JPS6157205A - Treatment of aqueous solution by thermo-pervaporation method - Google Patents

Treatment of aqueous solution by thermo-pervaporation method

Info

Publication number
JPS6157205A
JPS6157205A JP17889984A JP17889984A JPS6157205A JP S6157205 A JPS6157205 A JP S6157205A JP 17889984 A JP17889984 A JP 17889984A JP 17889984 A JP17889984 A JP 17889984A JP S6157205 A JPS6157205 A JP S6157205A
Authority
JP
Japan
Prior art keywords
aqueous solution
membrane
microporous membrane
surface tension
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17889984A
Other languages
Japanese (ja)
Inventor
Shunichi Shimatani
俊一 島谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP17889984A priority Critical patent/JPS6157205A/en
Publication of JPS6157205A publication Critical patent/JPS6157205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To perform thermo-pervaporation effectively even with respect to an aqueous solution, of which the surface tension is low because a surfactant or org. substance is contained, without performing the membrane permeation of the aqueous solution, by using a microporous membrane having minute pores with an average pore size of a specific value or less. CONSTITUTION:A membrane tube 2 comprising a microporous membrane made of a polytetrafluoroethylene having minute pores with an average pore size of 0.4mum or less is coaxially arranged in an outer pipe 1. An aqueous solution containing a surfactant or org. substance and having low surface tension of 65- 25dyn/cm is heated and recirculated to an aqueous solution passage 3 through an introducing pipe 4 and a discharge pipe 5. Steam generated from the aqueous solution is transmitted through the membrane tube 2 to reach a steam diffusion space 10 and cooled by a heat transfer pipe 9 to be converted to condensed water which is, in turn, guided out of the system from a discharge pipe 13. By this method, thermo-pervaporation can be effectively adapted without preliminarily removing the surfactant or org. substance in the aqueous solution.

Description

【発明の詳細な説明】 本発明はサーモパーベーパレーション法による水溶液の
処理方法に関し、詳しくは、表面張力の小さい水溶液を
溶質の除去率の低下なしに、サーモパーベーパレーショ
ン法により濃縮し、或いは凝縮水を得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating an aqueous solution using a thermopervaporation method, and more specifically, the present invention relates to a method for treating an aqueous solution using a thermopervaporation method. Concerning a method of obtaining condensed water.

例えば、特公昭49−45461号公報に記載されてい
るように、水溶液から水を分離し、或いは水溶液を:a
縮するための方法として、水蒸気は透過させるが、水溶
液自体は透過させない疎水性微孔質膜の一面側に所定の
温度に加熱した水溶液、例えば、熱海水を流通させ、こ
の熱海水から発生した水蒸気を上記微孔質膜を透過させ
、この膜の他面側に対向して配された低温の伝熱壁で冷
却して凝縮させ、このようにして微孔質膜の一面側にお
いて水溶液をS縮し、他面側において凝縮水を得るサー
モパーベーパレーション法による液体の分離方法は既に
知られている。
For example, as described in Japanese Patent Publication No. 49-45461, water is separated from an aqueous solution, or the aqueous solution is
As a method for condensation, an aqueous solution heated to a predetermined temperature, such as hot sea water, is passed through one side of a hydrophobic microporous membrane that allows water vapor to pass through but not the aqueous solution itself. Water vapor is passed through the microporous membrane, cooled and condensed by a low-temperature heat transfer wall placed opposite to the other side of the membrane, and in this way an aqueous solution is formed on one side of the microporous membrane. A liquid separation method using thermopervaporation, in which S condenses and condensed water is obtained on the other side, is already known.

