JPS6143450Y2 - - Google Patents

Info

Publication number
JPS6143450Y2
JPS6143450Y2 JP16541079U JP16541079U JPS6143450Y2 JP S6143450 Y2 JPS6143450 Y2 JP S6143450Y2 JP 16541079 U JP16541079 U JP 16541079U JP 16541079 U JP16541079 U JP 16541079U JP S6143450 Y2 JPS6143450 Y2 JP S6143450Y2
Authority
JP
Japan
Prior art keywords
sensor
calibration
covering
partial pressure
oxygen partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16541079U
Other languages
Japanese (ja)
Other versions
JPS5681708U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16541079U priority Critical patent/JPS6143450Y2/ja
Publication of JPS5681708U publication Critical patent/JPS5681708U/ja
Application granted granted Critical
Publication of JPS6143450Y2 publication Critical patent/JPS6143450Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【考案の詳細な説明】 本考案は動脈血中の酸素濃度を経皮的に連続測
定するセンサーの測定値を較正する較正器具に関
するものである。
[Detailed Description of the Invention] The present invention relates to a calibration device for calibrating the measured value of a sensor that continuously measures oxygen concentration in arterial blood transcutaneously.

血液、特に動脈血中の酸素濃度(又は分圧)を
知ることは、新生児並びに人工呼吸を必要とする
重傷患者の呼吸管理を行なう上で極めて重要であ
る。動脈血中の酸素濃度を測定する方法として動
脈中の血液を抜き取つて直接測定する方法とは異
なり血液から皮下組織を通じて拡散して来る酸素
を皮膚の表面で捕促し、患者に苦痛を与えること
なくかつ経時的に連続測定可能とした経皮血中酸
素濃度測定法は既に知られている。
Knowing the oxygen concentration (or partial pressure) in blood, especially in arterial blood, is extremely important for respiratory management of newborns and severely injured patients requiring artificial respiration. Unlike the method of measuring oxygen concentration in arterial blood, which involves drawing blood from the artery and directly measuring it, this method captures oxygen that diffuses from the blood through the subcutaneous tissue on the surface of the skin, causing no pain to the patient. A transcutaneous blood oxygen concentration measurement method that allows continuous measurement over time is already known.

本考案はかかる経皮血中酸素濃度測定用センサ
ーの測定値を較正する較正器具に関するものであ
る。第1図は本較正法を適用する代表的な経皮血
中酸素分圧測定用センサーの構造を示したもの
で、金、白金等の貴金属よりなる陰極と、絶縁材
2を介して同心円状に配置した銀等の陽極3から
なる電極の一方の端面に電解液6を保持するよう
に固定支持した電極膜4との組み合せよりなる電
極部とヒーター線8、温度検出素子9を内蔵した
皮膚加熱部10とから構成されている。
The present invention relates to a calibration device for calibrating the measured value of such a sensor for transcutaneous blood oxygen concentration measurement. Figure 1 shows the structure of a typical transcutaneous blood oxygen partial pressure sensor to which this calibration method is applied. An electrode part consisting of an anode 3 made of silver or the like placed on the skin and an electrode membrane 4 fixedly supported so as to hold an electrolyte 6 on one end face of the electrode, a heater wire 8, and a temperature detection element 9 are built into the skin. It is composed of a heating section 10.

第2図及び第3図は従来使用されている較正法
の原理を示したもので、第2図は較正容器、第3
図は検量線を示したものである。
Figures 2 and 3 show the principle of the conventionally used calibration method.
The figure shows a calibration curve.

