JPS61575A - Continuous vapor deposition method of aluminum - Google Patents

Continuous vapor deposition method of aluminum

Info

Publication number
JPS61575A
JPS61575A JP7340285A JP7340285A JPS61575A JP S61575 A JPS61575 A JP S61575A JP 7340285 A JP7340285 A JP 7340285A JP 7340285 A JP7340285 A JP 7340285A JP S61575 A JPS61575 A JP S61575A
Authority
JP
Japan
Prior art keywords
cavity
vapor deposition
boat
port
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7340285A
Other languages
Japanese (ja)
Inventor
Akio Mikogami
御子神 昭夫
Hiroshi Oizumi
宏 大泉
Hiroaki Tanji
丹治 宏彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP7340285A priority Critical patent/JPS61575A/en
Publication of JPS61575A publication Critical patent/JPS61575A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To deposit continuously Al by a vacuum deposition method with high thermal efficiency by using a conductive ceramic boat of which the surface in the bottom of the inside cavity is roughened as a boat for evaporation of the Al in the stage of said continuous vapor deposition. CONSTITUTION:The boat consisting of the conductive ceramics consisting essentially of conductive TiB2 and contg. BN and AlN having an insulating characteristic is used as the boat 1 for evaporation of the Al for vapor deposition to be used in the stage of depositing the Al by a vacuum deposition method of the surface of the long-sized substrate. The base surface 3 of the cavity 2 of said boat 1 in which the Al is to be incorporated is roughened. The Al is put into the cavity 2 of the boat 1 and electricity is conducted to the boat 1 to generate heat thereby melting and evaporating the Al therein. The roughened base surface of the boat 1 contributes to an improvement in the wet spreading of the molten Al and heat transmission. The continuous vapor deposition of the Al with high thermal efficiency is thus made possible.

Description

【発明の詳細な説明】 [産業上の利用分野J 本発明はアルミニウム(AIりの連続真空蒸着法、特に
特定の導電性セラミックス製蒸着用抵抗加熱器(以下ポ
ートという)に通電し、ポートのキャビテーにAI!を
供給しながら蒸発させ、基材に蒸着させるAI!の連続
蒸着法に関する。
Detailed Description of the Invention [Industrial Application Field J] The present invention relates to a continuous vacuum evaporation method of aluminum (AI), in particular, to a resistance heater (hereinafter referred to as a port) for evaporation made of a specific conductive ceramic, and to This invention relates to a continuous vapor deposition method of AI!, in which AI! is evaporated while being supplied to a cavity, and then deposited on a substrate.

[従来の技術と問題点] 従来から基材に金属を真空蒸着する方法はいろいろ提案
されているが、いずれもパッチ式の方法である。
[Prior Art and Problems] Various methods have been proposed for vacuum-depositing metal onto a base material, but all of them are patch-type methods.

例えばMO5電界効果型トランジスタにAI!を真空蒸
着させる際に、ポートに絶縁性、耐食性、およびA1と
の濡れ性にすぐれたホロンナイトライド(BN)と導電
性と耐食性にすぐれたチタンポライド(TiB2)との
混合焼結体を用いる方法がある。
For example, AI in MO5 field effect transistor! A method of using a mixed sintered body of holon nitride (BN), which has excellent insulation, corrosion resistance, and wettability with A1, and titanium polide (TiB2), which has excellent conductivity and corrosion resistance, in the port when vacuum evaporating. There is.

