JPS6157771B2 - - Google Patents

Info

Publication number
JPS6157771B2
JPS6157771B2 JP55057596A JP5759680A JPS6157771B2 JP S6157771 B2 JPS6157771 B2 JP S6157771B2 JP 55057596 A JP55057596 A JP 55057596A JP 5759680 A JP5759680 A JP 5759680A JP S6157771 B2 JPS6157771 B2 JP S6157771B2
Authority
JP
Japan
Prior art keywords
electrode
glass
heating
thin film
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55057596A
Other languages
Japanese (ja)
Other versions
JPS56152631A (en
Inventor
Tamotsu Fukai
Shinichi Ookawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5759680A priority Critical patent/JPS56152631A/en
Priority to DK189081A priority patent/DK159838C/en
Priority to DE8181301887T priority patent/DE3172480D1/en
Priority to AU69967/81A priority patent/AU546505B2/en
Priority to EP19810301887 priority patent/EP0039243B1/en
Priority to CA000376480A priority patent/CA1153794A/en
Publication of JPS56152631A publication Critical patent/JPS56152631A/en
Publication of JPS6157771B2 publication Critical patent/JPS6157771B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【発明の詳細な説明】 本発明は組織内又は血液中の炭酸ガスの濃度
(又は分圧)を経皮的に測定する電極装置に関す
るものである。血液中の炭酸ガス濃度を知ること
は、生体の呼吸及び代謝機能の良否並びに血液中
のPH濃度の近似値を知るための臨床検査において
極めて重要である。従来、血液中の炭酸ガスの濃
度(又は分圧)を測定する方法としては、血液特
に動脈中の血液を抜き取つて直接測定する方法が
主として用いられているが、この方法では経時的
連続測定が不可能であることと患者に苦痛を与え
ることが問題であつた。特に、未熟児・新生児の
場合には採血による侵襲が大きいため実施に著し
い困難を伴なつた。 経皮的電極方式は、上記の直接方法とは異なり
血液から組織を通じて拡散された炭酸ガスを皮膚
面で捕促し、患者に苦痛を与えることなく、経時
的に連続測定が出来るものである。 本発明は経皮的血中炭酸ガスセンサーの改良に
かかわるもので、特にPH変化を検出するためのガ
ラス電極の構造並びにセンサーの全体構造に関す
るものである。 第1図は既に実用化されている従来型の経皮的
血中炭酸ガスセンサーの構造を示したもので、
H+イオン応答性(PH応答性)のガラス薄膜1を
底部に熔着したガラス容器2の内部にKcl又は
Nacl等の水溶液を主体とした内部電解液3及び
表面をAgcl化した銀線4等を封入してなるガラ
ス電極5、並びに銀/塩化銀等の外部比較電極6
が内蔵された上蓋部7、電極膜8をあらかじめ貼
り付けた膜ホルダー9、発熱体10及び感熱体1
1の埋め込まれた加熱部12の3つの独立した部
分より構成され、膜ホルダー部が上蓋部と加熱部
との間に容易に装着出来る構造となつている。 なお、電極膜とガラス薄膜との間には
NaHCO3,Nacl又はKcl等の混合水溶液よりなる
電解液13及び必要により紙、ナイロン布等のス
ペーサー等が介在される。 しかしながら前記の従来型のセンサーは、PH応
答性のガラス容器の内に、前記内部電解液を封入
した構造となつているため、 センサーが横転した場合PH応答性のガラス薄
膜面の内部電解液が移動して液切れを起こすた
めセンサーとしての働きが失なわれる。 寒冷地で使用する場合内部電解液が凍結して
ガラスが破れる等のトラブルを生ずる。 経皮測定時にセンサーを加熱すると内部電解
液の一部がガラス容器内で蒸発して露結する時
センサーの応答が異常となる。 内部電解液がリークして絶縁不良を来たし易
い。 ガラス薄膜部が破損し易い 等のガラス電極部に起因する問題以外に前記従
来型のセンサーは、ガラス電極及び外部電極を内
蔵した上蓋部7と加熱ヒーター及び温度検出素子
等を内蔵した加熱部12がそれぞれ独立した部材
を構成しているため上蓋部と加熱部とにそれぞれ
リード線14及び15を取り付ける必要があり、
このリード線があるために上蓋部と加熱部はネジ
等の回転機構により両者を固着することが出来
ず、ビス16を用いて両者を固着するという方式
が用いられている。 このため各ビスの締め付けが均一でない場合に
は上蓋部と加熱部が歪んだ状態で固着され、電極
の端面と電極膜面が同様に歪んだ状態で被合され
ることになり、このため電極の安定性が悪くな
る。その他ビスの着脱が面到で、着脱時にビスが
紛失する等のトラブルが発生しがちである。等セ
ンサーの全体構造上の問題がある。 第2図は本発明によりなるセンサーの構造を示
したものでガラス電極の構造が従来品とは全く異
なる。図中17はH+イオン応答性のガラス薄
膜、18は高絶縁性のガラス管で、該ガラス管の
端部でH+イオン応答性のガラス薄膜が熔着、或
いは接着剤により接着されることによりガラス容
器が構成されている。本例はガラスを使用した場
合について説明したが、セラミツク、プラスチツ
ク等も使用可能である。19はガラス薄膜17の
全面及びガラス管18の一部又は全面に形成され
たAg、pt、Au等の金属あるいはAgcl,Agl等の
金属塩などよりなる導電性薄膜で真空蒸着法、イ
オンプレーテイング法等により形成される。又融
点が使用するガラスの融点よりも低い塩類におい
ては熱溶融法によつてもガラス面に薄膜を形成さ
せることが出来る。20はガラス電極のリード線
で、半田又は導電性接着剤等により金属又は塩類
の薄膜面と結合されている。 21はシリコーンゴム及びエポキシ樹脂等の硬
化型液状ゴム又は熱硬化性樹脂で、リード線取り
付け部の補強及びガラス薄膜を補強する目的でガ
ラス電極の内部に充填される。 22は銀/塩化銀等よりなる外部比較電極で本
発明によるガラス電極の外周部に設けられる。 前記ガラス電極及び外部比較電極22の外周に
絶縁材を介して加熱ヒーター24及び温度検出素
子25を内蔵した加熱部材23を一体に設けた電
極本体部26及び第2の部材として電極膜27を
あらかじめ貼り付けた膜ホルダー28、並びに第
3の部材として膜ホルダーを電極面に被合し、か
つ皮膚に電極本体部の加熱部材23からの熱流を
伝えて皮膚を加熱するための皮膚加熱板29の3
つの独立した部分よりなり加熱体と皮膚加熱体と
は端部でネジ30,30′により着脱可能なるご
とく構成されている。 次に本発明の特長と効果について説明する。内
部電解液を使用せずにH+イオン濃度変化(PH変
化)の測定が出来るため、 イ 横転してもセンサーの機能を損うことがな
い。 ロ 寒冷地で内部電解液が凍結し、ガラス電極が
破損するというトラブルがない。 ハ センサーを加熱した場合、内部電解液の一部
が蒸発してガラス電極の空間部に露結すること
によつて生ずる電位の異常挙動がない。 ニ 内部電解液がガラス電極より洩れ出すことに
よるトラブルの発生する恐れはない。 ホ ガラス電極の内面をシリコーンゴム、及びエ
ポキシ樹脂等で充填補強することが出来るため
ガラス電極のガラス薄膜部が著しく補強され外
部からの衝撃及び外圧等に対して従来品に比べ
てはるかに強靭となる。 等のガラス電極に起因する従来型センサーの持
つ欠点を排除することが出来ると共に全体構造と
して電極本体部の加熱部材23と皮膚加熱板29
がネジ部30,30′で接合され、膜ホルダー2
8が皮膚加熱部により電極側に圧着される構造と
なつているため、陰陽両極からの信号線、ヒータ
ー線及び感熱素子からのリード線等が電極本体部
に結集することが可能となる。 これによつて従来使用されていたセンサーに見
られるごとくリード線を電極側14と加熱体側1
5とに分離する必要がなくなり、1本のコード2
7でセンサーと繋ぐことが出来るようになつた。
この結果皮膚加熱体は電極本体部より完全に独立
した部材として切り離すことが可能となりネジを
用いた回転機構によつて接合することが可能とな
つた。これによつて従来のビス止め法に見られた
欠点、即ち膜面の電極面への被合が均一に出来ず
そのため特性が不安定になりがちであること、及
びビスを使用して上蓋部と加熱部とを接合する場
合にビスを紛失したりするトラブル等を無くすこ
とが出来る。 本発明によれば前記のごとく、特性面、取り扱
い、耐久性等総ての点で従来品の持つ欠点をカバ