第2図の11はアクリル樹脂、ガラス等の透明
材質よりなる容器、12は容器内に入れた水を一
定温度に加熱するためのヒーター、13は温度検
出素子(例えばサーミスター)、14は圧送する
気体を微小な泡状体とするための多孔質材(例え
ばガラスフイルター)、15は蒸留水、16はセ
ンサーを固着するための押えバネ、17は空気圧
送ポンプからの配管、18はN2ガスボンベから
の配管、19はガス切り替用の三方括栓、20は
較正するセンサーを示す。以下従来行なつている
較正法を順を追つて説明する。較正容器中の水温
をセンサーの測定温度、例えば44℃に設定し、空
気ポンプより微量の空気を圧送する。圧送された
空気は較正容器中の多孔質板14を通る時に微細
な気泡となつて44℃に加熱された水中15を通過
し、この時空気は水温とほぼ同温度になると共
に、その温度における飽和水蒸気を含んだいわゆ
る湿潤空気となつてセンサー20の電極膜面と接
触し、引き続いて較正容器の外部に放出される。
従つてセンサーの電極膜面は (Po−PH2p)×0.21 Po:大気圧 PH2p:測定温度における飽和水蒸気圧 0.21:空気中の酸素のモル分率 で示される一定の酸素分圧に絶えず接触するこ
とになり、この時のセンサーの電解電流値をPair
と決めれば、2点較正における上限の較正が出来
たことになる。次に三方括栓19を切り変えN2
ボンベーよりN2ガスを圧送すれば、較正容器内
の空気はN2ガスによつて置換され電極膜面は酸
素分圧0の状態となる。従つてこの時の電解電流
値を酸素分圧0と決めることにより2点較正法の
下限の較正が出来たことになる。
In Fig. 2, 11 is a container made of transparent material such as acrylic resin or glass, 12 is a heater for heating the water in the container to a constant temperature, 13 is a temperature detection element (for example, a thermistor), and 14 is a pressure feeder. 15 is distilled water, 16 is a presser spring for fixing the sensor, 17 is piping from the air pump, 18 is N 2 Piping from the gas cylinder, 19 a three-way stopper for gas switching, and 20 a sensor to be calibrated. The conventional calibration method will be explained step by step below. The water temperature in the calibration container is set to the temperature measured by the sensor, for example 44°C, and a small amount of air is pumped in using an air pump. When the pressure-fed air passes through the porous plate 14 in the calibration container, it becomes fine bubbles and passes through the water 15 heated to 44°C. At this time, the air becomes approximately the same temperature as the water, and The so-called humid air containing saturated water vapor comes into contact with the electrode membrane surface of the sensor 20, and is subsequently discharged to the outside of the calibration container.
Therefore, the electrode membrane surface of the sensor is constantly in contact with a constant oxygen partial pressure expressed as (Po - P H2p ) × 0.21 Po: atmospheric pressure P H2p : saturated water vapor pressure at the measurement temperature 0.21: molar fraction of oxygen in the air Pair the electrolytic current value of the sensor at this time.
If this is determined, the upper limit of the two-point calibration has been successfully calibrated. Next, switch the three-way stopper 19 and tighten N 2
When N 2 gas is pumped from a bomb, the air in the calibration container is replaced by the N 2 gas, and the electrode membrane surface becomes in a state where the oxygen partial pressure is 0. Therefore, by setting the electrolytic current value at this time to be zero oxygen partial pressure, the lower limit of the two-point calibration method can be calibrated.

第3図は前記の方法で求めた検量線図であり、
この検量線図を用いることにより、気体或いは液
体中の酸素濃度を定量することが出来る。
FIG. 3 is a calibration curve obtained by the method described above,
By using this calibration curve, the oxygen concentration in gas or liquid can be determined.

前記従来法は、較正値の精度という面では極め
て正確で、この点では優れた較正方法であるが、
臨床現場にN2ボンベー、空気ポンプ等持ち込む
必要があり、その上N2ガス圧及び空気圧等の調
整その他較正容器の温調、較正容器の置き場所を
捜す等種々の繁雑さがある。これらの事柄は通常
の実験室内では問題とならないが、一般的に臨床
現場は狭く、種々の機器が置かれているため前記
の繁雑さが大きな欠点となり、臨床現場では極め
て深刻な問題として重要視される。
The conventional method is extremely accurate in terms of the accuracy of calibration values, and is an excellent calibration method in this respect;
It is necessary to bring N 2 cylinders, air pumps, etc. to the clinical site, and there are various complications such as adjusting the N 2 gas pressure and air pressure, controlling the temperature of the calibration container, and finding a place to store the calibration container. These matters are not a problem in a normal laboratory, but in general, clinical sites are small and have a variety of equipment, so the complexity described above becomes a major drawback, and in clinical settings, it is considered an extremely serious problem. be done.