このようなサーモバーベーパレージコン法による液体の
濃縮や分離には、代表的にはポリテトラフルオロエチレ
ンのようなフッ素樹脂からなる疎水性耐熱性の微孔質膜
が分離手段として用いられ、この方法は水溶液のt’f
iaMやこの水溶液から水を分離するために好適である
。例えば、水が主成分である一般的な水溶液は、表面張
力が通常72〜6Q dyn/cm程度であって、この
ような水溶液中ではフッ素樹脂の疎水性が保たれるので
、水溶液の膜透過なしにサーモパーベーパレーション法
ニヨり水溶液を濃縮し、また、凝縮水を得ることができ
る。しかし、水溶液が界面活性剤や有機物質を含有して
、表面張力が65〜25 dyn/cmのように小さい
場合には、ポリテトラフルオロエチレンからなる微孔質
膜のように、臨界表面張力の最も小さい樹脂からなる微
孔質膜であっても、このような水溶液中ではその疎水性
効果が失なわれる結果、微孔質膜は水溶液の透過を許す
ようになって、溶質に対する除去率が低下すると同時に
、凝縮水中に水溶液が混入し、その純度を低下させるこ
とがある。
For concentrating and separating liquids using the thermo-vaporage condensation method, a hydrophobic heat-resistant microporous membrane made of a fluororesin such as polytetrafluoroethylene is typically used as a separation means. The method is t'f of aqueous solution.
It is suitable for separating water from iaM and its aqueous solution. For example, a typical aqueous solution whose main component is water usually has a surface tension of about 72 to 6 Q dyn/cm, and the hydrophobicity of the fluororesin is maintained in such an aqueous solution, so that the membrane permeation of the aqueous solution is difficult. The thermopervaporation method can concentrate the aqueous solution and also obtain condensed water. However, when the aqueous solution contains a surfactant or an organic substance and has a small surface tension of 65 to 25 dyn/cm, the critical surface tension may be lowered, such as with a microporous membrane made of polytetrafluoroethylene. Even a microporous membrane made of the smallest resin loses its hydrophobic effect in such an aqueous solution, and as a result, the microporous membrane allows the aqueous solution to pass through, and the removal rate for solutes decreases. At the same time, an aqueous solution may be mixed into the condensed water, reducing its purity.

従って、上記のように水溶液が界面活性剤を含有する場
合は、これを除去した後にサーモパーベーパレーション
法を適用することが好ましく、また、果汁や魚肉汁液等
のように、タンパク質やデンプン等の有機物質を含有す
る場合は勿論、海水のように微量の有機物質を含有する
場合においても、その界面活性作用のために水溶液の表
面張力カ小さく、サーモパーベーパレーション法を適用
するには、予めこれら有機物質を除去して、その表面張
力を高めてお(ことが好ましい。しかし、水溶液から界
面活性剤や微量の有機物質を除去することは容易ではな
く、むしろこれらを高い効率で水溶液から除去する方法
こそが要請されるのである。
Therefore, when the aqueous solution contains a surfactant as mentioned above, it is preferable to apply the thermopervaporation method after removing the surfactant. Not only when it contains organic substances, but also when it contains trace amounts of organic substances such as seawater, the surface tension of the aqueous solution is small due to its surfactant action, so it is necessary to apply the thermopervaporation method in advance. It is preferable to remove these organic substances and increase their surface tension.However, it is not easy to remove surfactants and trace amounts of organic substances from aqueous solutions, and rather they can be removed from aqueous solutions with high efficiency. What is required is a method to do so.

そこで、本発明者らは、上記した要請に応えるために鋭
意研究した結果、予期しないことに、所定の孔径の微孔
を有する微孔質膜を用いることにより、界面活性剤や有
機物質を含有するために表面張力が小さい水溶液につい
ても、実質的に水溶液の膜透過なしに、有効にサーモパ
ーベーパレーション法を適用し得ることを見出して、本
発明に至ったものである。
Therefore, as a result of intensive research in order to meet the above-mentioned demands, the present inventors unexpectedly found that by using a microporous membrane having micropores of a predetermined pore size, it is possible to contain surfactants and organic substances. The inventors have discovered that the thermopervaporation method can be effectively applied to an aqueous solution having a low surface tension without substantially permeating the aqueous solution through a membrane, leading to the present invention.

