JPS6111095B2 - - Google Patents

Info

Publication number
JPS6111095B2
JPS6111095B2 JP51158119A JP15811976A JPS6111095B2 JP S6111095 B2 JPS6111095 B2 JP S6111095B2 JP 51158119 A JP51158119 A JP 51158119A JP 15811976 A JP15811976 A JP 15811976A JP S6111095 B2 JPS6111095 B2 JP S6111095B2
Authority
JP
Japan
Prior art keywords
cathode
end surface
anode
cover plate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51158119A
Other languages
Japanese (ja)
Other versions
JPS53137590A (en
Inventor
Bunji Hagiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15811976A priority Critical patent/JPS53137590A/en
Priority to GB5298877A priority patent/GB1587879A/en
Priority to GB9008/79A priority patent/GB1587880A/en
Priority to US05/863,561 priority patent/US4185620A/en
Priority to IT5237777A priority patent/IT1090849B/en
Priority to SE7714832A priority patent/SE434437B/en
Priority to FR7739450A priority patent/FR2376412A1/en
Priority to DE2758413A priority patent/DE2758413C3/en
Publication of JPS53137590A publication Critical patent/JPS53137590A/en
Publication of JPS6111095B2 publication Critical patent/JPS6111095B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • A61B5/1477Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means non-invasive

Description

【発明の詳細な説明】 この発明は改良された電解構造を有する経皮式
血中酸素測定電極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a transcutaneous blood oxygen measuring electrode having an improved electrolytic structure.

経皮式血中酸素測定電極は、被験者の血中酸素
分圧(PO2)を非観血的に検出するために用いら
れ、特に新生児の酸素管理などでは重要な役目を
果すことができる。この電極は特殊な構成のクラ
ーク型複合酸素電極であつて、この電極の膜を被
験者の皮膚表面にあてがうことにより、皮膚から
拡散する血中酸素ガスを補捉して貴金属陰極にお
いて環元し、これによる電解電流からPO2値を得
るようにしたものである。この測定電極には加熱
及び感熱素子を内蔵して被験組織を加温し、同組
織を局部的に動脈化させ、これによつて、測定値
(経皮PO2)が動脈血のPO2値に近く、これと十分
な相関性が得られるようにしてある。
Transcutaneous blood oxygen measurement electrodes are used to non-invasively detect a subject's blood oxygen partial pressure (PO 2 ), and can play an important role, especially in the oxygen management of newborns. This electrode is a Clark-type composite oxygen electrode with a special configuration, and by applying the membrane of this electrode to the skin surface of the subject, it captures blood oxygen gas that diffuses from the skin and cyclically returns it to the noble metal cathode. The PO 2 value is obtained from the resulting electrolytic current. This measuring electrode has a built-in heating and thermosensitive element that warms the tissue under test and causes local arterialization of the tissue, thereby changing the measured value (transcutaneous PO 2 ) to the PO 2 value of arterial blood. We are trying to get a close enough correlation with this.

この種経皮式測定電極として従来知られている
ものはいずれもその電極構造に固有の欠陥をもつ
ている。
All conventionally known transcutaneous measuring electrodes of this type have inherent deficiencies in their electrode structures.

従来の第1のものは直径0.015mm程度の微細な
白金線を陰極とし、これを陽極と関連配置し、陰
極及び陽極の端面を電解液を支持した酸素透過用
疎水性半透過膜(以下単にメンブレンと略称)で
被覆したものである。尚メンブレンはたとえば電
極基部にOリングで固定されるなどの方法でとり
つけられる。この構成のものは電極が小さいた
め、S/N比が著しく悪く、このため、いまだ実
用化されるに到つていない。また、Oリングでメ
ンブレンを固定する方法ではメンブレンにしわが
より易く電極との密着性が一定になりにくいの
で、電極活性が不安定になる等の欠点がある。
The first conventional method uses a fine platinum wire with a diameter of about 0.015 mm as a cathode, which is arranged in relation to an anode, and the end surfaces of the cathode and anode are made of a hydrophobic semi-permeable membrane for oxygen permeation (hereinafter simply referred to as "hydrophobic semi-permeable membrane" that supports an electrolyte). membrane). Note that the membrane is attached to the electrode base by a method such as being fixed with an O-ring. Since the electrodes of this configuration are small, the S/N ratio is extremely poor, and for this reason, it has not yet been put into practical use. In addition, in the method of fixing the membrane with an O-ring, the membrane is more likely to wrinkle and it is difficult to maintain constant adhesion with the electrode, resulting in disadvantages such as unstable electrode activity.

従来の第2の形式のものは現在市販されている
もので、比較的太い(直径3mm程度)金陰極を用
い、これと陽極との両端面を覆う膜(メンブレ
ン)を両電極を組込んだ本体と本体外周のカバー
との間にはさみ込んで保持したものである。この
方式では陰極の有効面積が大きいので反応量が過
大となり、このため電解液の消耗がはげしく、1
回の使用時間が約2日程度ときわめて短い。ま
た、陰極面の周辺部と中心部とでは陽極との距離
や電解液の交換性が異る関係で反応性が異り、こ
のためPO2の変化に対して正確な応答を示さな
い。そしてこの構成ではメンブレンと電極との密
着性がルーズで、電極活性がメンブレンと皮膚と
の接触圧により変動する為測定値が不安定にな
る。
The second conventional type is currently commercially available, and uses a relatively thick gold cathode (approximately 3 mm in diameter) and incorporates a membrane that covers both end faces of this and the anode. It is held between the main body and a cover around the outer periphery of the main body. In this method, the effective area of the cathode is large, so the amount of reaction becomes excessive, and therefore the electrolyte is rapidly consumed.
The usage time for each use is extremely short, about 2 days. Furthermore, the reactivity differs between the peripheral part and the central part of the cathode surface due to the difference in the distance from the anode and the exchangeability of the electrolyte, and therefore does not show an accurate response to changes in PO 2 . In this configuration, the adhesion between the membrane and the electrode is loose, and the electrode activity fluctuates depending on the contact pressure between the membrane and the skin, making the measured value unstable.