本考案は前記の欠点を改良し、臨床現場に於て
簡便にしかも正確に較正出来る。経皮血中酸素分
圧測定用センサーの較正器具を提供するものであ
る。
The present invention improves the above-mentioned drawbacks and allows easy and accurate calibration in clinical settings. The present invention provides a calibration device for a sensor for transcutaneous blood oxygen partial pressure measurement.

第4図は本考案により較正器具及び較正法を示
したもので、21はゴム、プラスチツク、発泡体
等の熱絶縁材よりなる較正器具の本体部、22は
スポンジ、紙、不織布等からなる水分を保持す
るための吸水材、23は較正器具にセンサーを装
着したまま架台上或いは測定器の表面に固着させ
るための磁石を示す。第4図のaは較正器具にセ
ンサー24に取り付け、較正を行なつているとこ
ろ及びb,b′は較正器具の平面図並びに断面図を
示したものである。
Fig. 4 shows a calibration device and a calibration method according to the present invention, where 21 is a main body of the calibration device made of a heat insulating material such as rubber, plastic, or foam, and 22 is a moisture absorbent material made of sponge, paper, nonwoven fabric, etc. 23 indicates a magnet for fixing the sensor on the mount or on the surface of the measuring instrument while the sensor is attached to the calibration instrument. In FIG. 4, a shows the sensor 24 attached to the calibration tool and calibration is being performed, and b and b' show a plan view and a sectional view of the calibration tool.

第5図は、本較正法による0点の較正法を示し
たもので、24は膜面を上にしたセンサー、26
は亜硫酸ナトリウム、亜硝酸ナトリウム、ピロガ
ロールハイドロサルフアイド等の還元剤を含む水
溶液を滴下するためのスポイド、27はセンサー
の膜面に滴下した前記還元剤を含む水溶液を示し
たものである。
Figure 5 shows the zero point calibration method according to this calibration method, where 24 is the sensor with the membrane surface facing up, 26
27 is a dropper for dropping an aqueous solution containing a reducing agent such as sodium sulfite, sodium nitrite, or pyrogallol hydrosulfide, and 27 is an aqueous solution containing the reducing agent dropped onto the membrane surface of the sensor.

次に本考案による較正器具により前記経皮血中
酸素濃度測定用センサーを較正する方法を説明す
る。即ち第4図に示した較正器具の吸水剤上に微
量の蒸留水を滴下し、次に第4図aのごとくセン
サーを装着する。これによつて較正器具内の空隙
25はセンサーの加熱装置からの熱で一定温度と
なり、しかもこの温度における飽和水蒸気を含ん
だ空気従つて一定の酸素分圧を有する空気が充満
した状態となる。従つて電極面は前記既知の酸素
分圧に接触することになり、センサーの上限値が
正しく較正出来ることになる。
Next, a method of calibrating the transcutaneous blood oxygen concentration sensor using the calibration device according to the present invention will be described. That is, a small amount of distilled water is dropped onto the water-absorbing agent of the calibration device shown in FIG. 4, and then the sensor is attached as shown in FIG. 4a. As a result, the cavity 25 in the calibration device is brought to a constant temperature by the heat from the sensor's heating device, and is filled with air containing saturated water vapor at this temperature and thus having a constant oxygen partial pressure. Therefore, the electrode surface will be in contact with the known oxygen partial pressure, and the upper limit value of the sensor can be correctly calibrated.