本発明は、水溶液は透過させないが、水蒸気は透過させ
る疎水性微孔質膜の一面側に水溶液を接触させ、この水
溶液から水蒸気を発生させ、これ      ゛を上記
微孔質膜の他面側に透過させ、冷却して凝縮させるサー
モパーベーパレーション法による水溶液の処理方法にお
いて、表面張力が65〜25dyn/cmの範囲にある
水溶液を平均孔径0.4μm以下の微孔を有する微孔質
膜に接触させることを特徴とする。
In the present invention, an aqueous solution is brought into contact with one side of a hydrophobic microporous membrane that does not allow an aqueous solution to pass through, but allows a water vapor to pass through, generates water vapor from this aqueous solution, and transfers this to the other side of the microporous membrane. In a method for treating an aqueous solution using a thermopervaporation method in which it is permeated, cooled, and condensed, an aqueous solution having a surface tension in the range of 65 to 25 dyn/cm is passed through a microporous membrane having micropores with an average pore size of 0.4 μm or less. It is characterized by being brought into contact.

本発明のサーモパーベーパレーション法によれば、用い
る微孔質膜は、表面張力が65〜25dyrr/cmの
範囲の小さい水溶液に対して、水溶液は実質的に透過さ
せないが、水蒸気は透過し得るように、その微孔の平均
孔径が0.4μm以下、好ましくは0.3μm以下であ
ることが必要である。
According to the thermopervaporation method of the present invention, the microporous membrane used substantially does not permeate an aqueous solution with a small surface tension in the range of 65 to 25 dyrr/cm, but allows water vapor to permeate. Therefore, it is necessary that the average pore diameter of the micropores is 0.4 μm or less, preferably 0.3 μm or less.

微孔孔径が、例えば、0.5μm以上のときは、上記の
ように表面張力の小さい水溶液自体が少、なくとも一部
膜を透過して、水溶液が凝縮水に混入する。膜厚は特に
制限されないが、通常は、1〜300μm、好ましくは
5〜50μmである。
When the micropore diameter is, for example, 0.5 μm or more, the aqueous solution itself having a low surface tension as described above permeates through the membrane at least partially, and the aqueous solution is mixed into the condensed water. Although the film thickness is not particularly limited, it is usually 1 to 300 μm, preferably 5 to 50 μm.

本発明において、微孔質膜の有する微孔の平均孔径は、
八STM Designation: 、F31640
に記載された方法によって測定される平均孔径を意味す
る。
In the present invention, the average pore diameter of the micropores of the microporous membrane is
8 STM Designation: , F31640
means the average pore diameter measured by the method described in .

即ち、微孔質膜を適宜に選択した有機溶剤(本発明では
表面張力が約22 dyn/cmであるn−ヘキシルエ
ーテルを用いる。)にて完全に濡らして保持し、この膜
の一面に窒素ガスを瀬次加圧下に接触させ、窒素ガスの
圧力に対して膜を透過した窒素ガスの透過流量を測定し
、濡れた膜による窒素ガス透過流量線(alを求ある。
That is, a microporous membrane is completely wetted and maintained with an appropriately selected organic solvent (n-hexyl ether having a surface tension of about 22 dyn/cm is used in the present invention), and nitrogen is applied to one side of the membrane. The gas is brought into contact with the membrane under continuous pressure, and the flow rate of nitrogen gas permeated through the membrane against the pressure of nitrogen gas is measured to determine the nitrogen gas permeation flow rate line (al) through the wet membrane.