ーし得る優れた経皮血中炭酸ガス分圧測定器用セ
ンサーを提供することが出来る。 実施例 ガラス薄膜の組成として重量でNa2O25%、
CaO10%、SiO265%を用い、ガラス薄膜の厚さ
を0.15mm、PH応答部の直径を6mmφとし、鉛ガラ
スの円筒の端部に前記ガラス薄膜をガラス半田に
より熔着したガラス容器の内面に白金を真空蒸着
し、白金蒸着面に低融点半田を用いてリード線を
取り付け、このガラス容器の内面の空間部に常温
硬化性のシリコーンゴムを注入硬化させたものを
ガラス電極として使用した。 前記ガラス電極の外周部には0.1NHcl中で電解
法により表面を塩化銀化した銀環を外部比較電極
として、エポキシ樹脂を用いて接着固定した。 外部電解液としては0.02mol Nacl+0.005mol
NaHCO3を用いた。電極膜としては20μ厚のポリ
四弗化エチレンフイルムを用いた。 上記の製作条件により製作した第2図に示した
本発明によりなるセンサーは第1表に示したごと
く優れた特性と操作性を有している。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode device for percutaneously measuring the concentration (or partial pressure) of carbon dioxide in tissue or blood. Knowing the carbon dioxide concentration in the blood is extremely important in clinical tests for determining the quality of the respiratory and metabolic functions of a living body and the approximate value of the PH concentration in the blood. Conventionally, the main method used to measure the concentration (or partial pressure) of carbon dioxide in blood is to draw blood, especially blood from the arteries, and directly measure it, but this method requires continuous measurement over time. The problem was that it was impossible and caused pain to the patient. Particularly in the case of premature infants and newborns, blood sampling is highly invasive, making implementation extremely difficult. Unlike the above-mentioned direct method, the transcutaneous electrode method captures carbon dioxide gas diffused from blood through tissues on the skin surface, allowing continuous measurement over time without causing pain to the patient. The present invention relates to improvements in a transcutaneous blood carbon dioxide sensor, and in particular to the structure of a glass electrode for detecting PH changes and the overall structure of the sensor. Figure 1 shows the structure of a conventional transcutaneous blood carbon dioxide sensor that is already in practical use.
Kcl or
An internal electrolyte 3 mainly composed of an aqueous solution such as NaCl, a glass electrode 5 encapsulating a silver wire 4 etc. whose surface has been converted to AgCl, and an external reference electrode 6 made of silver/silver chloride etc.
an upper lid part 7 with a built-in membrane, a membrane holder 9 to which an electrode membrane 8 is attached in advance, a heating element 10, and a heat sensitive element 1.
It is composed of three independent parts of one embedded heating part 12, and has a structure in which the membrane holder part can be easily installed between the upper lid part and the heating part. Note that there is a gap between the electrode film and the glass thin film.
An electrolytic solution 13 made of a mixed aqueous solution of NaHCO 3 , NaCl or Kcl, and a spacer such as paper or nylon cloth are interposed as necessary. However, the conventional sensor described above has a structure in which the internal electrolyte is sealed inside a PH-responsive glass container, so if the sensor rolls over, the internal electrolyte on the surface of the PH-responsive glass thin film may leak. It moves and runs out of fluid, causing it to lose its function as a sensor. When used in cold regions, the internal electrolyte may freeze, causing problems such as glass breakage. When the sensor is heated during transdermal measurement, a portion of the internal electrolyte evaporates and condenses in the glass container, causing abnormal sensor response. Internal electrolyte leaks easily, resulting in poor insulation. In addition to the problems caused by the glass electrode part, such as the glass thin film part being easily damaged, the conventional sensor has a top lid part 7 that contains a glass electrode and an external electrode, and a heating part 12 that contains a heating heater, a temperature detection element, etc. Since these constitute independent members, it is necessary to attach lead wires 14 and 15 to the upper lid part and the heating part, respectively.