0点の較正は第5図に示したごとく還元剤を含
む水溶液を電極膜面に滴下することにより、膜面
は酸素濃度0の状態が形成されるためセンサーの
0点の較正が可能となる。
As shown in Figure 5, zero point calibration is performed by dropping an aqueous solution containing a reducing agent onto the electrode membrane surface, which creates a state of zero oxygen concentration on the membrane surface, making it possible to calibrate the sensor zero point. .

このように、小さな空間を利用して較正を行な
うので、本較正器具はセンサより一回り大きけれ
ばよく非常に小型化される。例えば本実施例では
センサの直径16mmに対し、較正器具の直径は22mm
である。
In this way, since the calibration is carried out using a small space, the present calibration instrument only needs to be one size larger than the sensor and can be made very compact. For example, in this example, the diameter of the sensor is 16 mm, and the diameter of the calibration tool is 22 mm.
It is.

しかし小型であるが故に、このままではセンサ
を装着したとき、センサに引きずられて移動した
り、落下するなどの欠点がある。これを大きな保
持物に埋めこむのでは小型化した意味がない。第
4図に示した磁石23は、測定器本体或は測定現
場の手近にある鉄系架台、他の測定器の表面など
に本較正器具を固定するためのものである。
However, because it is small, it has drawbacks such as being dragged by the sensor and falling when the sensor is attached. There is no point in miniaturizing it if it is embedded in a large holding object. The magnet 23 shown in FIG. 4 is used to fix the calibration instrument to the main body of the measuring instrument, a steel mount near the measurement site, or the surface of another measuring instrument.

こうすることによつて、使用状態で較正器具を
取扱いに便利な場所に固定できるようになり、狭
い臨床現場での操作性が向上する。
This allows the calibration instrument to be fixed in a convenient location when in use, improving maneuverability in confined clinical settings.

前記のごとく本較正法によると従来N2ガスボ
ンベ、空気ポンプ等を臨床現場へ持ち込む必要が
あつたが、これらの繁雑さが一際不要となり、極
めて簡便かつ迅速に経皮血中酸素分圧測定用セン
サーの較正が出来る。
As mentioned above, according to this calibration method, it was previously necessary to bring N2 gas cylinders, air pumps, etc. to the clinical site, but these complications are no longer necessary, and transcutaneous blood oxygen partial pressure can be measured extremely easily and quickly. It is possible to calibrate the sensor for use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は経皮血中酸素分圧測定用センサーの説
明図で、 1……陰極、2……絶縁材、3……陽極、4…
…電極膜、5……膜ホルダー、6……電解液、7
……電極ホルダー、8……ヒーター線、9……感
熱素子、10……皮膚加熱体、を示す。 第2図は従来使用されている較正器で、 11……溶器、12……ヒーター、13……温
度検出素子、14……多孔質体、15……蒸留
水、16……押えバネ、17……空気ポンプの配
管、18……N2ガスボンベからの配管、19…
…三方括栓、20……センサー、等を示す。 第3図は検量線図。第4図は本考案によりなる
較正器具で、 21……較正器具本体部、22……吸水剤、2
3……磁石、24……センサー、25……空隙
部、等を示す。 第5図は0点の簡易較正法を示したもので、2
4はセンサー、26はスポイド、27は還元剤を
含む水溶液等を示す。
Fig. 1 is an explanatory diagram of a sensor for measuring transcutaneous blood oxygen partial pressure, and includes 1...cathode, 2...insulating material, 3...anode, 4...
... Electrode membrane, 5 ... Membrane holder, 6 ... Electrolyte, 7
... Electrode holder, 8 ... Heater wire, 9 ... Heat sensitive element, 10 ... Skin heating body. Figure 2 shows a conventionally used calibrator, 11...melter, 12...heater, 13...temperature detection element, 14...porous body, 15...distilled water, 16...presser spring, 17...Air pump piping, 18...Piping from N2 gas cylinder, 19...
...Three-way stopper, 20...Sensor, etc. are shown. Figure 3 is a calibration curve diagram. Fig. 4 shows a calibration instrument according to the present invention, 21...calibration instrument main body, 22...water absorbing agent, 2
3...Magnet, 24...Sensor, 25...Gap, etc. are shown. Figure 5 shows a simple calibration method for 0 points.
4 is a sensor, 26 is a dropper, and 27 is an aqueous solution containing a reducing agent.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ゴム、プラスチツク、発泡体等の熱絶縁性材料
による被覆物でセンサーの上端側を除く外周部を
覆い、該被覆物の内面の電極膜側に空隙を設け、
該空隙の中にスポンジ、紙、不織布等の吸水性
材料を介在させ、該センサー被覆物の外周底面部
に磁石を埋め込むことを特徴とした経皮血中酸素
分圧測定用センサーの較正器具。
Covering the outer periphery of the sensor except for the upper end side with a covering made of a thermally insulating material such as rubber, plastic, or foam, and providing a gap on the inner surface of the covering on the side of the electrode film,
A calibration device for a sensor for transcutaneous blood oxygen partial pressure measurement, characterized in that a water-absorbing material such as sponge, paper, or non-woven fabric is interposed in the gap, and a magnet is embedded in the bottom of the outer periphery of the sensor covering.
JP16541079U 1979-11-28 1979-11-28 Expired JPS6143450Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16541079U JPS6143450Y2 (en) 1979-11-28 1979-11-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16541079U JPS6143450Y2 (en) 1979-11-28 1979-11-28

