (e 1 − e 3 ) sin ωt + (e 2 − e 3 ) cos ωt = K 3 sin (ω t − 2θ) ... In addition, the calculation in the calculation section first calculates e 1 , e 2 , e 3
After modulating, addition and subtraction are performed in exactly the same way.

実施例 以下、実施例として、第1の板体を大小2枚の
偏光円板の重ね合わせにより形成し、第2の板体
を2枚の偏光板の並列配置により形成したものを
例にとり、本発明を詳細に説明する。
EXAMPLE Hereinafter, as an example, a first plate body is formed by overlapping two large and small polarizing discs, and a second plate body is formed by arranging two polarizing plates in parallel. The present invention will be explained in detail.

実施例の構成部分を示す第1,2図において、
1は回動自在に支承された軸であり、軸1上には
大径の偏光円板11と小径の偏光円板12とを相
互に透過軸を45度ずらして同心状態で重合させた
第1の板体10が一体的に固着されている。
In FIGS. 1 and 2 showing the constituent parts of the embodiment,
Reference numeral 1 denotes a rotatably supported shaft, and on the shaft 1 there is provided a large-diameter polarizing disc 11 and a small-diameter polarizing disc 12, which are superimposed concentrically with their transmission axes shifted by 45 degrees. One plate body 10 is integrally fixed.

その第1の板体の外周側に位置する大径の偏光
円板11のみからなる非重合部分と対向して第2
の板体40が配設され、第2の板体40には、相
互に透過軸を45度ずらして第1、第2の偏光板4
1,42が固定されている。そして、その第1、
第2の偏光板41,42と第1の板体10の非重
合部分とを挟んで対向状態に第1、第2の光源2
1,22と第1、第2の受光部31,32(但
し、32は図示されていない。)が配設されてい
る。
A second plate is located opposite to a non-overlapping portion consisting only of the large-diameter polarizing disc 11 located on the outer circumferential side of the first plate.
A plate body 40 is disposed, and the second plate body 40 includes first and second polarizing plates 4 whose transmission axes are shifted by 45 degrees from each other.
1 and 42 are fixed. And the first one,
The first and second light sources 2 are placed facing each other with the second polarizing plates 41 and 42 and the non-overlapping portion of the first plate body 10 in between.
1 and 22, and first and second light receiving sections 31 and 32 (however, 32 is not shown) are provided.

また、第1の板体10の内周側に位置する大径
と小径の偏光円板11,12の重合部分を挟んで
対向状態に第3の光源23と第3の受光部33が
配設されている。
Further, a third light source 23 and a third light receiving section 33 are arranged facing each other across the overlapping portion of the large diameter and small diameter polarizing discs 11 and 12 located on the inner peripheral side of the first plate body 10. has been done.

しかして、この機構部においては、大小径の偏
光円板11,12の重合に際して透過軸を45度に
組立調整することと、第2の板体において第1、
第2の偏光板41,42の透過軸を45度だけずら
して組立調整することの二つの調整操作のみとな
る。
Therefore, in this mechanism part, when the large and small diameter polarizing disks 11 and 12 are superposed, the transmission axis is assembled and adjusted to 45 degrees, and the first and second plates in the second plate are assembled and adjusted.
There are only two adjustment operations: shifting the transmission axes of the second polarizing plates 41 and 42 by 45 degrees and assembling and adjusting them.

次に、第3図は前記第1〜第3の光源の発光量
を制御する点灯制御部と、前記第1〜第3の受光
部の出力を演算して第1の板体10の回動変位を
算出する演算部の実施例であり、第1,2図と同
番号を付した第1〜第3の光源21〜23、受光
部31〜33は第1,2図と同一のものである。
Next, FIG. 3 shows a lighting control unit that controls the amount of light emitted from the first to third light sources, and a rotation of the first plate 10 by calculating the outputs of the first to third light receiving units. This is an example of a calculation unit that calculates displacement, and the first to third light sources 21 to 23 and light receiving units 31 to 33, which are given the same numbers as in Figures 1 and 2, are the same as in Figures 1 and 2. be.

これにおいては、定電流発生器よりなる点灯制
御部50の出力端が第1〜第3の光源21〜23
と直列に結線され、常時、第1〜第3の光源21
〜23から一定の光量を発光させている。
In this case, the output terminal of the lighting control section 50 consisting of a constant current generator is connected to the first to third light sources 21 to 23.
are connected in series with the first to third light sources 21 at all times.
A constant amount of light is emitted from ~23.