Because of this lead wire, the upper lid part and the heating part cannot be fixed together using a rotating mechanism such as a screw, and a method of fixing them together using screws 16 is used. For this reason, if the screws are not tightened uniformly, the top cover and heating section will be fixed in a distorted state, and the end face of the electrode and the electrode membrane surface will be fitted in a similarly distorted state. stability becomes worse. In addition, it is difficult to attach and remove screws, and troubles such as screws being lost during attachment and detachment tend to occur. There is a problem with the overall structure of the sensor. FIG. 2 shows the structure of a sensor according to the present invention, and the structure of the glass electrode is completely different from that of conventional products. In the figure, 17 is a glass thin film responsive to H + ions, 18 is a highly insulating glass tube, and the thin glass film responsive to H + ions is welded or bonded with an adhesive at the end of the glass tube. The glass container is made up of: Although this example has been explained using glass, ceramics, plastics, etc. can also be used. Reference numeral 19 is a conductive thin film made of a metal such as Ag, PT, Au, or a metal salt such as Agcl, Agl, etc., formed on the entire surface of the glass thin film 17 and a part or the entire surface of the glass tube 18, using a vacuum evaporation method or ion plating. Formed by law etc. Furthermore, in the case of salts whose melting point is lower than that of the glass used, a thin film can also be formed on the glass surface by a thermal melting method. 20 is a lead wire of the glass electrode, which is connected to the metal or salt thin film surface by solder or conductive adhesive. Reference numeral 21 is a hardening liquid rubber or thermosetting resin such as silicone rubber and epoxy resin, which is filled inside the glass electrode for the purpose of reinforcing the lead wire attachment portion and reinforcing the glass thin film. Reference numeral 22 denotes an external comparison electrode made of silver/silver chloride, etc., which is provided on the outer periphery of the glass electrode according to the present invention. An electrode main body part 26 is integrally provided with a heating member 23 containing a heating heater 24 and a temperature detection element 25 via an insulating material on the outer periphery of the glass electrode and external comparison electrode 22, and an electrode film 27 is preliminarily provided as a second member. The attached membrane holder 28 and a skin heating plate 29 which covers the membrane holder as a third member on the electrode surface and heats the skin by transmitting the heat flow from the heating member 23 of the electrode main body to the skin. 3
The heating element and the skin heating element are made up of two independent parts, and are configured so that they can be attached and detached by means of screws 30 and 30' at their ends. Next, the features and effects of the present invention will be explained. Since it is possible to measure H + ion concentration changes (PH changes) without using an internal electrolyte, the sensor function will not be impaired even if the sensor is rolled over. (b) There is no problem of the internal electrolyte freezing and damaging the glass electrode in cold regions. (c) When the sensor is heated, there is no abnormal behavior in potential caused by part of the internal electrolyte evaporating and condensing in the space of the glass electrode. D. There is no risk of trouble occurring due to internal electrolyte leaking from the glass electrode. E) Since the inner surface of the glass electrode can be filled and reinforced with silicone rubber, epoxy resin, etc., the glass thin film part of the glass electrode is significantly reinforced, making it much stronger than conventional products against external shocks and external pressure. Become. It is possible to eliminate the drawbacks of conventional sensors caused by glass electrodes such as
are joined by threaded parts 30, 30', and the membrane holder 2