さらに説明すると、これはポートのキャビテー内に必要
量のAj)を入れて通電し、AIを溶融して、プールを
形成しAI!を蒸発させ蒸着させる方法である。しかし
、このようなポートでは多量にAPを充填して溶融し蒸
発させてもAI!との濡れが悪いため、ARの蒸発末期
には島状にAIが残存するようになり蒸着速度が低下し
、膜が均一でなくなるので、シャッタを閉じて膜厚が不
均一となるのを防止することができるが、電源の調整を
したりする必要がある他、長尺の基材に対してはAPを
蒸着することはできない。(特開昭51−74574号
公報)また、タンタル(Ta)やタングステン(W)な
どの高融8点金属製のポートのキャビテー底面に凹凸面
を具備したものを用いて銀を蒸発させ基材に蒸着させる
方法がある。
To explain further, this involves putting the required amount of Aj) into the cavity of the port, energizing it, melting AI, forming a pool, and AI! This method involves evaporating and depositing. However, in such a port, even if a large amount of AP is filled and melted and evaporated, AI! Due to poor wetting with AR, islands of AI remain at the end of AR evaporation, slowing down the evaporation rate, and making the film uneven. Close the shutter to prevent uneven film thickness. However, it is necessary to adjust the power supply, and AP cannot be deposited on a long base material. (Japanese Unexamined Patent Publication No. 51-74574) In addition, silver is evaporated using a port made of high-melting 8-point metal such as tantalum (Ta) or tungsten (W) with an uneven surface on the bottom surface of the cavity. There is a method of vapor deposition.

しかしこれはポート材料としてTaやWを用レ−)てい
るので、耐食性が悪く、AI!の蒸着用には使用するこ
とはできない。またAgを基材にバッチ蒸着させる方法
であるため前記方法と同様に蒸着末期に島状にAgが残
存するので、キャビテー内底面に凹凸面を設けて、その
残存量を減少させるものであって連続蒸着法ではない。
However, since this uses Ta or W as the port material, its corrosion resistance is poor and AI! It cannot be used for vapor deposition. Furthermore, since this is a method in which Ag is batch-deposited onto a base material, as with the above method, Ag remains in the form of islands at the end of the deposition, so an uneven surface is provided on the bottom of the cavity to reduce the amount of remaining Ag. It is not a continuous deposition method.

(実開昭50−40850号公報) 上記の様に、従来のバッチ式の蒸着法では例えばAIl
蒸着材を連続的に導電性セラミックス製ポートに供給し
、Ailを長尺の基材に均一な蒸着膜を形成させること
は困難であった。
(Utility Model Application Publication No. 50-40850) As mentioned above, in the conventional batch vapor deposition method, for example, Al
It has been difficult to continuously supply a vapor deposition material to a conductive ceramic port and form a uniform vapor deposition film of Ail on a long base material.

本発明者等は、長尺基材にAllを蒸着する際に重要な
ことはARを蒸発するセラミックス製ポートの材料の組
成及びその形状と、その操作手段とにあ−ると考えてい
るいろ研究を行った。
The present inventors believe that the important things when depositing All on a long substrate are the composition and shape of the material of the ceramic port that evaporates AR, and the means of operation. conducted research.

一般にセラミックス製ポートは高融点金属からなるポー
トに比較して、溶融した蒸着材がやや濡れ難いため、ポ
ートと蒸着材の接触が不充分となり、ポートの発熱が充
分に蒸着材に達せず多くは輻射熱として放散し熱効率が
悪かった。
In general, ports made of ceramics are slightly less wetted by molten vapor deposition material than ports made of high-melting point metals, so contact between the port and the vapor deposition material is insufficient, and the heat generated by the port does not reach the vapor deposition material sufficiently. The heat was dissipated as radiant heat, resulting in poor thermal efficiency.

更に、蒸着材のキャビテーへの濡れ拡がりが悪く、溶融
した蒸着材でキャビテー底面の全面を濡らすことが困難
で、キャビテー底面全面を蒸発部として有効に利用でき
ないために単位時間当りの蒸発量は低いことが分った。
Furthermore, the vapor deposition material spreads poorly into the cavity, making it difficult to wet the entire bottom of the cavity with the molten vapor deposition material, and the entire bottom of the cavity cannot be effectively used as an evaporation area, so the amount of evaporation per unit time is low. I found out.