さらに、上記いずれの形式のものも、吸湿蒸発
を避けるべく電解液はメンブレンで密封されてい
る。したがつて膜−電極面間スペースの体積の温
度変化がメンブレンの密着性に直接影響し、測定
値が不安定となる。
Furthermore, in any of the above types, the electrolyte is sealed with a membrane to prevent moisture absorption and evaporation. Therefore, temperature changes in the volume of the space between the membrane and electrode surfaces directly affect the adhesion of the membrane, making the measured values unstable.

本発明は経皮式血中酸素測定電極における上記
のような問題点を排除しようとするものである。
The present invention seeks to eliminate the above-mentioned problems with transcutaneous blood oxygen measuring electrodes.

本発明の目的は反応量を適度に大きくすること
によりS/N比を良好ならしめ、且つ、反応の均
一性を向上させ、正確な測定を保障するため皮膚
の加温を正確な温度でかつ広範囲に行いうる新規
な経皮式血中酸素測定電極を提供することであ
る。
The purpose of the present invention is to improve the S/N ratio by appropriately increasing the reaction amount, improve the uniformity of the reaction, and heat the skin at an accurate temperature to ensure accurate measurement. The object of the present invention is to provide a novel transcutaneous blood oxygen measuring electrode that can be used in a wide range of applications.

本発明の他の目的は装着が簡単で、電極への好
ましい密着性が得られる新規の膜装着構造を備え
た電極構造を提供することである。
Another object of the present invention is to provide an electrode structure with a novel membrane attachment structure that is easy to attach and provides good adhesion to the electrode.

本発明は次のような特徴的構成をもつものであ
る。
The present invention has the following characteristic configuration.

(1) 円環状の細いリング陰極端面を、絶縁体をは
さんでこれと同心円環状に配置した円環状の陽
極で包囲した構成をとつたことにより、陰極か
ら陽極までの距離の差がないので陰極面の全部
位で反応条件が陽極及び電解液に関して均一な
条件をもち、従つて陰極面の全部位が均一な反
応性を有する。またリング陰極端面が細い環状
であるため陰極の面積を過大にすることなく陰
極陽極間の領域による定まる陰極反応の有効面
積を広くとり皮膚の広い部分を被測定範囲とす
ることができる。このことによつて被測定範囲
内の皮膚の上にほくろや毛孔が存在してもそれ
によつて測定結果に致命的な誤差が生ずること
がない。またリング構造陰極を用いて陰極陽極
間の陰極反応有効面積を大きくしたことによつ
て数日以上の長期の継続測定を可能にすること
ができる。
(1) The cathode end surface of a thin circular ring is surrounded by a circular anode arranged concentrically with an insulator between the two rings, so there is no difference in the distance from the cathode to the anode. All parts of the cathode surface have uniform reaction conditions with respect to the anode and electrolyte, and therefore all parts of the cathode surface have uniform reactivity. Furthermore, since the ring cathode end surface is thin and annular, the effective area for the cathode reaction determined by the area between the cathode and anode can be widened, and a wide area of the skin can be measured without increasing the area of the cathode. As a result, even if a mole or pore exists on the skin within the measurement range, this will not cause a fatal error in the measurement result. Furthermore, by using a ring-structured cathode to increase the effective cathode reaction area between the cathode and anode, continuous measurement for a long period of several days or more can be made possible.

(2) 陰極面を陽極面よりもわずかに突出させ、こ
の陰極及び陽極の面上に電解液の薄層を介在さ
せて疎水性酸素透過膜を被膜し、さらにその上
に陰極の端面の上の部分を露出させる開口をも
つた金属層の熱良導性カバー板を設け、このカ
バー板に対して熱を良く伝導するようにヒータ
を配置する構成としたことにより、このカバー
板が当接する広範囲の部分の皮膚の内部組織を
均一に加熱し、それにより十分な動脈化を可能
にしたこと。
(2) The cathode surface is made to protrude slightly from the anode surface, and a hydrophobic oxygen permeable membrane is coated on the cathode and anode surfaces with a thin layer of electrolyte interposed therebetween, and then a hydrophobic oxygen permeable membrane is coated on the cathode and anode surfaces. A thermally conductive cover plate made of a metal layer is provided with an opening that exposes the part, and the heater is arranged to conduct heat well to the cover plate, so that the cover plate comes into contact with the cover plate. It uniformly heated the internal tissues of the skin over a wide area, thereby enabling sufficient arterialization.