8 is crimped to the electrode side by the skin heating section, so that signal lines from both the negative and negative poles, the heater wire, the lead wire from the heat-sensitive element, etc. can be gathered at the electrode main body. This allows the lead wires to be connected to the electrode side 14 and the heating body side 1, as seen in conventional sensors.
There is no need to separate the code into 2 and 5, and only one code 2
With version 7, I was able to connect it to the sensor.
As a result, the skin heating element can be separated from the electrode main body as a completely independent member, and can be joined using a rotation mechanism using screws. This eliminates the disadvantages of the conventional screw fastening method, namely that the membrane surface cannot be uniformly fitted to the electrode surface, which tends to result in unstable characteristics, and that the top cover cannot be fixed using screws. It is possible to eliminate troubles such as losing screws when joining the heating part and the heating part. According to the present invention, as described above, it is possible to provide an excellent sensor for a transcutaneous blood carbon dioxide gas partial pressure measuring device that can overcome the drawbacks of conventional products in all aspects such as characteristics, handling, and durability. . Example The composition of the glass thin film is Na 2 O 25% by weight,
The inner surface of a glass container is made of 10% CaO and 65% SiO 2 , the thickness of the glass thin film is 0.15 mm, the diameter of the PH response part is 6 mmφ, and the thin glass film is welded to the end of a lead glass cylinder using glass solder. Platinum was vacuum-deposited on the glass container, lead wires were attached to the platinum-deposited surface using low-melting-point solder, and room-temperature-curing silicone rubber was injected into the space on the inner surface of the glass container and cured, which was used as a glass electrode. A silver ring whose surface had been silver chloride-ized by an electrolytic method in 0.1 NHCl was adhesively fixed to the outer periphery of the glass electrode as an external reference electrode using an epoxy resin. External electrolyte is 0.02mol Nacl + 0.005mol
NaHCO3 was used. A 20μ thick polytetrafluoroethylene film was used as the electrode film. The sensor according to the present invention shown in FIG. 2, manufactured under the above manufacturing conditions, has excellent characteristics and operability as shown in Table 1. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来使用されている経皮血中炭酸ガス
濃度測定用センサーの構造説明図で、図中の記号
は下記の部材を示す。第2図は本発明による経皮
血中炭酸ガス濃度測定用センサーの説明図で、図
中の記号は下記の部材を示す。 1……H+イオン応答性ガラス薄膜、2……ガ
ラス容器、3……内部電解液、4……表面を
Agcl化した銀線、5……ガラス電極、6……外
部比較電極、7……上蓋部、8……電極膜、9…
…膜ホルダー、10……発熱体、11……感熱
体、12……加熱部、13……電解液、14……
電位測定用コード、15……加熱体からのコー
ド、16……ビス、17……H+イオン応答性ガ
ラス薄膜、18……高絶縁性の環状体、19……
導電性薄膜、20……ガラス電極のリード線、2
1……硬化型液状ゴム又は熱硬化性樹脂、22…
…外部比較電極、23……加熱部板、24……加
熱ヒーター、25……温度検出素子、26……電
極本体部、27……電極膜、28……膜ホルダ
ー、29……皮膚加熱板、30,30′……ネ
ジ。
FIG. 1 is an explanatory diagram of the structure of a conventionally used transcutaneous blood carbon dioxide concentration measurement sensor, and the symbols in the figure indicate the following members. FIG. 2 is an explanatory diagram of a sensor for transcutaneous blood carbon dioxide concentration measurement according to the present invention, and the symbols in the figure indicate the following members. 1... H + ion-responsive glass thin film, 2... Glass container, 3... Internal electrolyte, 4... Surface
Agclized silver wire, 5...Glass electrode, 6...External reference electrode, 7...Top cover, 8...Electrode film, 9...
... Membrane holder, 10 ... Heating element, 11 ... Heat sensitive element, 12 ... Heating part, 13 ... Electrolyte, 14 ...
Potential measurement cord, 15... Cord from heating body, 16... Screw, 17... H + ion responsive glass thin film, 18... Highly insulating annular body, 19...
Conductive thin film, 20...Glass electrode lead wire, 2
1...Curing liquid rubber or thermosetting resin, 22...
...External reference electrode, 23... Heating plate, 24... Heater, 25... Temperature detection element, 26... Electrode body, 27... Electrode membrane, 28... Membrane holder, 29... Skin heating plate , 30, 30'...screw.

