JPS5931329B2 - Transcutaneous blood carbon dioxide sensor - Google Patents

Transcutaneous blood carbon dioxide sensor

Info

Publication number
JPS5931329B2
JPS5931329B2 JP55057595A JP5759580A JPS5931329B2 JP S5931329 B2 JPS5931329 B2 JP S5931329B2 JP 55057595 A JP55057595 A JP 55057595A JP 5759580 A JP5759580 A JP 5759580A JP S5931329 B2 JPS5931329 B2 JP S5931329B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
electrode
glass
sensor
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55057595A
Other languages
Japanese (ja)
Other versions
JPS56152630A (en
Inventor
保 深井
晋一 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP55057595A priority Critical patent/JPS5931329B2/en
Priority to DK189081A priority patent/DK159838C/en
Priority to DE8181301887T priority patent/DE3172480D1/en
Priority to AU69967/81A priority patent/AU546505B2/en
Priority to EP19810301887 priority patent/EP0039243B1/en
Priority to CA000376480A priority patent/CA1153794A/en
Publication of JPS56152630A publication Critical patent/JPS56152630A/en
Publication of JPS5931329B2 publication Critical patent/JPS5931329B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【発明の詳細な説明】 本発明は組織内又は血液中の炭酸ガスの濃度(又は分圧
)を経皮的に測定する電極装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode device for percutaneously measuring the concentration (or partial pressure) of carbon dioxide in tissue or blood.

血液中の炭酸ガス濃度を知ることは、生体の呼吸及び代
謝機能の良否並びに血液中のpH濃度の近似値を知るた
めの臨床検査において極めて重要である。従来、血液中
の炭酸ガスの濃度(又は分圧)を測定する方法としては
、血液特に動脈中の血液を抜き取つて直接測定する方法
が主として用いられているが、この方法では経時的連続
測定が不可能であることと患者に苦痛を与えることが問
題であつた。特に、未熟児・新生児の場合には採血によ
る侵襲が大きいため実施に著しい困難を伴なつた。経皮
的電極方式は、上記の直接方法とは異なり血液から組織
を通じて拡散された炭酸ガスを皮膚面で捕捉し、患者に
苦痛を与えることなく、経時的に連続測定が出来るもの
である。
Knowing the carbon dioxide concentration in the blood is extremely important in clinical tests for determining the quality of the respiratory and metabolic functions of a living body and the approximate value of the pH concentration in the blood. Conventionally, the main method used to measure the concentration (or partial pressure) of carbon dioxide in blood is to draw blood, especially blood from the arteries, and directly measure it, but this method requires continuous measurement over time. The problem was that it was impossible and caused pain to the patient. Particularly in the case of premature infants and newborns, blood sampling is highly invasive, making implementation extremely difficult. Unlike the above-mentioned direct method, the transcutaneous electrode method captures carbon dioxide gas diffused from blood through tissues on the skin surface, and can continuously measure it over time without causing pain to the patient.

本発明は経皮血中炭酸ガスセンサーの改良にかかわるも
ので、特にpH変化を検出するためのガラス電極の構造
と、皮膚の加熱機構に関するものである。
The present invention relates to the improvement of a transcutaneous blood carbon dioxide sensor, and in particular relates to the structure of a glass electrode for detecting pH changes and the skin heating mechanism.

第1図は経皮血中炭酸ガスセンサーの基本的構造を示し
たもので、H+イオン透過性(pH応答性)のガラス薄
膜1を底部に溶着したガラス容器2の内部に、KCt又
はNaCt等の水溶液を主体とした内部電解液3及び表
面をAgcAヒした銀線4等を封入してなるガラス電極
5、並びに銀/塩化銀等の外部比較電極6が内蔵された
上蓋部7、電極膜8をあらかじめ貼り付けた膜ホルダー
9、発熱体10及び感熱体11の埋め込まれた加熱部1
2の3つの独立した部分より構成され、膜ホルダー部が
上蓋部と加熱部との間に容易に装着出来る構造となつて
いる。
Figure 1 shows the basic structure of a transcutaneous blood carbon dioxide sensor. KCt or NaCt, etc. An upper lid part 7 in which an internal electrolyte 3 mainly composed of an aqueous solution, a glass electrode 5 containing a silver wire 4 whose surface is abrasive with AgcA, and an external reference electrode 6 such as silver/silver chloride are built in, and an electrode film. A heating part 1 in which a membrane holder 9, a heating element 10, and a heat sensitive element 11 are embedded, to which a membrane holder 8 is attached in advance;
It is constructed of three independent parts (2), and has a structure in which the membrane holder part can be easily installed between the upper lid part and the heating part.