(3) 電極面を覆う膜(メンブレン)を電極面に沿
つた電極ホルダーに粘着剤をもつて貼着するこ
とにより、Oリング止め、あるいははさみ込み
保持の機構に比して電極の作用面との密着性を
安定にし、電極感度を安定化した。また、膜ま
たは電解液の寿命が尽きたときも貼換え時の個
人的技術差による測定値の誤差が少くなるよう
にしたこと。
(3) By attaching the membrane that covers the electrode surface to the electrode holder along the electrode surface with adhesive, the working surface of the electrode This stabilized the adhesion and stabilized the electrode sensitivity. In addition, even when the membrane or electrolyte reaches the end of its lifespan, errors in measurement values due to individual technical differences when replacing the membrane or electrolyte are reduced.

(4) 陽極外周に電解液溜を形成し、これを細い気
抜ポートに連通させて、実質的に蒸発の少ない
電解液を収容することにより、十分な液量を貯
溜して長時間の持続使用を可能にするととも
に、電解液貯溜部を常時大気圧に平衡させて、
電極膜と電極作用面との間の密着性を変動させ
ないようにしたこと等である。
(4) By forming an electrolyte reservoir on the outer periphery of the anode and communicating it with a narrow air vent port to contain an electrolyte with substantially less evaporation, a sufficient amount of fluid can be stored to last for a long time. In addition to enabling use, the electrolyte reservoir is always equilibrated to atmospheric pressure.
For example, the adhesion between the electrode film and the electrode working surface is not changed.

第1図は本発明により構成された経皮式酸素測
定電極の一実施例を示すものである。図示の様に
プラスチツクからなる絶縁性電極ホルダー1中に
銀製の環状陽極2が埋設されている。この環状陽
極2は下端面2aのみ露出している。陽極2の上
端に必要に応じて係合凸部(フランジ)2bを設
けてもよい。陰極3は薄い金または白金製の管か
らなり、環状陽極2内に配置され、かつホルダー
1に固定されたガラス製の陰極支持棒4により、
陰極2と同心円になるよう固定されている。陰極
支持棒4の外側部の露出端4aは外周端を面取り
して円滑な形に形成されこれと面一に露出させた
陰極端面3aを、ほぼ面取りの曲率半径分だけ陽
極端面2aより突出させた位置に支持している。
また、陰極支持棒4の陰極内側部における露出端
面4a′は陰極端面3aと同一面にある。
FIG. 1 shows an embodiment of a transcutaneous oxygen measuring electrode constructed according to the present invention. As shown in the figure, a silver annular anode 2 is embedded in an insulating electrode holder 1 made of plastic. Only the lower end surface 2a of this annular anode 2 is exposed. An engaging protrusion (flange) 2b may be provided at the upper end of the anode 2, if necessary. The cathode 3 is made of a thin gold or platinum tube, and is placed inside the annular anode 2 and supported by a glass cathode support rod 4 fixed to the holder 1.
It is fixed so as to be concentric with the cathode 2. The outer exposed end 4a of the cathode support rod 4 is formed into a smooth shape by chamfering the outer peripheral end, and the cathode end face 3a exposed flush with this is made to protrude from the anode end face 2a by approximately the radius of curvature of the chamfer. It is supported in the correct position.
Further, the exposed end surface 4a' of the cathode inner side of the cathode support rod 4 is on the same plane as the cathode end surface 3a.

上記の係合凸部(フランジ)2bは、この測定
電極構体全体の温度が、カバー板7によつて加温
されている皮膚面よりあまり低くなることを防い
で測定精度を高める作用をする。即ち、ヒータ1
3からカラー6、外側カラー8、カバー板7を経
て、皮膚に熱が与えられる。他方陰極、陽極の反
対面から熱が空気中に放散され、この放熱量が大
きいと皮膚よりも陰極端面の温度が低くなり、陰
極温度が一定に保てないために測定精度が悪くな
る。この熱放散は、ヒータ13の熱の一部によつ
てフランジ2bが弱く温められていれば、相当程
度防止でき、その結果陰極端面の温度と皮膚表面
の温度との差を非常に小さいものにすることがで
き、電極の感度の安定化が得られ、測定の安定性
を高めうる。なお、フランジ2bを設ける代り
に、保温性の良い絶縁材料にて電極構体を作れば
同様の効果が得られる。
The engaging convex portion (flange) 2b serves to prevent the temperature of the entire measurement electrode assembly from becoming much lower than the skin surface heated by the cover plate 7, thereby increasing measurement accuracy. That is, heater 1
3, heat is applied to the skin via the collar 6, the outer collar 8, and the cover plate 7. On the other hand, heat is dissipated into the air from the opposite surfaces of the cathode and anode, and if the amount of heat dissipated is large, the temperature of the cathode end surface becomes lower than that of the skin, and the measurement accuracy deteriorates because the cathode temperature cannot be kept constant. This heat dissipation can be prevented to a considerable extent if the flange 2b is weakly warmed by a portion of the heat from the heater 13, and as a result, the difference between the temperature of the cathode end surface and the temperature of the skin surface is made very small. The sensitivity of the electrode can be stabilized, and the stability of measurement can be improved. Note that, instead of providing the flange 2b, the same effect can be obtained if the electrode structure is made of an insulating material with good heat retention properties.