Claims (1)

【特許請求の範囲】[Claims] 1 H+イオン応答性のガラス薄膜の内面に銀、
金、白金などの金属を密着させ、これを内部電極
としたガラス電極と、該ガラス電極の外周部に配
置された銀/塩化銀などの外部比較電極及び加熱
部材等を内蔵する本体部、並びに一端に電極膜を
貼り付け、ガラス電極と電極膜との間に外部電解
液を保持するための膜ホルダー、及び中央部に小
孔を設けた皮膚加熱板の3つの着脱可能な部材に
より構成され、加熱部材と皮膚加熱部とがそれら
に切り込まれているネジによつて、接続されてい
ることを特徴とする経皮的血中炭酸ガスセンサ
ー。
1 Silver on the inner surface of the H + ion-responsive glass thin film,
A glass electrode in which a metal such as gold or platinum is closely adhered and used as an internal electrode; a main body that contains an external reference electrode such as silver/silver chloride placed on the outer periphery of the glass electrode; and a heating member; It consists of three removable members: an electrode membrane pasted on one end, a membrane holder for holding an external electrolyte between the glass electrode and the electrode membrane, and a skin heating plate with a small hole in the center. , a transcutaneous blood carbon dioxide sensor, characterized in that the heating member and the skin heating section are connected by a screw cut into them.
JP5759680A 1980-04-29 1980-04-29 Sensor for measuring carbon dioxide gas in blood through skin Granted JPS56152631A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5759680A JPS56152631A (en) 1980-04-29 1980-04-29 Sensor for measuring carbon dioxide gas in blood through skin
DK189081A DK159838C (en) 1980-04-29 1981-04-28 TRANSCUTAN CARBON DIOXIDE MEASUREMENT UNIT
DE8181301887T DE3172480D1 (en) 1980-04-29 1981-04-29 Transcutaneous carbon dioxide measuring assembly
AU69967/81A AU546505B2 (en) 1980-04-29 1981-04-29 Transcutaneous co2 measuring sensor
EP19810301887 EP0039243B1 (en) 1980-04-29 1981-04-29 Transcutaneous carbon dioxide measuring assembly
CA000376480A CA1153794A (en) 1980-04-29 1981-04-29 Transcutaneous carbon dioxide measuring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5759680A JPS56152631A (en) 1980-04-29 1980-04-29 Sensor for measuring carbon dioxide gas in blood through skin