ノ なお電極膜とガラス薄膜との間には、NaHCO3
、NaCι又はKCt等の混合水溶液よりなる電解液1
3、及び必要により紙、ナイロン布等のスペーサー等が
介在される。
Note: NaHCO3 is used between the electrode film and the glass thin film.
, an electrolytic solution 1 consisting of a mixed aqueous solution of NaCι or KCt, etc.
3, and if necessary, a spacer such as paper or nylon cloth is interposed.

しかしながら前記の基本構造によるセンサーは、′−p
H応答性のガラス容器の内に、前記内部電解液を封入し
た構造となつでいるためl)センサーが横転した場合、
pH応答性のガラス薄膜面の内部電解液が移動して液切
れを起こすためセンサーとしての働きが失なわれる。
However, the sensor with the above basic structure is
Since the internal electrolyte is sealed in an H-responsive glass container, l) If the sensor is overturned,
The internal electrolyte on the surface of the pH-responsive glass thin film moves and runs out, causing the sensor to lose its function.

1i)寒冷地で使用する場合、内部電解液が凍結してガ
ラスが破れる等のトラブルを生ずる。
1i) When used in a cold region, the internal electrolyte may freeze, causing problems such as glass breakage.

111)経皮測定時にセンサーを加熱すると内部電解液
の一部がガラス容器内で蒸発して露結する時、センサー
の応答が異常となる。
111) When the sensor is heated during transdermal measurement, a portion of the internal electrolyte evaporates and condenses in the glass container, resulting in abnormal sensor response.

1)内部電解液がリークして絶縁不良を来たし易い〜 V)ガラス薄膜部が破損し易い。1) Internal electrolyte leaks easily, causing insulation failure. V) The glass thin film part is easily damaged.

Dガラス電極はその起電力に対する温度効果が大きく、
±0.2℃以内に・随温化する必要があるのにガラス電
極部の温度を一定に昇温保持することが困難で、このた
め測定値の安定性が悪い。
The D glass electrode has a large temperature effect on its electromotive force;
Although it is necessary to increase the temperature within ±0.2° C., it is difficult to keep the temperature of the glass electrode portion constant, and therefore the stability of the measured values is poor.

等の問題がある。本発明は前記内部電解液封入型のガラ
ス電極を用いた場合に生ずる前記諸問題を一掃し、安定
かつ堅牢で作業性の良い経皮血中炭酸ガスセンサーを提
供するものである。
There are other problems. The present invention eliminates the various problems that occur when using the glass electrode filled with an internal electrolyte, and provides a transdermal blood carbon dioxide sensor that is stable, robust, and has good workability.

第2図は本発明によりなるセンサーの構造を示したもの
で、ガラス電極の構造並びに加熱機構が全く異なる。
FIG. 2 shows the structure of a sensor according to the present invention, and the structure of the glass electrode and heating mechanism are completely different.

図中16はH±イオン応答性のガラス薄膜、17はガラ
ス、セラミツク、プラスチツク、ゴム等の高絶縁性材料
よりなる円環状体で、端部に前記ガラス薄膜16を熔着
法及び接着法等により固着させることにより、ガラス薄
膜付き容器が構成されている。18はガラス薄膜16の
全面、及び円環状体17の一部又は全面に形成されたA
g,Pt,Ag等の金属又はAgCt等の塩類よりなる
導電膜で、真空蒸着法、及びイオンブレーテイング法等
により形成される。
In the figure, 16 is a glass thin film responsive to H± ions, and 17 is a toric body made of a highly insulating material such as glass, ceramic, plastic, rubber, etc. The glass thin film 16 is attached to the end by welding, bonding, etc. A container with a glass thin film is constructed by fixing the glass thin film. 18 is A formed on the entire surface of the glass thin film 16 and a part or the entire surface of the toric body 17.
The conductive film is made of a metal such as silver, Pt, or Ag, or a salt such as AgCt, and is formed by a vacuum evaporation method, an ion blating method, or the like.

又融点が使用するガラスの融点よりも低い塩類において
は、熱熔融法によつてガラス面に膜を形成させることが
出来る。19は本発明のうち特に重要な構成要素である
加熱体を示したもので、銀、銅、アルミ等の熱伝導性の
良好な金属よりなり、加熱ヒーター20及ひ温度検出素
子21が内蔵され一定温度に制御出来るように構成され
ている。
In addition, in the case of salts having a melting point lower than that of the glass used, a film can be formed on the glass surface by a hot melting method. Reference numeral 19 shows a heating element which is a particularly important component of the present invention, and is made of a metal with good thermal conductivity such as silver, copper, or aluminum, and has a built-in heater 20 and a temperature detection element 21. It is configured to be able to control the temperature to a constant temperature.