陰極3及び陽極2の露出端面3a,2aにあて
がわれる酸素透過用の疎水性プラスチツク膜(以
下、単にメンブレンと呼ぶ)はポリ塩化ビニリデ
ンポリエステル、ポリフロロエチレン、ポリプロ
ピレンなどの薄膜5からなり、ホルダー1の電極
端面側における端面1aに適宜の粘着剤をもつて
固定されている。メンブレン5と電極端面等との
密着安定性を得るために、陽極端面2a、ホルダ
ー端面1aは互いに同一面内に位置している。さ
らに、メンブレン5の陽極端面2a及びその外側
に対応する領域は陽極2の端面の内径と同様の直
径の開口を有する金属製のカバー板7により、外
側から押圧・被覆され、それにより前記の電極端
面メンブレン間の密着性を常時一定に維持できる
ようにしている。カバー板7はカラー6にネジ止
めされる外側カラー8の端面に接続され、これら
の三部分6,7,8は金属でできているので熱伝
導性がよい。なお、カラー6に外側カラー8をね
じ止めする際には熱伝導グリス(サーマルグリ
ス)をネジにぬるのがよい。このように組立てる
とメンブレン5はカバー板7の開口から露出する
陰極端面3aに対応する部分のみが、被験体皮膚
面に直接触れることになる。
The hydrophobic plastic membrane for oxygen permeation (hereinafter simply referred to as membrane) applied to the exposed end surfaces 3a, 2a of the cathode 3 and anode 2 is made of a thin film 5 of polyvinylidene chloride polyester, polyfluoroethylene, polypropylene, etc. It is fixed to the end face 1a on the end face side of the electrode 1 with a suitable adhesive. In order to obtain stable adhesion between the membrane 5 and the electrode end surfaces, the anode end surface 2a and the holder end surface 1a are located in the same plane. Furthermore, the anode end surface 2a of the membrane 5 and the region corresponding to the outside thereof are pressed and covered from the outside by a metal cover plate 7 having an opening with the same diameter as the inner diameter of the end surface of the anode 2, so that the electrode The adhesion between the end membranes can be maintained constant at all times. The cover plate 7 is connected to the end face of the outer collar 8 which is screwed onto the collar 6, and these three parts 6, 7, 8 are made of metal and therefore have good thermal conductivity. Note that when screwing the outer collar 8 to the collar 6, it is preferable to apply thermal conductive grease (thermal grease) to the screw. When assembled in this manner, only the portion of the membrane 5 corresponding to the cathode end surface 3a exposed through the opening of the cover plate 7 comes into direct contact with the subject's skin surface.

カバー板7の外径は実験結果によると、直径15
mm乃至20mm程度のものが好ましい。外径が15mmよ
りも小さいと動脈化が不充分となり、また外径が
20mmあれば大体充分な動脈化が得られ、これ以上
直径が大きくなつても特に幼児においては皮膚と
の全面的密着性が困難となり、また直径を大きく
する効果が得られない。また、カバー板7の中心
部のメンブレン5を露出するべき開口の直径は約
3.0mm以下とすることが好ましいことが実験的に
認められた。即ち、直径約3.0mm以下の開口であ
れば、その開口面積内の皮膚をその周囲のカバー
板からの加温によつて、ほぼ充分に動脈化するこ
とが出来る。
According to the experimental results, the outer diameter of the cover plate 7 is 15 mm.
A thickness of approximately 20 mm to 20 mm is preferable. If the outer diameter is smaller than 15 mm, arterialization will be insufficient;
A diameter of 20 mm is generally sufficient for arterialization, and even if the diameter is made larger than this, it will be difficult to achieve complete adhesion to the skin, especially in infants, and the effect of increasing the diameter will not be obtained. Furthermore, the diameter of the opening that should expose the membrane 5 at the center of the cover plate 7 is approximately
It has been experimentally confirmed that it is preferable to set it to 3.0 mm or less. That is, if the opening has a diameter of about 3.0 mm or less, the skin within the opening area can be almost fully arterialized by heating from the surrounding cover plate.

電極ホルダー1の電極露出側(下端部)におい
て陽極端面2aに外接する端面は適当に切欠さ
れ、周回グループ状凹所からなる電解液溜9とな
つている。この電解液溜9はホルダー1の他端に
連通した気抜ポート10を有し、更にその他端の
開口部には適宜の通気性素子11の栓を設けう
る。図示していないが、陽極端面2aにグループ
9に達する多数の微細な放射状等の溝を形成し、
大気圧と平衡化したグループ中の電解液12を陽
極端面2aから陰極端面3aにかけて常時安定に
連通し易いようにしてもよい。
An end face circumscribing the anode end face 2a on the electrode exposed side (lower end) of the electrode holder 1 is suitably cut out to form an electrolyte reservoir 9 consisting of a circular group-shaped recess. This electrolyte reservoir 9 has an air vent port 10 communicating with the other end of the holder 1, and a plug of a suitable air permeable element 11 may be provided in the opening at the other end. Although not shown, a large number of fine radial grooves reaching group 9 are formed on the anode end surface 2a,
The electrolytic solution 12 in the group, which has been equilibrated with the atmospheric pressure, may be easily and stably communicated from the anode end surface 2a to the cathode end surface 3a at all times.

前述の様にカバー板7に対して熱を良好に伝え
うる様にヒータが配置される。またその熱伝導終
路の適所に感熱素子が挿入される。第1図の場
合、ヒータ13はカラー6に形成された周側凹部
14に配置され、また感熱素子15はカラー6に
穿設された孔16の内の容器15a中に装填され
る。ヒータ13の電流は感熱素子15わ用いた既
知の自動制御回路によつて設定した目標温度にき
わめて高い精度で保持するように制御される。
As described above, the heater is arranged so that heat can be transferred well to the cover plate 7. Further, a heat-sensitive element is inserted at a proper position in the heat conduction end path. In the case of FIG. 1, the heater 13 is placed in a circumferential recess 14 formed in the collar 6, and the heat-sensitive element 15 is loaded into a container 15a in a hole 16 formed in the collar 6. The current in the heater 13 is controlled by a known automatic control circuit using a heat sensitive element 15 to maintain a set target temperature with very high accuracy.