通常固体表面と溶融金属の濡れ性は濡れ角度θが用いら
れる。
Usually, the wetting angle θ is used to measure the wettability between a solid surface and a molten metal.

COSθ= R(ys−yst) / ytで示され、
Rは荒さの因子であり、γS、yst、γFは夫々固体
表面、固液界面、液体の表面張力である。
COSθ=R(ys-yst)/yt,
R is a roughness factor, and γS, yst, and γF are surface tensions of the solid surface, solid-liquid interface, and liquid, respectively.

ここで、Rは見かけの表面積に対する真の表面積を示す
。Rを大きくすることにより、θはOに近づき固体表面
は、溶融金属に濡れやすくなる。
Here, R represents the true surface area relative to the apparent surface area. By increasing R, θ approaches O, and the solid surface becomes easier to wet with molten metal.

更に、表面を粗面とし表面積を増加すれば、キャビテー
内底面に薄く広く溶融金属が濡れ拡がり、その面積が常
に一定となる。
Furthermore, if the surface is made rough to increase the surface area, the molten metal will wet and spread thinly and widely on the inner bottom of the cavity, and the area will always be constant.

また、操作手段としては、AI!を連続的にポートのキ
ャビテーに供給し、キャビテー内底面全面に均一に溶融
APが拡がるようにすると共に蒸発速度を高める必要が
あるので、キャビテー内底面を粗面化しキャビチ一層を
電流が流れるようにすればよいとの知見により本発明を
完成したものである。
Also, as a means of operation, AI! It is necessary to continuously supply molten AP to the port cavity so that the molten AP spreads uniformly over the entire bottom surface of the cavity and to increase the evaporation rate, so the inside bottom surface of the cavity must be roughened so that the current can flow through the cavity evenly. The present invention was completed based on the knowledge that it is sufficient to do so.

[問題点を解決するための手段] 本発明は真空蒸着装置により基材にアルミニウムを連続
的に蒸着させる方法において、キャビテー内底面を粗面
化したT iB2を主成分とし、BN及びA11Nを含
有する抵抗加熱器を真空蒸着装置内に設け、前記加熱器
に通電し、キャビテー内にアルミニウムを連続的に供給
しながら、これを均一に拡がらせ、電流または電圧の変
動の少ない状態で操作することを特徴とする基材にアル
ミニウムを連続的に蒸着する方法である。
[Means for Solving the Problems] The present invention is a method for continuously vapor depositing aluminum on a substrate using a vacuum evaporation device. A resistance heater is provided in the vacuum deposition apparatus, and the heater is energized to continuously supply aluminum into the cavity, spread it uniformly, and operate with little fluctuation in current or voltage. This is a method of continuously vapor depositing aluminum on a base material.

以ドに本発明をさらに詳しく説明する。The present invention will be explained in more detail below.

図面は本発明の実施例であって、ポート1のキャビテー
2の内底面3に粗面を設けた状態を示したものである。
The drawing shows an embodiment of the present invention in which the inner bottom surface 3 of the cavity 2 of the port 1 is provided with a rough surface.

本発明に用いられるポートは、キャビテー内底面を粗面
状とした導電性のTiB2を主成分とし、絶縁性のON
及びAi’Nとを含有する導電性のセラミックス焼結体
からなるものである。
The port used in the present invention is mainly made of conductive TiB2 with a rough inner bottom surface of the cavity, and is made of insulating ON
and Ai'N.

本発明のポート材料成分の硬度はTiB2、AlN及び
BNがそれぞれ9,7及び2であるので粗面状とした場
合B)lが主として除去されるのでキャビテー内底面の
表面の導電性がポート全体と異なる傾向があり、電流の
流れがポート全体と異なるものと考えられる。
The hardness of the port material components of the present invention is 9, 7, and 2 respectively for TiB2, AlN, and BN, so when the rough surface is formed, B) l is mainly removed, so that the conductivity of the surface of the inner bottom of the cavity is reduced throughout the port. It is thought that the current flow is different from that of the entire port.