本説明図は前記加熱体がガラス薄膜の内面に形成された
導電膜18と密着するように必要により導電性接着剤を
使用して組み立て、導電膜の表面の電位を、加熱体を経
由して、一端に接続したリード線22により読み取るこ
とが出来る加熱機構付ガラス電極を示したものである。
勿論ガラス薄膜の内面に設けた導電膜18に直接リード
線を接続し、表面を絶縁化した加熱体を使用することも
出来る。23は銀/塩化銀等よりなる円環状の外部比較
電極で本発明による加熱機構付ガラス電極の外周部に設
けられる。
In this explanatory drawing, the heating body is assembled using a conductive adhesive if necessary so that it comes into close contact with the conductive film 18 formed on the inner surface of the glass thin film, and the potential on the surface of the conductive film is adjusted via the heating body. , which shows a glass electrode with a heating mechanism that can be read by a lead wire 22 connected to one end.
Of course, it is also possible to use a heating element whose surface is insulated by connecting lead wires directly to the conductive film 18 provided on the inner surface of the glass thin film. Reference numeral 23 denotes an annular external comparison electrode made of silver/silver chloride or the like, which is provided on the outer periphery of the glass electrode with a heating mechanism according to the present invention.

前記加熱機構付ガラス電極並びに外部電極は、プラスチ
ツク及びゴム等の絶縁材よりなる電極ホルダー24に固
着される。
The glass electrode with heating mechanism and the external electrode are fixed to an electrode holder 24 made of an insulating material such as plastic or rubber.

26は炭酸ガス透過性でかつ疎水性の高分子フイルム、
例えばテフロン、シリコーンゴム、等よりなる電極膜2
5を端部に貼り付けた膜ホルダーで、電極膜と共にデイ
スポザブル部品である。
26 is a carbon dioxide permeable and hydrophobic polymer film;
Electrode film 2 made of, for example, Teflon, silicone rubber, etc.
5 is attached to the end, and it is a disposable part along with the electrode membrane.

電極の端面と電極膜との間に、KCt,NaHCO3等
を含む水溶液を炭酸ガス応答性(CO2の濃度によりP
Hが変化する)電解液として使用することは従来法と同
じである。27は膜ホルダーを電極面に固定し、かつセ
ンサーを皮膚面に固着させるための固定支持板で、ネジ
機構により電極ホルダーと接合される。
An aqueous solution containing KCt, NaHCO3, etc. is placed between the end surface of the electrode and the electrode film to increase carbon dioxide response (depending on the concentration of CO2).
It is the same as the conventional method to use it as an electrolyte (H changes). 27 is a fixed support plate for fixing the membrane holder to the electrode surface and the sensor to the skin surface, and is connected to the electrode holder by a screw mechanism.

第2図は本発明による経皮的血中炭酸ガスセンサーの構
造を示す断面図を示す。次に本発明の特徴と効果につい
て説明する。
FIG. 2 shows a cross-sectional view showing the structure of the transcutaneous blood carbon dioxide sensor according to the present invention. Next, the features and effects of the present invention will be explained.

本発明によると内部電解液を使用せずにH+イオン濃度
変化(PH変化)の測定が出来るためイ.横転してもセ
ンサーの機能を損うことがない。口.寒冷地で内部電解
液が凍結し、ガラス電極が破損するというトラブルがな
い。ハ.センサーを加熱した場合、内部電解液の一部が
蒸発して、ガラス電極の空間部に露結することによつて
生ずる電位の異常挙動がない。
According to the present invention, changes in H+ ion concentration (PH changes) can be measured without using an internal electrolyte. Even if the vehicle rolls over, the sensor function will not be impaired. mouth. There is no problem of the internal electrolyte freezing and damaging the glass electrode in cold regions. C. When the sensor is heated, a portion of the internal electrolyte evaporates and there is no abnormal behavior in potential caused by condensation in the space of the glass electrode.

二.内部電解液がガラス電極より洩れ出すことによるト
ラブルの発生する恐れがない。
two. There is no risk of trouble occurring due to internal electrolyte leaking from the glass electrode.