また、演算部60は、第1、第2の受光部3
1,32の出力e1、e2と第3の受光部33の出力
e3とのそれぞれ差を算出する第1、第2の加減回
路61,62、その加減回路61,62の出力に
キヤリア発振器66から送出されるキヤリア
sinωt、cosωtを乗じる第1、第2の変調器63,
64、その各変調器63,64の出力の和を算出
する第3の加減回路65とからなる。
Further, the calculation section 60 operates on the first and second light receiving sections 3
1, 32 outputs e 1 , e 2 and the output of the third light receiving section 33
The first and second adding/subtracting circuits 61, 62 calculate the difference from e 3 , respectively, and the carrier sent from the carrier oscillator 66 to the output of the adding/subtracting circuits 61, 62.
first and second modulators 63 that multiply sinωt and cosωt;
64, and a third adding/subtracting circuit 65 that calculates the sum of the outputs of the respective modulators 63 and 64.

以上のものにおいて、軸1がθだけ回動変位す
ると、第1の板体10も一体的にθだけ回動し、
第1、第2の偏光板41,42と偏光板11の非
重合部分との透過軸の交り角がそれぞれθ、(θ
+45゜)となり、その透過率α1、α2は前記、
式のように回動変位θに応じて変化したものとな
る。
In the above, when the shaft 1 is rotationally displaced by θ, the first plate 10 is also rotated integrally by θ,
The intersection angles of the transmission axes of the first and second polarizing plates 41 and 42 and the non-overlapping portion of the polarizing plate 11 are θ and (θ
+45°), and its transmittance α 1 and α 2 are as above,
It changes according to the rotational displacement θ as shown in the equation.

他方、第1の板体10の重合部の透過率は、軸
1の回動変位θとは無関係に一定であり、前記
式のようになる。
On the other hand, the transmittance of the overlapping portion of the first plate 10 is constant regardless of the rotational displacement θ of the shaft 1, and is expressed by the above equation.

したがつて、第1、第2、第3の光源21,2
2,23から発光された一定光量は、それぞれ
α1、α2、α3倍されて各対応する受光部31〜33
に達し、受光部31〜33はその受光量に対応し
た前記式に示す電気信号e1〜e3を発生する。
Therefore, the first, second and third light sources 21, 2
The constant amount of light emitted from 2 and 23 is multiplied by α 1 , α 2 , and α 3 and sent to each corresponding light receiving unit 31 to 33.
The light receiving units 31 to 33 generate electric signals e 1 to e 3 shown in the above equations corresponding to the amount of light received.

そして、第1、第2の加減回路61,62にお
いて、第1、第2の受光部出力e1、e2と第3の受
光部出力e3との差が算出され、続いて、その差は
第1、第2の変調器63,64において、90度位
相の正弦波により平衡変調された後、第3の加減
回路65により加算され、前記式に示す出力e0
が形成される。
Then, in the first and second adjusting circuits 61 and 62, the difference between the first and second light receiving section outputs e 1 , e 2 and the third light receiving section output e 3 is calculated, and then the difference is calculated. is balanced modulated by a 90 degree phase sine wave in the first and second modulators 63 and 64, and then added by the third adding/subtracting circuit 65, resulting in the output e 0 shown in the above equation.
is formed.

尚、上記実施例において、光源と受光部は直接
発光素子と受光素子を用いた場合を例示したが、
これらと光フアイバーを用いて構成しても同様で
ある。
In addition, in the above embodiment, the light source and the light receiving section are exemplified using a direct light emitting element and a light receiving element.
The same effect can be obtained by using these and optical fibers.

また、演算部60の各受光部出力に対する演算
の順序は上記実施例に限られるものでなく、前記
式の演算式を満たすもの、例えば、e1、e2を相
互間に90度の位相度を有する正弦波信号よりなる
周期的信号により変調した後加算し、また、e3
90度位相の周期的信号の和の信号により変調し、
前記加算信号からその変調信号を差引いても同様
である。
Furthermore, the order in which the calculation unit 60 performs calculations on the outputs of the respective light receiving units is not limited to the above embodiment, but may be performed in a manner that satisfies the calculation formula described above, for example, by setting e 1 and e 2 at a phase angle of 90 degrees between each other. modulated by a periodic signal consisting of a sine wave signal with
Modulated by a signal that is the sum of periodic signals with a 90 degree phase,
The same effect can be obtained by subtracting the modulated signal from the added signal.