別に、乾燥した微孔質膜について同様にして窒素ガスの
透過流量線fb)を求める。この線(blは実質的に窒
素ガス圧力の一次関数であって、直線を形成する。次い
で、線(b)の傾きの半分の傾きを存する直′Ki (
c)と上記線(a)との交点Iを求め、その交点に対応
する窒素ガス圧力P (anllg)を求めれば、上記
存機溶剤の表面張力をγ(mN/m)、接触角をθとし
て、微孔質膜の有する微孔の平均孔径d (μm)を得
ることができる。
Separately, the nitrogen gas permeation flow rate line fb) is determined in the same manner for the dried microporous membrane. This line (bl is substantially a linear function of nitrogen gas pressure and forms a straight line. Next, the straight line 'Ki (
Find the intersection point I between c) and the above line (a), and find the nitrogen gas pressure P (anllg) corresponding to that point. Then, the surface tension of the existing solvent is γ (mN/m), and the contact angle is θ. The average pore diameter d (μm) of the micropores of the microporous membrane can be obtained as follows.

゛本発明においては、上記微孔質膜としては、具体的に
は、ポリテトラフルオロエチレン樹脂、フッ化ビニリデ
ン樹脂、エチレンーテトラフルオ口エチレン共重合樹脂
等のようなフッ素系樹脂からなる微孔質膜が耐熱性と疎
水性にすぐれる点から特に好ましく用いられる。しかし
、例えばポリスルホンやセルロース樹脂のような親水性
樹脂からなる微孔質膜でも、表面にフッ素系樹脂やシリ
コーン樹脂等の1農水性樹脂を被覆して、疎水性の微孔
質表面を付与するときは、これら樹脂膜も使用すること
ができる。
゛In the present invention, the above-mentioned microporous membrane is specifically a microporous membrane made of a fluororesin such as polytetrafluoroethylene resin, vinylidene fluoride resin, ethylene-tetrafluoroethylene copolymer resin, etc. A high quality membrane is particularly preferably used because it has excellent heat resistance and hydrophobicity. However, even for microporous membranes made of hydrophilic resins such as polysulfone or cellulose resin, the surface can be coated with an agricultural water resin such as fluororesin or silicone resin to provide a hydrophobic microporous surface. In some cases, these resin films can also be used.

尚、微孔質膜は、一般に強度が小さいので、適宜の支持
体上に支持させてもよい。このような支持体は、微孔質
膜を補強すると共に、水蒸気を透過させることができれ
ば足り、例えば、ポリアミドからなる織布又は不織布や
、セラミック製の多孔質管が好適に用いられる。
Note that since microporous membranes generally have low strength, they may be supported on an appropriate support. Such a support only needs to be able to reinforce the microporous membrane and allow water vapor to pass therethrough, and for example, a woven or nonwoven fabric made of polyamide or a porous tube made of ceramic is preferably used.

第1図及び第2図は、本発明によるサーモパーベーパレ
ーション装置の一例を示す。
1 and 2 show an example of a thermopervaporation device according to the present invention.

即ち、外管1内には微孔質膜よりなる膜管2が同軸的に
配設されており、更に、この膜管と外管との間に所定の
温度に加熱された水溶液のための水溶液通路3が形成さ
れている。
That is, a membrane tube 2 made of a microporous membrane is disposed coaxially within the outer tube 1, and a tube for an aqueous solution heated to a predetermined temperature is further disposed between the membrane tube and the outer tube. An aqueous solution passage 3 is formed.

水溶液通路3には水溶液の導入管4及び導出管5が接続
され、水溶液は、弁6を備えた水溶液供給管7から適宜
に水溶液回路に補充され、この水溶液回路に循環して流
通される。必要に応じて、水溶液は、これら管路に設け
た加熱器8により所定の温度に加熱される。また、図示
しないが、水溶液は、必要に応じて排出管により水溶液
回路から一部が排出される。
An aqueous solution inlet pipe 4 and an aqueous outlet pipe 5 are connected to the aqueous solution passage 3, and the aqueous solution is appropriately replenished into the aqueous solution circuit from an aqueous solution supply pipe 7 equipped with a valve 6, and circulated through the aqueous solution circuit. If necessary, the aqueous solution is heated to a predetermined temperature by heaters 8 provided in these pipes. Further, although not shown, a portion of the aqueous solution is discharged from the aqueous solution circuit through a discharge pipe as necessary.