また、溶融Afとポートとの濡れは非常に微妙で、用い
る材料や蒸着温度によって異なることから前記のように
粗面状とする効果は大きい。
Further, since the wetting of the molten Af and the port is very subtle and varies depending on the material used and the deposition temperature, the effect of making the surface rough as described above is great.

ARの連続蒸着においては、Ai)の溶融物が均一に濡
れ拡がり、常に一定にAPが蒸発するようにしなければ
、均一なAp蒸着膜が形成されない。またポート材料と
してTiB2を主成分とし、BN及びApNを含有する
焼結体をポートとする理由はT iB2とBNとの焼結
体では耐食性、強度、緻密性及び濡れ性が不充分である
からである。
In continuous AR deposition, a uniform Ap deposition film cannot be formed unless the melt of Ai) spreads uniformly and the AP is constantly evaporated. The reason why a sintered body containing TiB2 as a main component and BN and ApN is used as a port material is because a sintered body of TiB2 and BN has insufficient corrosion resistance, strength, density, and wettability. It is.

本発明のANの連続法においては、キャビテーに一定量
のAP、の溶融物を添加しながら、一定速度でAl1を
キャビテー全面から蒸発させなければならない。従って
流れる電流は、ボニトのキャビティー内底面層を通過さ
せ蒸発速度を上げるように、キャビテー内底面を粗面状
とし、Aj)との濡れをよくするi共にApの溶融物層
を薄くする必要がある。
In the continuous AN method of the present invention, Al1 must be evaporated from the entire surface of the cavity at a constant rate while adding a constant amount of molten AP to the cavity. Therefore, it is necessary to make the inner bottom surface of the cavity rough so that the flowing current passes through the inner bottom layer of the cavity of Bonito and increase the evaporation rate, and to make the melt layer of Ap thinner to improve wetting with Aj). There is.

更に、Apの連続蒸着においてはキャビテーに一定量の
A2の溶融物を保持した定常状態で蒸発が行われるが、
この定常状態においては上部は溶融Af層、下部はポー
ト本体の導電性セラミックス層及び中間部はキャビテー
の内底面の粗面が加熱溶融したAPで充たされ導電性セ
ラミックスと溶融AI!とから構成された境界層を形成
した3層構造を構成するために、抵抗値は下部から上部
へ段階的に低下するために、電圧を印加して加熱した場
合、比4     較的薄いAfi溶融層と熱供給源で
ある高温のポート本体との温度勾配が、中間のセラミッ
クスの粗面と溶融Apとの境界層が存在するために段階
的に傾斜状に保持され熱伝導が緩和されながら増加する
と共に溶融AI!の濡れに相乗的に関与する作用をする
Furthermore, in continuous evaporation of Ap, evaporation is performed in a steady state with a constant amount of molten A2 maintained in the cavity;
In this steady state, the upper part is filled with the molten Af layer, the lower part is the conductive ceramic layer of the port body, and the middle part is filled with AP obtained by heating and melting the rough inner bottom surface of the cavity, and the conductive ceramic and molten AI! Because the resistance value decreases stepwise from the bottom to the top to form a three-layer structure with a boundary layer composed of The temperature gradient between the layer and the high-temperature port body, which is the heat supply source, is maintained in a graded manner due to the existence of a boundary layer between the rough surface of the intermediate ceramic and the molten Ap, and the heat conduction increases while relaxing the temperature gradient. At the same time, melting AI! acts synergistically to wet the skin.