本発明の経皮式血中酸素測定電極は以上のとお
りに構成されたものである。以下に第1図につい
て説明した上記実施例の装置による測定結果を記
載する。
The transcutaneous blood oxygen measuring electrode of the present invention is constructed as described above. Measurement results using the apparatus of the above embodiment described with reference to FIG. 1 will be described below.

電極構造 陰極(金)−膜接触面:外径2.0mm、内径1.5
mm、面積1mm2(環状) 陽極(銀)−膜接触面:内径3mm、外径5mm、
面積12mm2 電 解 液−グリセリン+KCI+緩衝液 メンブレン−ポリ塩化ビニリデン(PVDC)膜 厚さ10〜15μm実験室応答曲線 この曲線は第2図に示す通りである。上に示し
た本発明の電極をキヤリブレーシヨンチヤンパー
にセツトし、N2,Air,O2を通じて電極の応答特
性及び直線性をしらべた。その結果、酸素分圧O
に対する残余電流はO2値に対して0.2%以下であ
つた。また、N2(PO2=0mmHg)、乾燥空気
(PO2=160mmHg)、酸素(PO2=760mmHg)を通
したときの各測定値をそれぞれのPO2値に対して
プロツトすると、測定値がPO2値に対して直線的
な関係になり、測定が正確に行われていることが
わかる。なお、80%応答時間は30秒、96%応答時
間は70秒であり、これらの結果は応答曲線がほぼ
一次反応曲線に従つた反応になつていることを示
している。
Electrode structure Cathode (gold)-membrane contact surface: outer diameter 2.0 mm, inner diameter 1.5
mm, area 1mm 2 (annular) Anode (silver)-membrane contact surface: inner diameter 3mm, outer diameter 5mm,
Area: 12 mm 2 Electrolytic solution - Glycerin + KCI + Buffer solution Membrane - Polyvinylidene chloride (PVDC) membrane Thickness: 10-15 μm Laboratory response curve This curve is as shown in Figure 2. The electrode of the present invention shown above was set in a calibration chamber, and the response characteristics and linearity of the electrode were examined through N 2 , Air, and O 2 . As a result, the oxygen partial pressure O
The residual current was less than 0.2% of the O 2 value. Also, if you plot the measured values when passing through N 2 (PO 2 = 0 mmHg), dry air (PO 2 = 160 mmHg), and oxygen (PO 2 = 760 mmHg) against each PO 2 value, the measured values will be There is a linear relationship with the PO 2 value, indicating that the measurement is accurate. Note that the 80% response time was 30 seconds and the 96% response time was 70 seconds, and these results indicate that the response curve approximately followed a linear response curve.

経皮実測値 被験者は26才の女性である。その手首内側の皮
膚面に両面粘着テープを用いて43.5±0.02℃に維
持された本発明の電極装置を装着し、空気呼吸と
酸素呼吸とを交互に行わせ、酸素分圧を経皮的に
測定した。尚メンブレンは前述の通りポリ塩化ビ
ニリデン(PVDC)膜を用いた。結果は第3図に
示すとおりである。これによると空気呼吸時の経
皮的酸素分圧は約90mmHgで、一般成人の動脈血
PO2の標準値より僅かに低い値を示している。酸
素吸入を弱く行なつたときはPO2は約530mmHgで
あり、強く行なつた場合は570mmHgに達し、実際
の動脈血のPO2とほぼ完全に一致している。また
酸素吸入を始めたり、止めたりした時の応答は十
分に速い。
Actual transdermal measurements The subject was a 26-year-old female. The electrode device of the present invention maintained at 43.5±0.02℃ was attached to the skin surface of the inside of the wrist using double-sided adhesive tape, and the oxygen partial pressure was adjusted transcutaneously by alternately breathing air and breathing oxygen. It was measured. The membrane used was polyvinylidene chloride (PVDC) as described above. The results are shown in Figure 3. According to this, the transcutaneous oxygen partial pressure when breathing air is approximately 90 mmHg, and the arterial blood pressure of the average adult is approximately 90 mmHg.
The value is slightly lower than the standard value of PO 2 . When oxygen is inhaled weakly, PO 2 is approximately 530 mmHg, and when oxygen is inhaled strongly, it reaches 570 mmHg, which almost perfectly matches the PO 2 of actual arterial blood. The response when starting or stopping oxygen inhalation is also fast enough.