また、上記実施例は第1〜第3の別の光源を各
受光部と対向させた場合を例示したが、単一の光
源を各受光部と対向させても同様である。
Moreover, although the above-mentioned embodiment illustrated the case where the first to third different light sources were made to face each light receiving section, the same effect can be obtained even if a single light source is made to face each light receiving section.

また、上記実施例は第1〜第3の別の光源を各
受光部と対向させた場合を例示したが、単一の共
用光源を各受光部と対向させても同様である。
Moreover, although the above-mentioned embodiment illustrated the case where the first to third different light sources were made to face each light receiving part, the same effect can be obtained even if a single shared light source is made to face each light receiving part.

また、上記実施例においては第1の板体10を
軸1に固着して回動変位させた場合を例示した
が、第2の板体40の第1、第2の偏光板をドー
ナツツ状とし、円板の異なる半径上に設け、それ
を軸に固着して回動変位させても同様である。
Further, in the above embodiment, the first plate 10 is fixed to the shaft 1 and rotated, but the first and second polarizing plates of the second plate 40 are shaped like donuts. The same effect can be obtained by providing the discs on different radii and fixing them to a shaft for rotational displacement.

発明の効果 以上のとおりであり、本発明は、2枚の偏光板
を重合させた部分と非重合の部分とを有する第1
の板体の非重合部分に対して第2の板体の2枚の
偏光板を対向させ、その間の透過光量の変化およ
び第1の板体の重合部の透過光量を電気信号に変
換して処理し、第1と第2の板体の回動変位に対
応した出力を形成するので、偏光板の透過軸の調
整は、2対の偏光板に対して行なうだけでよく、
全体の組立調達が簡略化され、作業性が向上す
る。
Effects of the Invention As described above, the present invention provides a first polarizing plate having a polymerized portion and a non-polymerized portion of two polarizing plates.
The two polarizing plates of the second plate are opposed to the non-overlapping portion of the first plate, and the changes in the amount of transmitted light between them and the amount of transmitted light at the overlapping portion of the first plate are converted into electrical signals. processing to form an output corresponding to the rotational displacement of the first and second plates, the transmission axes of the polarizing plates only need to be adjusted for the two pairs of polarizing plates.
Overall assembly and procurement is simplified and work efficiency is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の機構部の実施例を示す正面
図、第2図は第1図の左側面図、第3図は本発明
の点灯制御部、演算部の実施例を示すブロツク線
図である。 10:第1の板体、40:第2の板体、20:
光源、30:受光部、60:演算部、50:点灯
制御部。
FIG. 1 is a front view showing an embodiment of the mechanism section of the present invention, FIG. 2 is a left side view of FIG. 1, and FIG. 3 is a block diagram showing an embodiment of the lighting control section and calculation section of the present invention. It is. 10: first plate, 40: second plate, 20:
Light source, 30: Light receiving section, 60: Arithmetic section, 50: Lighting control section.

Claims (1)