つぎに、キャビテー内底面を^p蒸着材に濡れやすい粗
面状とする方法としては (1)導電性セラミック素材より加工されたポートのキ
ャビテー底面にサンドブラスト装置等によりSiC等よ
りなる研摩材を吹き付けることにより、蒸着材に濡れや
すい粗面を形成する方法、(2) SiCやダイヤモン
ド等からなる研摩用の回転砥石でキャビテー底面を研摩
することにより充分に蒸着材に濡れやすい粗面を形成す
る方法、(3)外形加工を終ったポートにキャビテーを
形成する工程で、粒度の粗いダイヤモンドを研摩面にも
つ回転砥石でキャビテーを研削加工により形成する方法 の3つの方法があげられる。
Next, the method of making the inner bottom surface of the cavity rough so that it is easily wetted by the vapor deposition material is (1) Spraying an abrasive material made of SiC or the like using a sandblasting device or the like onto the bottom surface of the cavity of the port processed from a conductive ceramic material. (2) A method of forming a rough surface that is sufficiently wettable by the vapor deposition material by polishing the bottom surface of the cavity with a polishing rotary grindstone made of SiC, diamond, etc. , (3) In the step of forming a cavity in the port after external processing, there are three methods: forming the cavity by grinding using a rotary grindstone with coarse diamond on the grinding surface.

特に(3)の方法は、加工工程を増加することなしにA
I!蒸着材に濡れやすいキャビテー内底面を有するポー
トが得られるという利点がある。
In particular, method (3) allows A
I! There is an advantage that a port having a cavity inner bottom surface that is easily wetted by the vapor deposition material can be obtained.

次に本発明のU)の蒸着法について説明すると、前記し
たポートを真空蒸発装置に設け、真空下(I X 1O
−4Torr以上)ポートに通電し、連続的にAjl!
線から溶融物としてキャビテーに適下しながら蒸発させ
、長尺の基材を移動しながら蒸着する。
Next, to explain the vapor deposition method U) of the present invention, the above-mentioned port is provided in a vacuum evaporator, and
-4Torr or more) energize the port and continuously Ajl!
It is evaporated while being dropped into the cavity as a melt from a wire, and is deposited while moving on a long substrate.

このようにすると、均一にAPの蒸着膜が長尺の基材の
表面に蒸着することができる。
In this way, the AP deposition film can be uniformly deposited on the surface of the long base material.

なお本発明によれば溶融したAI!がキャビテー内底面
の全面に濡れ拡がり、濡れ拡がりの面積が変化しないた
め、ポートの抵抗変化がなくなり蒸着中の電源制御が容
易である。さらに熱の伝達量が多くなり従来のポートよ
り少ない電力で効率よく蒸着することができる。
According to the present invention, melted AI! Since the wetting and spreading area does not change over the entire surface of the inner bottom of the cavity, there is no change in the resistance of the port, making it easy to control the power supply during deposition. Furthermore, the amount of heat transferred increases, allowing efficient deposition with less power than conventional ports.

更に、キャビテー内底面の全面より蒸着材であるAi)
を蒸発させることができ、さらに低いポート温度での操
業が可能となり、単位時間当りのAi)の蒸着量が増加
する。さらにポートとAI!蒸着材との反応がなくなり
、特に局部的な腐食は見られずポートの寿命が長くなる
という効果もある。
Furthermore, the vapor deposition material Ai) is deposited from the entire surface of the inner bottom of the cavity.
can be evaporated, operation can be performed at lower port temperatures, and the amount of Ai) deposited per unit time can be increased. More ports and AI! There is no reaction with the evaporation material, no local corrosion is observed, and the life of the port is extended.

[実施例] 次に、本発明を比較例及び実施例に従って説明する。[Example] Next, the present invention will be explained according to comparative examples and examples.

比較例1 比抵抗が1200.Ω−C■となるように、導電成分の
チタンポライド48重量部、絶縁成分のポロンナイトラ
イド28重量部及び絶縁成分のアルミニウムナイトライ
ド24重量部を含む導電性セラミックスをホットプレス
法により成形した。
Comparative Example 1 Specific resistance is 1200. A conductive ceramic containing 48 parts by weight of titanium polide as a conductive component, 28 parts by weight of poron nitride as an insulating component, and 24 parts by weight of aluminum nitride as an insulating component was molded by hot pressing so as to have Ω-C■.