従来の経皮測定電極では加熱ヒータを陰極自体
の周囲に巻きつける構成をとり、皮膚面の加熱を
面積の小さな電極の端面から電極膜と電解層を経
て行つていた。このため小さな電極表面の温度を
火傷しない程度の安全な温度に保つての加熱では
皮膚に与える熱量が不十分であり、従つて電極に
対向する真皮の動脈化が十分に行なわれなかつ
た。このため従来構造の経皮測定電極によつて血
中酸素を経皮的に測定すると動脈血の酸素分圧の
測定値への反映が不十分になりがちであつた。し
たがつて従来の装置の応用は、動脈化が容易で測
定値中に動脈血の酸素分圧が反映できる幼児に対
するものが多かつた。これに対して本発明の電極
装置においては、ヒータ、カラー、カバー板、皮
膚の経路による熱伝導経路の熱伝導が良好になる
よう構成し、大きな面積をもつて電極端面をとり
巻く形状に構成したカバー板の接する被測定部周
囲の、広範囲の皮膚を火傷の危険のない安全な温
度で加温するようにしたものである。真皮内およ
び皮下組織では横方向(皮膚面と平行な方向)の
血流が極めて多く、この血液によつて横方向の熱
伝導が強く行なわれる。このため、同一温度の加
熱手段により加熱する場合は、被測定部をとりま
く広い面積の部分の加熱を行なうようにすると、
被測定部に充分の熱量を(火傷の危険のない温度
によつて)与えて充分な動脈化をさせることが出
来るのである。またこの様に被測定部をとり囲む
広い面積の加熱により動脈化を行なえば、その面
積の中央部の小面積の部分である被測定部分にカ
バー板の開口部に対応する非加熱部分があつて
も、その部分の真皮も温められた横方向の血流に
よつて十分の動脈化を受けることができる。本発
明の装置は上記の様に被測定部の周囲の広い面積
を安全な加熱温度をもつて加熱する構成であるか
ら、上記の横方向血流の作用により成人に対して
も十分に動脈化を行うことができ、上記の実測結
果から明らかなように実用的かつ正確な測定をな
しうるものである。
Conventional transdermal measurement electrodes have a configuration in which a heater is wrapped around the cathode itself, and the skin surface is heated from the end surface of the electrode, which has a small area, through the electrode membrane and electrolyte layer. For this reason, heating the surface of a small electrode at a safe temperature that does not cause burns does not provide enough heat to the skin, and therefore arterialization of the dermis facing the electrode is not sufficiently performed. For this reason, when blood oxygen is measured transcutaneously using a conventional transcutaneous measuring electrode, the oxygen partial pressure of arterial blood tends to be insufficiently reflected in the measured value. Therefore, conventional devices have been mostly applied to infants whose arterialization is easy and the oxygen partial pressure of arterial blood can be reflected in the measured values. On the other hand, the electrode device of the present invention is configured so that the heat conduction path through the heater, collar, cover plate, and skin has good heat conduction, and is configured in a shape that has a large area and surrounds the electrode end surface. A wide range of skin around the part to be measured that is in contact with the cover plate is heated at a safe temperature without the risk of burns. In the dermis and subcutaneous tissues, there is an extremely large amount of blood flow in the lateral direction (in a direction parallel to the skin surface), and this blood causes strong lateral heat conduction. For this reason, when heating with heating means of the same temperature, it is recommended to heat a wide area surrounding the part to be measured.
A sufficient amount of heat (at a temperature that does not pose a risk of burns) can be applied to the area to be measured to induce sufficient arterialization. In addition, if arterialization is performed by heating a wide area surrounding the measurement target in this way, an unheated part corresponding to the opening of the cover plate will be created in the measurement target, which is a small area in the center of the area. However, the dermis in that area can also undergo sufficient arterialization due to the heated lateral blood flow. As described above, the device of the present invention is configured to heat a wide area around the measurement target to a safe heating temperature, so the action of the lateral blood flow can sufficiently induce arterialization even in adults. As is clear from the above measurement results, practical and accurate measurements can be made.

以上の測定データ及び使用結果を総合的に判断
し、これを現在市販されているものと比較した場
合、本発明の電極装置は陰極の反応量が適度で、
均一性及びS/N比が良好であつて、測定の感度
精度の飛躍的向上をもたらし、また十分な安全性
を確保できたものである。そして、安定な加温及
び被験皮膚面への十分な熱伝導性の達成によつ
て、従来困難であつた成人の経皮式血中酸素測定
においても、上記の利点がそのまま発揮されたこ
とも明らかである。
Comprehensively judging the above measurement data and usage results and comparing them with those currently on the market, the electrode device of the present invention has an appropriate amount of cathode reaction;
It has good uniformity and S/N ratio, dramatically improves the sensitivity and accuracy of measurement, and also ensures sufficient safety. Furthermore, by achieving stable heating and sufficient thermal conductivity to the test skin surface, the above advantages can be demonstrated even in transcutaneous blood oxygen measurement in adults, which has been difficult in the past. it is obvious.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の測定電極の一例を示す断面
図、第2図は本発明の測定電極の実験室応答曲線
を、第3図は経皮実測曲線をそれぞれ示すグラフ
である。 1……電極ホルダー、2……陽極、3……陰
極、4……陰極支持棒、5……電極膜、6……カ
ラー、7……カバー板、8……外側カラー、9…
…電解液、10……気抜ポート、12……電解
液、13……ヒータ、15……感熱素子。
FIG. 1 is a sectional view showing an example of the measuring electrode of the present invention, FIG. 2 is a graph showing a laboratory response curve of the measuring electrode of the present invention, and FIG. 3 is a graph showing a percutaneous actual measurement curve. DESCRIPTION OF SYMBOLS 1... Electrode holder, 2... Anode, 3... Cathode, 4... Cathode support rod, 5... Electrode membrane, 6... Collar, 7... Cover plate, 8... Outer collar, 9...
...Electrolyte, 10...Air vent port, 12...Electrolyte, 13...Heater, 15...Heat-sensitive element.