ホ.ガラス薄膜の内面に、導電膜を介して加熱体が密着
されるように構成されるためガラス薄膜部が補強され、
外圧及び衝撃に対してはるかに強靭となる。
Ho. Since the heating element is in close contact with the inner surface of the glass thin film through the conductive film, the glass thin film part is reinforced.
Much more resistant to external pressure and impact.

以上のごとくガラス電極に起因する欠点を排除すること
が出来るというだけにとどまらず、本発明によるとガラ
ス薄膜の内面に導電層を介して加熱体を密着させること
が出来るため従来品と比べて以下に示すごとき効果が得
られる。即ち、 (1)PH応答性のガラス薄膜が直接熱伝導性の良い金
属よりなる加熱体と接触しているため、電極部が極めて
短時間で測定温度に昇温し、以降正確に測定温度が維持
される。
As described above, the present invention not only eliminates the drawbacks caused by glass electrodes, but also allows the heating element to be brought into close contact with the inner surface of the glass thin film via the conductive layer, resulting in less problems compared to conventional products. The following effects can be obtained. That is, (1) Since the PH-responsive glass thin film is in direct contact with the heating element made of a metal with good thermal conductivity, the temperature of the electrode part rises to the measurement temperature in an extremely short time, and the measurement temperature can be accurately measured from then on. maintained.

そのため、従来品に見られた電極部の温度変化に基ずく
発生電位のドリフトがない。(2)従来品はガラス電極
の周辺に円環状の加熱機構を取り付ける構造となつてい
るため、ガラス電極の径を大きくすると測定部位の皮膚
温が上らないためにガラス電極の径を大きくすることに
より、感度の良いセンサーを作ることが出来なかつたが
、本発明によると、ガラス電極そのものが皮膚を加熱す
ることになるため、ガラス電極の径を要求特性に合せて
任意の大きさにすることが出来る。
Therefore, there is no drift in the generated potential due to temperature changes in the electrode section, which was seen in conventional products. (2) Conventional products have a structure in which an annular heating mechanism is attached around the glass electrode, so if the diameter of the glass electrode is increased, the skin temperature at the measurement site will not rise, so the diameter of the glass electrode must be increased. However, according to the present invention, since the glass electrode itself heats the skin, the diameter of the glass electrode can be adjusted to any size according to the required characteristics. I can do it.

(3)従来品はガラス電極の外周に設けた円環状の皮膚
加熱体を使用したため皮膚の加熱面積が必然的に大きく
なり、万一加熱部に火傷を起こした場合、傷跡が大きく
なることが問題であつたが、本発明によると、加熱され
る皮膚の面積はほマガラス電極の断面積と同じくなるた
め従来品に比べて火傷を起こした時の傷跡がはるかに狭
小となり臨床的に安心して使用することが出来る。
(3) Since the conventional product uses an annular skin heating element placed around the outer periphery of the glass electrode, the heating area of the skin is inevitably large, and if a burn occurs on the heated part, the scar may become large. However, according to the present invention, the area of the skin heated is the same as the cross-sectional area of the glass electrode, so the scar caused by a burn is much smaller than with conventional products, making it clinically safe. It can be used.

(4)ガラス電極はその起電力の温度効果が大きく、ガ
ラス電極温度を±0.2℃以内に”阪温化する必要があ
り、本発明の加熱方式により、これが実現される。上記
に説明したごとく本発明によると、従来使用されている
経皮血中炭酸ガスセンサーの持つ欠点が一掃され性能的
或いは取り扱い上極めて優れた経皮的血中炭酸ガスセン
サーを提供することが可能となる。
(4) Glass electrodes have a large temperature effect on their electromotive force, and it is necessary to warm the glass electrode temperature to within ±0.2°C. This is achieved by the heating method of the present invention. As explained above. According to the present invention, the drawbacks of conventionally used transcutaneous blood carbon dioxide sensors can be eliminated and it is possible to provide a transcutaneous blood carbon dioxide sensor that is extremely superior in terms of performance and handling.

以下実施例について説明する。Examples will be described below.

ガラス薄膜の組成として重量でNa2O25O!)、C
aOlO%、SiO265%のガラスを用い、直径8詣
、厚さ0.15龍のガラス薄膜を鉛ガラスの円筒の端部
にガラス半田により、前記ガラス薄膜を溶着し、前記ガ
ラス容器の内面に白金を真空蒸着した。
The composition of the glass thin film is Na2O25O by weight! ), C
Using glass with aOlO% and 65% SiO2, a glass thin film with a diameter of 8 mm and a thickness of 0.15 mm is welded to the end of a lead glass cylinder using glass solder, and platinum is applied to the inner surface of the glass container. was vacuum deposited.