この導電性セラミックス成形体から18X 8 X10
0mmのポートを切り出し、250メツシユのダイヤモ
ンドホイルによって切削し、巾12mm、深さ1.5m
+a 、長さ7hmのキャビテーを形成した。
18X 8X10 from this conductive ceramic molded body
Cut out a 0mm port and cut it with 250 mesh diamond foil, width 12mm, depth 1.5m
+a, a cavity with a length of 7 hm was formed.

蒸着材として直径1.5■のAIl線を選び、連続供給
装置を用い直接通電で加熱されたポートからプラスチッ
クフィルム原反に連続蒸着をおこなった。
An Al wire with a diameter of 1.5 square meters was selected as the vapor deposition material, and continuous vapor deposition was performed on the original plastic film from a port heated by direct electricity using a continuous supply device.

蒸着は、電圧8,5v電流350Aで行なった。ARの
単位時間当りの蒸発量は1.5g/分であった。
The deposition was carried out at a voltage of 8.5 V and a current of 350 A. The amount of AR evaporated per unit time was 1.5 g/min.

溶融したAffは、キャビテー全面には濡れ拡がらず、
キャビテーの片側の壁にそって約半分に濡れ拡がったに
留まり、更に電圧を増してポート温度を高くしても濡れ
拡がりは改善されなかった。この条件で300分の蒸着
を続けた後、ポートはキャビテーの壁部で蒸着材と反応
し、ポートは変形し、これ以上の蒸着に耐えないものと
なった。
The molten Aff does not spread all over the cavity,
Wetness spread only to about half of the wall along one side of the cavity, and even if we further increased the voltage and port temperature, the wetting and spreading did not improve. After 300 minutes of evaporation under these conditions, the port reacted with the evaporation material on the wall of the cavity, and the port became deformed and could not withstand further evaporation.

実施例1 比較例1と同一条件でポートにキャビテーを形成した。Example 1 A cavity was formed in the port under the same conditions as Comparative Example 1.

得られたポートのキャビテー底面に、サンドブラスト装
置にて、空気圧5 Kg/cm2で60メツシユのSi
C研摩材を10秒間吹き付け、キャビテー内底面を粗面
としたポートを作成した。
A 60-mesh layer of Si was applied to the bottom of the resulting port cavity using a sandblasting device at an air pressure of 5 Kg/cm2.
C abrasive was sprayed for 10 seconds to create a port with a rough inner bottom surface of the cavity.

このポートを使用して、比較例に示す方法でAj)の連
続蒸着を実施した。
Using this port, Aj) was continuously deposited by the method shown in Comparative Example.

蒸着は電圧8.OV電流310AでおこないAI!の単
位時間当りの蒸発量は1.8g/分であった。
Vapor deposition was performed at a voltage of 8. AI performed with OV current of 310A! The amount of evaporation per unit time was 1.8 g/min.

溶融したAPはキャビテー内底面の全面に濡れ拡がり電
圧、電流の変動は見られなかった。
The molten AP wetted and spread over the entire bottom surface of the cavity, and no fluctuations in voltage or current were observed.

実施例2 比較例1と同じ導電性セラミックス成形体を用い、16
X 8 X 100m+aのポートを従来の方法で切り
一     出し、更に80メツシユのダイヤモンドを
研摩面に持つ回転砥石を用いて巾12+sm、深さ1.
5+am 、長さ70nmの底面を粗面としたキャビテ
ーを形成した。
Example 2 Using the same conductive ceramic molded body as Comparative Example 1, 16
A port measuring 8 x 100m+a was cut out using the conventional method, and a 12+sm width and 1.5m depth was cut using a rotary grindstone with 80 mesh diamonds on the polished surface.
A cavity with a rough bottom surface and a length of 70 nm was formed.