Claims (1)

【特許請求の範囲】 1 絶縁物により互に1体に保持された陰極及び
陽極の各端面上に電解液の薄層を介在させて疎水
性酸素透過膜を当接し、前記疎水性酸素透過膜の
実質的に前記陰極の端面に相当する部分の外表面
を被験体皮膚面にあてがつて使用するようにし、
前記疎水性酸素透過膜の外側を覆つて実質的に前
記陰極の端面に対応する部分を限定的に皮膚に対
して露出するための開口をもつ金属性のカバー板
を設け、前記絶縁物で1体に保持された各電極と
前記カバー板とを互に固定保持する絶縁物製ホル
ダーの外周部に、前記カバー板に対して熱良導的
に設けられた感熱素子とこれにより前記カバー板
を所定温度に加熱すべく制御されるヒータとを有
する定温加熱手段を設けたことを特徴とする経皮
式血中酸素測定電極。 2 特許請求の範囲第1項において、前記陽極端
面を円環状に形成し、その内側に陰極の端面が露
出される状態において埋設・支持する電気絶縁性
の陰極支持体を設け、この陰極支持体によつて陰
極及び陽極を隔離すると共に同支持体先端面およ
び陰極端面に当接する部分の前記透過膜の外表面
を前記カバー板の開口から露出させ、またその露
出させた部分の周囲の部分をカバー板により押圧
被覆し、開口から露出した透過膜の部分とカバー
板の外表面とを略同一面上に設けたことを特徴と
する経皮式血中酸素測定電極。 3 特許請求の範囲第2項において、前記陰極の
端面が円環状であり、この陰極を内輪として前記
陽極と陰極とが同心の円環形状に絶縁物により保
持されていることを特徴とする経皮式血中酸素測
定電極。 4 特許請求の範囲第1項乃至第3項において、
前記絶縁性ホルダーの外周部に前記ヒータの熱を
良く伝導されるように金属性のカラーを設け、さ
らにこのカラー部に加熱手段を付設し、さらに前
記カラー部と熱良導的で、かつ取りはずし自在に
前記カバー板を連結・係着したことを特徴とする
経皮式血中酸素測定電極。 5 特許請求の範囲第1項乃至第4項において、
前記絶縁性ホルダーの端面において、前記陽極端
面と略同一面内に形成された膜支持面上に前記疎
水性酸素透過膜を粘着剤をもつて剥離可能に固定
したことを特徴とする経皮式血中酸素測定電極。 6 特許請求の範囲第1項乃至第5項において、
前記絶縁性ホルダーにおいて前記陽極端面の外側
で同端面と略同一面内に設けた膜支持面を形成
し、同支持面に前記陽極端面の外周を廻る環状段
落部を形成して電解液溜としたことを特徴とする
経皮式血中酸素測定電極。 7 特許請求の範囲第1項乃至第6項において、
前記陽極端面に複数の放射状溝を形成し、前記電
解液溜と陰極端面部とを連通する電解液チヤネル
としたことを特徴とする経皮式血中酸素測定電
極。 8 特許請求の範囲第6項において前記電解液溜
と前記ホルダーの一部に設けた開口との間を連通
する気抜ポートを設けたことを特徴とする経皮式
血中酸素測定電極。
[Scope of Claims] 1. A hydrophobic oxygen permeable membrane is brought into contact with each end face of a cathode and an anode held together by an insulating material with a thin layer of electrolyte interposed therebetween, and the hydrophobic oxygen permeable membrane The outer surface of the portion substantially corresponding to the end surface of the cathode is used by applying it to the subject's skin surface,
A metallic cover plate is provided to cover the outside of the hydrophobic oxygen permeable membrane and has an opening for exposing a portion substantially corresponding to the end surface of the cathode to the skin in a limited manner, and A heat-sensitive element is provided on the outer periphery of an insulating holder that fixes and holds each electrode held on the body and the cover plate to each other, and is provided with a thermally conductive element with good heat conductivity to the cover plate. 1. A transcutaneous blood oxygen measuring electrode, comprising a constant temperature heating means having a heater controlled to heat to a predetermined temperature. 2. In claim 1, the anode end face is formed into an annular shape, and an electrically insulating cathode support is provided inside the anode end face to be embedded and supported in a state where the end face of the cathode is exposed, and this cathode support The cathode and anode are isolated by the support, and the outer surface of the permeable membrane in the portion that contacts the front end surface and the cathode end surface is exposed through the opening of the cover plate, and the surrounding portion of the exposed portion is exposed. 1. A transcutaneous blood oxygen measuring electrode characterized in that the permeable membrane is press-covered with a cover plate, and the part of the permeable membrane exposed through the opening and the outer surface of the cover plate are provided on substantially the same plane. 3. According to claim 2, the end face of the cathode is annular, and the anode and cathode are held by an insulator in a concentric annular shape with this cathode as an inner ring. Skin-type blood oxygen measurement electrode. 4 In claims 1 to 3,
A metallic collar is provided on the outer periphery of the insulating holder so as to conduct heat from the heater well, and a heating means is attached to the collar, and the collar has good thermal conductivity with the collar and is detachable. A transcutaneous blood oxygen measuring electrode characterized in that the cover plate is freely connected and attached. 5 In claims 1 to 4,
A transdermal type characterized in that the hydrophobic oxygen permeable membrane is removably fixed with an adhesive on a membrane support surface formed in substantially the same plane as the anode end surface on the end surface of the insulating holder. Blood oxygen measurement electrode. 6 In claims 1 to 5,
In the insulating holder, a membrane support surface is formed on the outside of the anode end surface and substantially in the same plane as the same end surface, and an annular stepped portion is formed around the outer periphery of the anode end surface on the support surface to form an electrolyte reservoir. A transcutaneous blood oxygen measuring electrode characterized by: 7 In claims 1 to 6,
A transcutaneous blood oxygen measuring electrode, characterized in that a plurality of radial grooves are formed on the anode end surface to form an electrolyte channel that communicates the electrolyte reservoir with the cathode end surface. 8. The transcutaneous blood oxygen measuring electrode according to claim 6, further comprising an air vent port communicating between the electrolyte reservoir and an opening provided in a part of the holder.
JP15811976A 1976-12-29 1976-12-29 Percutaneous oxygen measuring electrode Granted JPS53137590A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP15811976A JPS53137590A (en) 1976-12-29 1976-12-29 Percutaneous oxygen measuring electrode
GB5298877A GB1587879A (en) 1976-12-29 1977-12-20 Oxygen measuring electrode assembly
GB9008/79A GB1587880A (en) 1976-12-29 1977-12-20 Oxygen measuring electrode assembly
US05/863,561 US4185620A (en) 1976-12-29 1977-12-22 Oxygen measuring electrode assembly
IT5237777A IT1090849B (en) 1976-12-29 1977-12-27 Transcutaneous blood oxygen content measuring instrument - has concentric measuring electrodes, inner electrode embedded in glass with diaphragm underneath
SE7714832A SE434437B (en) 1976-12-29 1977-12-28 DEVICE FOR TRANSCUTE SEATING OF THE ARTERIAL ACID PARTIAL PRESSURE
FR7739450A FR2376412A1 (en) 1976-12-29 1977-12-28 ELECTRODE DEVICE FOR MEASURING THE OXYGEN LEVEL OF A LIQUID
DE2758413A DE2758413C3 (en) 1976-12-29 1977-12-28 Device for the transcutaneous measurement of the arterial oxygen partial pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15811976A JPS53137590A (en) 1976-12-29 1976-12-29 Percutaneous oxygen measuring electrode