Publications (2)

Publication Number Publication Date
JPS56152631A JPS56152631A (en) 1981-11-26
JPS6157771B2 true JPS6157771B2 (en) 1986-12-08

Family

ID=13060223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5759680A Granted JPS56152631A (en) 1980-04-29 1980-04-29 Sensor for measuring carbon dioxide gas in blood through skin

Country Status (1)

Country Link
JP (1) JPS56152631A (en)

Also Published As

Publication number Publication date
JPS56152631A (en) 1981-11-26

Similar Documents

Publication Publication Date Title
US3659586A (en) Percutaneous carbon dioxide sensor and process for measuring pulmonary efficiency
US5425868A (en) Sensor for non-invasive, in vivo determination of an analyte and blood flow
US4185620A (en) Oxygen measuring electrode assembly
US5711862A (en) Portable biochemical measurement device using an enzyme sensor
JPS61122846A (en) Po2 pco2 electrochemical detector
JP2022518967A (en) Membrane connector for transdermal devices
JPS6157771B2 (en)
US4376681A (en) Method of measuring carbon dioxide in a liquid or gas
Hertz et al. A rapid and sensitive electrode for continuous measurement of pCO2 in liquids and tissue
JPS6157772B2 (en)
JPS6157770B2 (en)
JPS6111095B2 (en)
JPS5931329B2 (en) Transcutaneous blood carbon dioxide sensor
CA1153794A (en) Transcutaneous carbon dioxide measuring sensor
JPS61115538A (en) Subcataneous sensor
Hagihara et al. Intravascular oxygen monitoring with a polarographic oxygen cathode
US4419210A (en) Polarographic electrode
JP2017537707A (en) Hydration status indicator
JPH0244535B2 (en)
JPS5931217Y2 (en) Calibration device for transcutaneous blood oxygen partial pressure measurement sensor
JPH0230256B2 (en)
JPH0338691Y2 (en)
JPS643499B2 (en)
JPH0127088Y2 (en)
JPS6157768B2 (en)