前記白金を内面に蒸着したガラス容器の内側に内接する
加熱体を銅で製作し、この加熱体に加熱用のヒーター、
温度検出用のサーミスター及び電位測定用のリード線を
取り付けた後、前記加熱体をガラス容器の内壁に導電性
接着剤により接着したものをガラス電極として使用した
。前記ガラス電極の外周部には、0.1NHC沖で電解
法により表面を塩化銀化した銀環を外部比較電極として
エポキシ樹脂を用いて接着固定した。
A heating element inscribed inside the glass container on which platinum is vapor-deposited is made of copper, and a heater for heating is attached to this heating element.
After attaching a thermistor for temperature detection and a lead wire for potential measurement, the heating body was adhered to the inner wall of a glass container with a conductive adhesive and used as a glass electrode. A silver ring whose surface was silver chloride-treated by electrolytic method at 0.1 NHC was adhered and fixed to the outer periphery of the glass electrode as an external reference electrode using an epoxy resin.

外部電解液としては、0.02m0tNaCt+0.0
05m0tNaHC02を用いた。電極膜としては20
μ厚のテフロンフイルムを用いた。上記の製作条件によ
り製作した本発明によりなるセンサーは第1表に示した
ごとく優れた特性と操作性を有していることが確認され
た。
As external electrolyte, 0.02m0tNaCt+0.0
05m0tNaHC02 was used. 20 as an electrode film
A μ-thick Teflon film was used. It was confirmed that the sensor according to the present invention manufactured under the above manufacturing conditions had excellent characteristics and operability as shown in Table 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来使用されている経皮血中炭酸ガス濃度測
定用センサーの構造説明図、第2図は本発明による経皮
血中炭酸ガス濃度測定用センサーの説明図で図中の記号
は下記の部材を示す。 1・・・・・・H+イオン応答性ガラス薄膜、2・・・
・・・ガラス容器、3・・・・・・内部電解液、4・・
・・・・表面をAgCt化した銀線、5・・・・・・ガ
ラス電極、6・・・・・・外部電極、7・・・・・・上
蓋部、8・・・・・・電極膜、9・・・・・・膜ホルダ
ー、10・・・・・・発熱体、11・・・・・・感熱体
、12・・・・・・加熱部、13・・・・・・電解液、
14・・・・・・電位測定用コード、15・・・・・・
加熱体からのコード、16・・・・・・H+イオン応答
性ガラス薄膜、17・・・・・・高絶縁性円環状体、1
8・・・・・・導電層、19・・・・・・加熱体、20
・・・・・・加熱ヒーター、21・・・・・・温度検出
素子、22・・・・・・リード線、23・・・・・・外
部電極、24・・・・・・電極ホルダー 25・・・・
・・電極膜、26・・・・・・膜ホルダー 27・・・
・・・固定支持板。
Fig. 1 is an explanatory diagram of the structure of a conventionally used sensor for measuring transcutaneous blood carbon dioxide concentration, and Fig. 2 is an explanatory diagram of a sensor for transcutaneous blood carbon dioxide concentration measurement according to the present invention. indicates the following members. 1...H+ ion responsive glass thin film, 2...
...Glass container, 3...Internal electrolyte, 4...
...Silver wire with AgCt surface, 5...Glass electrode, 6...External electrode, 7...Top cover, 8...Electrode Membrane, 9... Membrane holder, 10... Heating element, 11... Heat sensitive element, 12... Heating section, 13... Electrolysis liquid,
14...Potential measurement cord, 15...
Cord from heating body, 16... H+ ion responsive glass thin film, 17... Highly insulating toric body, 1
8... Conductive layer, 19... Heating body, 20
... Heater, 21 ... Temperature detection element, 22 ... Lead wire, 23 ... External electrode, 24 ... Electrode holder 25・・・・・・
...Electrode membrane, 26...Membrane holder 27...
...Fixed support plate.