Publications (2)

Publication Number Publication Date
JPS53137590A JPS53137590A (en) 1978-12-01
JPS6111095B2 true JPS6111095B2 (en) 1986-04-01

Family

ID=15664705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15811976A Granted JPS53137590A (en) 1976-12-29 1976-12-29 Percutaneous oxygen measuring electrode

Country Status (2)

Country Link
JP (1) JPS53137590A (en)
GB (1) GB1587879A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424798U (en) * 1987-08-04 1989-02-10
WO2014002388A1 (en) * 2012-06-29 2014-01-03 セイコーエプソン株式会社 Substance detection device and wristwatch type body fat burning measurement device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303076A (en) * 1979-12-31 1981-12-01 Air Shields, Inc. Probe for transcutaneous sampling
GB2124387B (en) * 1982-07-08 1986-08-06 Polystan Oxygen sensor
GB2140563B (en) * 1983-04-27 1987-03-04 Critikon Inc Method and apparatus for zero calibration of oxygen-sensing polarographic devices
EP0205399B1 (en) * 1985-06-10 1993-10-06 ORBISPHERE CORPORATION Wilmington Succursale de Collonge-Bellerive Amperometric cell and method
FR2895226B1 (en) * 2005-12-26 2008-03-28 Lvmh Rech ELECTROCHEMICAL DEVICE AND METHOD FOR MEASURING THE REDOX CONDITION OF THE SKIN

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424798U (en) * 1987-08-04 1989-02-10
WO2014002388A1 (en) * 2012-06-29 2014-01-03 セイコーエプソン株式会社 Substance detection device and wristwatch type body fat burning measurement device
JP2014010046A (en) * 2012-06-29 2014-01-20 Seiko Epson Corp Substance detection device and wrist watch type body fat burning measurement device

Also Published As

Publication number Publication date
JPS53137590A (en) 1978-12-01
GB1587879A (en) 1981-04-08

Similar Documents

Publication Publication Date Title
US4185620A (en) Oxygen measuring electrode assembly
US4311151A (en) Oxygen measuring electrode assembly
US4265250A (en) Electrode
US4197853A (en) PO2 /PCO2 sensor
USRE31440E (en) Electrochemical electrode with heating means
CA1043125A (en) Measurement of partial pressure of gases diffusing through skin
US3769961A (en) Conjunctival device
US5425868A (en) Sensor for non-invasive, in vivo determination of an analyte and blood flow
USRE30317E (en) Method and apparatus for determining the perfusion efficiency factor of animal tissue
US4303076A (en) Probe for transcutaneous sampling
JPS6111095B2 (en)
JPH0435174B2 (en)
US4333473A (en) Apparatus for the cutaneous determination of the oxygen partial pressure in blood
US4396017A (en) Transcutaneous gas sensor
JPS6157768B2 (en)
JPS5931325B2 (en) Electrode device for transcutaneous oxygen measurement
JPS6157767B2 (en)
JPS5931327B2 (en) Carbon dioxide transcutaneous measurement electrode device
JPS5931218Y2 (en) Sensor for transcutaneous blood oxygen concentration measurement
JPS5931217Y2 (en) Calibration device for transcutaneous blood oxygen partial pressure measurement sensor
JPS6143450Y2 (en)
JPH0230256B2 (en)
JPS6142566Y2 (en)
GB2025057A (en) Percutaneous Blood-oxygen- concentration Measuring Sensor
JPS643499B2 (en)