このポートを使用して、比較例に示す方法でAI!の連
続蒸着を実施した。
Using this port, AI! Continuous vapor deposition was carried out.

蒸着は電圧8.OV電流300AでおこないAj)の単
位時間当りの蒸発量は2.0g/分であった。溶融した
AI!はキャビテー内底面の全面に濡れ拡がり電圧電流
の変動も見られず、極めて安定した操業が可能であった
。この条件で300分連続蒸着を実施したが、キャビテ
ー内壁部の腐食は見られなかった。
Vapor deposition was performed at a voltage of 8. The amount of evaporation per unit time of Aj) was 2.0 g/min when the OV current was 300 A. Melted AI! Wetness spread over the entire surface of the inner bottom of the cavity, and no fluctuations in voltage and current were observed, allowing extremely stable operation. Continuous deposition was carried out for 300 minutes under these conditions, but no corrosion was observed on the inner wall of the cavity.

比較例2 比抵抗が1200−Ω−C1lとなるように、チタンポ
ライド60重量部及びポロンナイトライド40重量部か
らなる導電性セラミックをホットプレス法により成形し
た。
Comparative Example 2 A conductive ceramic made of 60 parts by weight of titanium polide and 40 parts by weight of poron nitride was molded by hot pressing so that the specific resistance was 1200-Ω-C11.

この導電性セラミック成形体から18X 8 X100
+a+aのポートを切り出し、250メツシユのダイヤ
モンドホイルによって切削し、巾12mm、深さ1.5
mm 、長さ?0+amのキャビテーを形成した。
18X 8X100 from this conductive ceramic molded body
Cut out the +a+a port and cut it with 250 mesh diamond foil, width 12mm, depth 1.5
mm, length? A cavity of 0+am was formed.

蒸着材として直径1.5m+sのAP線を選び、連続馬
給装置を用い直接通電で加熱されたポートから連続蒸着
をおこなった。
AP wire with a diameter of 1.5 m+s was selected as the deposition material, and continuous deposition was performed from a port heated by direct energization using a continuous horse feeder.

蒸着は、電圧8.5v電流350AでおこないAI!の
単位時間当りの蒸発量は1.5g/分であった。
Vapor deposition was performed at a voltage of 8.5V and a current of 350A using AI! The amount of evaporation per unit time was 1.5 g/min.

蒸着を開始して20分後に両端を押えられているポート
の中央が上方にそり、溶融したAFは、キャビテー全面
には濡れ拡がらず、キャビテーの片側の壁にそって約半
分に濡れ拡がったに留まり、更に電圧を増してポート温
度を高くしても濡れ拡がりは改善されなかった。
20 minutes after starting vapor deposition, the center of the port, which was held down at both ends, warped upward, and the molten AF did not wet and spread over the entire surface of the cavity, but spread around half along one wall of the cavity. Even if the voltage was increased further and the port temperature was raised, the wetting and spreading did not improve.

この状態で蒸着を続けたところ、40分後にはキャビテ
ーのAI!の落下点付近に穴があき、これ以トの蒸着に
耐えないものとなった。
When vapor deposition was continued in this state, after 40 minutes, the cavity was AI! A hole was created near the point of fall, making it impossible to withstand further vapor deposition.

[発明の効果] 本発明によれば、従来APの連続的蒸着が困難であった
ものを特定のセラミック製ポートを用いることにより、
基材に均一な蒸着膜が簡単な操作で得られるというすぐ
れた効果がある。
[Effects of the Invention] According to the present invention, by using a specific ceramic port, it has been difficult to continuously deposit AP.
It has the excellent effect of being able to obtain a uniform deposited film on the substrate with a simple operation.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示す概略図である。 1は抵抗加熱器 2はキャビテー 3はキャビテー底面を示す。 The drawings are schematic illustrations of embodiments of the invention. 1 is a resistance heater 2 is cavity 3 shows the bottom surface of the cavity.