Claims (1)

【特許請求の範囲】[Claims] 1 炭酸ガス透過性の高分子膜を患者の皮膚上に設置し
、当該高分子膜の皮膚と対向する側に電解質溶液を保持
し、皮膚より炭酸ガスが高分子膜を通して、電解質溶液
中に拡散平衡し血中炭酸ガス分圧の変化に応じて電解質
溶液のpHが変化し、このpH変化をガラス電極及び外
部比較電極の電位差として、検出する経皮血中炭酸ガス
センサーにおいて、Hイオン応答性のガラス薄膜の内面
に銀、金、白金、銅、アルミ等の金属及びAgCl、A
gl等の金属塩などの導電性膜を形成し、これを内部電
極としたガラス電極の内側に加熱ヒーター及び温度検出
素子を内蔵した加熱体を有することを特徴とした経皮的
血中炭酸ガスセンサー。
1. A carbon dioxide permeable polymer membrane is placed on the patient's skin, and an electrolyte solution is held on the side of the polymer membrane facing the skin, allowing carbon dioxide gas to diffuse from the skin into the electrolyte solution through the polymer membrane. In a transcutaneous blood carbon dioxide sensor, the pH of the electrolyte solution changes according to changes in blood carbon dioxide partial pressure, and this pH change is detected as a potential difference between a glass electrode and an external reference electrode. Metals such as silver, gold, platinum, copper, aluminum, AgCl, A
Transcutaneous blood carbon dioxide, characterized by having a heating element with a built-in heating heater and a temperature detection element inside a glass electrode formed with a conductive film made of a metal salt such as GL and used as an internal electrode. sensor.
JP55057595A 1980-04-29 1980-04-29 Transcutaneous blood carbon dioxide sensor Expired JPS5931329B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP55057595A JPS5931329B2 (en) 1980-04-29 1980-04-29 Transcutaneous blood carbon dioxide sensor
DK189081A DK159838C (en) 1980-04-29 1981-04-28 TRANSCUTAN CARBON DIOXIDE MEASUREMENT UNIT
DE8181301887T DE3172480D1 (en) 1980-04-29 1981-04-29 Transcutaneous carbon dioxide measuring assembly
AU69967/81A AU546505B2 (en) 1980-04-29 1981-04-29 Transcutaneous co2 measuring sensor
EP19810301887 EP0039243B1 (en) 1980-04-29 1981-04-29 Transcutaneous carbon dioxide measuring assembly
CA000376480A CA1153794A (en) 1980-04-29 1981-04-29 Transcutaneous carbon dioxide measuring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55057595A JPS5931329B2 (en) 1980-04-29 1980-04-29 Transcutaneous blood carbon dioxide sensor

Publications (2)

Publication Number Publication Date
JPS56152630A JPS56152630A (en) 1981-11-26
JPS5931329B2 true JPS5931329B2 (en) 1984-08-01

Family

ID=13060193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55057595A Expired JPS5931329B2 (en) 1980-04-29 1980-04-29 Transcutaneous blood carbon dioxide sensor

Country Status (1)

Country Link
JP (1) JPS5931329B2 (en)

Also Published As

Publication number Publication date
JPS56152630A (en) 1981-11-26

Similar Documents

Publication Publication Date Title
JPS60881Y2 (en) Blood condition detection device
US4197853A (en) PO2 /PCO2 sensor
CA1043125A (en) Measurement of partial pressure of gases diffusing through skin
US4185620A (en) Oxygen measuring electrode assembly
USRE30317E (en) Method and apparatus for determining the perfusion efficiency factor of animal tissue
Webster et al. Laboratory diagnosis of cystic fibrosis
JPH0253055B2 (en)
WO2012042879A1 (en) Moisture meter
JP6778058B2 (en) Sensor assembly, test substance monitoring system and test substance monitoring method
GB2100864A (en) Investigating substances in bloodstream and detecting blood flow
US3929605A (en) Apparatus for quickly evaluating gases dissolved in blood
Beran et al. Electrochemical sensor for continuous transcutaneous PCO2 measurement
JPS5931329B2 (en) Transcutaneous blood carbon dioxide sensor
US4407291A (en) Transcutaneous blood oxygen measuring device
Oesch et al. Solvent polymeric membrane pH catheter electrode for intraluminal measurements in the upper gastrointestinal tract
JPS6157772B2 (en)
JPS5962039A (en) Electrochemical sensor for subcataneous measurement of carb-on dioxide partitial pressure in living body
GB1587879A (en) Oxygen measuring electrode assembly
EP0039243B1 (en) Transcutaneous carbon dioxide measuring assembly
JP2017537707A (en) Hydration status indicator
Kudo et al. A flexible transcutaneous oxygen sensor using polymer membranes
JPS6157770B2 (en)
JPS5931217Y2 (en) Calibration device for transcutaneous blood oxygen partial pressure measurement sensor
JPS5931325B2 (en) Electrode device for transcutaneous oxygen measurement
JPS6157771B2 (en)