Publications (2)

Publication Number Publication Date
JPS5681708U JPS5681708U (en) 1981-07-02
JPS6143450Y2 true JPS6143450Y2 (en) 1986-12-09

Family

ID=29676326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16541079U Expired JPS6143450Y2 (en) 1979-11-28 1979-11-28

Country Status (1)

Country Link
JP (1) JPS6143450Y2 (en)

Also Published As

Publication number Publication date
JPS5681708U (en) 1981-07-02

Similar Documents

Publication Publication Date Title
CA1043125A (en) Measurement of partial pressure of gases diffusing through skin
US4185620A (en) Oxygen measuring electrode assembly
CN110477861B (en) Sweat sensing in a chronological assurance manner
US7474908B2 (en) Method for measuring the transcutaneous CO2 partial pressure on an ear lobe
US20100204605A1 (en) Physiological parameter sensors
US11207009B2 (en) Intermittent measuring of the partial pressure of an analyte in the skin tissue
JPS59190653A (en) Electrode device for electrochemically analyzing electrolytic component in liquid
US3498289A (en) Method for in vivo potentiometric measurements
US4460451A (en) Steam-sterilizable carbon dioxide sensor
JPS6143450Y2 (en)
JPS5931217Y2 (en) Calibration device for transcutaneous blood oxygen partial pressure measurement sensor
US4512349A (en) Method of direct tissue gas tension measurement and apparatus therefor
GB1587879A (en) Oxygen measuring electrode assembly
JPH06119B2 (en) Transdermal sensor for detecting organic matter and electrolytes in sweat
Rithalia et al. Measurement of transcutaneous PCO2 in critically ill patients
JPS61115538A (en) Subcataneous sensor
Eberhard et al. Oxygen monitoring of newborns by skin electrodes. Correlation between arterial and cutaneously determined PO 2
Hofer et al. Tissue oxygenation measurement: a directly applied Clark-type electrode in muscle tissue
JPS5931325B2 (en) Electrode device for transcutaneous oxygen measurement
JPS6131123A (en) Sticky disc for subcateneous blood gas concentration measuring sensor
Kimmich et al. Disposable solid state oxygen sensor
Espadas-Torre et al. Electrochemical sensors for the continuous monitoring of blood gases and electrolytes
JPS5931327B2 (en) Carbon dioxide transcutaneous measurement electrode device
JPS6142568Y2 (en)
Vogel et al. Continuous recording of PO2 in respiratory air by a rapid platinum electrode