【特許請求の範囲】 1 透過軸を45度ずらして大小2枚の偏光板を重
ね合わせ、重合部分と非重合部分を形成した第1
の板体と、相互に透過軸を45度ずらして第1、第
2の偏光板が固定され、前記第1の板体の非重合
部分と対向して配設された第2の板体と、前記第
1の板体の非重合部分と前記第2の板体の第1、
第2の偏光板をはさんでそれぞれ対向して配設さ
れた第1の光源と第1の受光部、および第2の光
源と第2の受光部と、前記第1の板体の重合部分
をはさんで対向して配設された第3の光源と第3
の受光部と、前記第1、第2、第3の光源に一定
の直流点灯信号を送出し、光源から一定の光量を
発光させる点灯制御部と、前記第1、第2、第3
の受光部出力e1、e2、e3を入力してe0=(e1−e3
sinωt+(e2−e3)cosωt[ここに、e0:出力、ω:
変調用の正弦波状周期的信号の角周波数]の演算
を行う変調回路および加減回路を備えた演算部と
からなる光電式変位検出器。 2 第1、第2、第3の光源の2個または全部
が、作用の同一光源からなる特許請求の範囲第1
項に記載の光電式変位検出器。 3 演算部は、第1、第3の受光部出力および第
2、第3の受光部出力を相互間に90度の位相差を
有する正弦波状周期的信号sinωt、cosωtにより
それぞれ変調する変調回路と、その第1、第3の
受光部出力の変調信号の差および第2、第3の受
光部出力の変調信号の差との和を算出する加減回
路とした特許請求の範囲第1項または第2項いず
れかに記載の光電式変位検出器。 4 演算部は、第1、第3の受光部出力の差およ
び第2、第3の受光部出力の差を算出する加減回
路と、その各差を相互間に90度の位相差を有する
正弦波状周期的信号sinωt、cosωtによりそれぞ
れ変調する変調回路と、その変調信号の和を算出
する加減回路とした特許請求の範囲第1項または
第2項いずれかに記載の光電式変位検出器。
[Claims] 1. A first polarizer in which two large and small polarizing plates are stacked with their transmission axes shifted by 45 degrees to form an overlapping portion and a non-overlapping portion.
a second plate body, to which first and second polarizing plates are fixed with their transmission axes shifted by 45 degrees from each other, and which is disposed facing the non-overlapping portion of the first plate body; , a non-polymerized portion of the first plate and a first portion of the second plate,
A first light source and a first light-receiving section that are arranged to face each other with a second polarizing plate in between, and an overlapping portion of the second light source, the second light-receiving section, and the first plate body. A third light source and a third light source are arranged facing each other across the
a light receiving unit; a lighting control unit that sends a constant DC lighting signal to the first, second, and third light sources to cause the light sources to emit a constant amount of light; and a lighting control unit that causes the light sources to emit a constant amount of light;
Input the outputs e 1 , e 2 , and e 3 of the photodetector and get e 0 = (e 1 − e 3 )
sinωt + (e 2 − e 3 ) cosωt [where, e 0 : output, ω:
A photoelectric displacement detector comprising a modulation circuit that calculates the angular frequency of a sinusoidal periodic signal for modulation, and a calculation unit equipped with an addition/subtraction circuit. 2. Claim 1 in which two or all of the first, second, and third light sources are light sources with the same effect.
The photoelectric displacement detector described in . 3 The calculation section includes a modulation circuit that modulates the outputs of the first and third light receiving sections and the outputs of the second and third light receiving sections using sinusoidal periodic signals sinωt and cosωt that have a phase difference of 90 degrees between them. , and the sum of the difference between the modulation signals of the outputs of the first and third light-receiving sections and the difference of the modulation signals of the outputs of the second and third light-receiving sections. The photoelectric displacement detector according to any one of Item 2. 4 The arithmetic unit includes an adding/subtracting circuit that calculates the difference between the outputs of the first and third light receiving sections and the difference between the outputs of the second and third light receiving sections, and a sine converter that calculates each difference between the outputs of the first and third light receiving sections. 3. The photoelectric displacement detector according to claim 1, comprising a modulation circuit that modulates each waveform periodic signal sinωt and cosωt, and an adder/subtractor circuit that calculates the sum of the modulation signals.
JP18007784A 1984-08-29 1984-08-29 Photoelectric displacement detector Granted JPS6157810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18007784A JPS6157810A (en) 1984-08-29 1984-08-29 Photoelectric displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18007784A JPS6157810A (en) 1984-08-29 1984-08-29 Photoelectric displacement detector

Publications (2)

Publication Number Publication Date
JPS6157810A JPS6157810A (en) 1986-03-24
JPH0263167B2 true JPH0263167B2 (en) 1990-12-27

Family

ID=16077051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18007784A Granted JPS6157810A (en) 1984-08-29 1984-08-29 Photoelectric displacement detector

Country Status (1)

Country Link
JP (1) JPS6157810A (en)

Also Published As

Publication number Publication date
JPS6157810A (en) 1986-03-24

Similar Documents

Publication Publication Date Title
US8723511B2 (en) Absolute encoder
JP3252918B2 (en) Inductive rotary motion encoder
US4772815A (en) Variable refluctance position transducer
EP0133581B1 (en) Angle transducer employing polarized light
EP2815211B1 (en) Rotary position sensor device
US6326908B1 (en) Precision position encoder using coarse position indicator
JP2001183169A (en) Position detector
JPH0249543Y2 (en)
JPH0263167B2 (en)
JPH0249542Y2 (en)
JPH0263168B2 (en)
JPH0263169B2 (en)
JPH0263170B2 (en)
US20030095257A1 (en) Non-contact optical polarization angle encoder
JPH0342774B2 (en)
JPS60162920A (en) Resolver device using magnetism sensing element
JPH0132449B2 (en)
JP2613059B2 (en) Magnetic sensor
JP7314426B2 (en) Resolver
WO2022124415A1 (en) Resolver
JPH0349043B2 (en)
GB2137755A (en) Position Encoder System having Quadrature Outputs
JPH06235646A (en) Rotary angle detector
JPS636417A (en) Rotational position detecting device
JPS61246620A (en) Detecting apparatus of rotational angle