Claims (1)

【特許請求の範囲】[Claims] 1)真空蒸着装置により基材にアルミニウムを連続的に
蒸着させる方法において、キャビテー内底面を粗面化し
たTiB_2を主成分とし、BN及びAlNを含有する
抵抗加熱器を真空蒸着装置内に設け、前記加熱器に通電
し、キャビテー内にアルミニウムを供給しながら、これ
を均一に拡がらせ、電流または電圧の変動の少ない状態
で操作することを特徴とするアルミニウムの連続蒸着法
1) In a method of continuously vapor depositing aluminum on a substrate using a vacuum evaporation device, a resistance heater containing BN and AlN is provided in the vacuum evaporation device, the main component being TiB_2 with a roughened inner bottom surface of the cavity, A continuous vapor deposition method for aluminum, characterized in that the heater is energized to supply aluminum into the cavity, spread it uniformly, and operate in a state with little fluctuation in current or voltage.
JP7340285A 1985-04-06 1985-04-06 Continuous vapor deposition method of aluminum Pending JPS61575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7340285A JPS61575A (en) 1985-04-06 1985-04-06 Continuous vapor deposition method of aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7340285A JPS61575A (en) 1985-04-06 1985-04-06 Continuous vapor deposition method of aluminum

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10026077A Division JPS5433878A (en) 1977-08-22 1977-08-22 Resistance heater and method of treating the same

Publications (1)

Publication Number Publication Date
JPS61575A true JPS61575A (en) 1986-01-06

Family

ID=13517163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7340285A Pending JPS61575A (en) 1985-04-06 1985-04-06 Continuous vapor deposition method of aluminum

Country Status (1)

Country Link
JP (1) JPS61575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341842U (en) * 1989-08-29 1991-04-22

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068931A (en) * 1973-10-23 1975-06-09
JPS5040850B1 (en) * 1971-07-15 1975-12-27
JPS5433878A (en) * 1977-08-22 1979-03-12 Denki Kagaku Kogyo Kk Resistance heater and method of treating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040850B1 (en) * 1971-07-15 1975-12-27
JPS5068931A (en) * 1973-10-23 1975-06-09
JPS5433878A (en) * 1977-08-22 1979-03-12 Denki Kagaku Kogyo Kk Resistance heater and method of treating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341842U (en) * 1989-08-29 1991-04-22

Similar Documents

Publication Publication Date Title
CA1213852A (en) Method of and apparatus for the coating of a substrate with material electrically transformed into a vapor phase
CN100567217C (en) The high purity cured charcoal felt silicon crystal growth oven manufacture method
JPH04272170A (en) Graphite crucible for vacuum vapor deposition
JPS62114747A (en) Continuous casting method for metallic bar
US4137355A (en) Ceramic coated with molten silicon
KR20210024690A (en) Apparatus and method for vacuum deposition
JP2003160855A (en) Thin-film forming apparatus
CN100567554C (en) The preparation of the vaporiser body of PVD metallization installation
US5664986A (en) Apparatus for polishing a dielectric layer formed on a substrate
JPS61575A (en) Continuous vapor deposition method of aluminum
JP4435523B2 (en) Deposition method
JPH0765150B2 (en) Nozzle for molten metal coating equipment
NO126175B (en)
JPH11111682A (en) Dry etching method
CA2271933C (en) Ceramic evaporation boats having improved initial wetting performance and properties
JPS6086268A (en) Continuous vapor deposition of al
JPS6086270A (en) Preparation of resistance heater
US3350219A (en) Evaporating metal employing porous member
JPH03158478A (en) Method and device for coating substrate
JPS5815492Y2 (en) Crucible for aluminum evaporation
JP3814044B2 (en) Method and apparatus for manufacturing metal-ceramic composite member
JPS5891101A (en) Centrifugal spraying method
JPH04331798A (en) Method of forming diamond film
JP3558528B2 (en) Crystal manufacturing method
JPH0221349B2 (en)