膜管2の内側には、更にこれと同軸的に伝熱壁を備えた
伝熱管9が配設され、前記膜管との間に蒸気拡散空間1
0を存するように適宜の間隔がおかれている。伝熱管は
伝熱性の高い材料、例えば金属製薄肉管からなる。この
伝熱管には冷却媒体のための導入管11及び導出管12
が接続され、例えば冷却水のような冷却媒体が伝熱管内
にva環して流通される。
A heat transfer tube 9 having a heat transfer wall is further disposed coaxially inside the membrane tube 2, and a vapor diffusion space 1 is formed between the membrane tube 2 and the membrane tube 2.
Appropriate intervals are provided so that 0 exists. The heat exchanger tube is made of a material with high heat conductivity, such as a thin-walled metal tube. These heat transfer tubes include an inlet pipe 11 and an outlet pipe 12 for the cooling medium.
are connected, and a cooling medium such as cooling water is passed through the heat exchanger tube in a VA ring.

蒸気拡散空間の下端には、蒸気空間において前記伝熱管
9によって冷却され、i縮した凝縮水を取り出すための
導出管13が接続されてい、る。
Connected to the lower end of the vapor diffusion space is an outlet pipe 13 for taking out the condensed water that has been cooled and condensed by the heat transfer tube 9 in the vapor space.

上記した装置においては、所定の温度に加熱された水溶
液は水溶液通路3に導入され、水溶液より発生した水蒸
気は膜管2を透過して蒸気拡散空間10に至り、蒸気拡
散空間を拡散して、伝熱管9で冷却されて凝縮水を生じ
、この凝縮水は伝熱管表面を流下して凝縮水薄出管13
より装置外に4かれる。
In the above-mentioned apparatus, an aqueous solution heated to a predetermined temperature is introduced into the aqueous solution passage 3, and water vapor generated from the aqueous solution passes through the membrane tube 2, reaches the vapor diffusion space 10, and diffuses through the vapor diffusion space. It is cooled in the heat exchanger tube 9 to produce condensed water, and this condensed water flows down the surface of the heat exchanger tube to the condensed water thinning tube 13.
4 outside the device.

以上のように、本発明の方法によれば、界面活性剤や有
機物質を含むために、その表面張力が小さい水溶液につ
いても、平均孔径が0.4μm以下、好ましくは0.3
μm以下の微孔を有する微孔質膜は水溶液自体を膜透過
させず、水蒸気のみを膜透過させるので、予め水溶液中
の界面活性剤や有機物質を除去することなしに、有効に
サーモパーベーパレーション法によって水溶液の濃縮や
凝縮水の取得を行なうことができる。
As described above, according to the method of the present invention, the average pore size is 0.4 μm or less, preferably 0.3 μm or less, even for an aqueous solution whose surface tension is low because it contains a surfactant or an organic substance.
Microporous membranes with micropores of micrometers or less do not allow the aqueous solution itself to pass through the membrane, but allow only water vapor to pass through the membrane. Therefore, thermopervapor can be effectively used without removing surfactants and organic substances from the aqueous solution in advance. It is possible to concentrate aqueous solutions and obtain condensed water using the ration method.

従って、本発明による方法は、例えば、海水の淡水化の
ほか、有機物質を含有する種々の水溶液の濃縮や、水溶
液からの水の分離に好適であり、例えば、食品や医薬品
産業に畜ける有用成分の濃縮分離や廃水処理、具体的に
は、魚貝類のエキス類の濃縮、ミカン等の果汁濃縮、ペ
クチンやゼラチン水溶液の処理、馬鈴薯廃水、染色、パ
ルプ廃水等の廃水処理に好適に適用し得る。
Therefore, the method according to the present invention is suitable, for example, for the desalination of seawater, as well as the concentration of various aqueous solutions containing organic substances, and the separation of water from aqueous solutions, and is useful, for example, in the food and pharmaceutical industries. Suitable for concentration separation of components and wastewater treatment, specifically, concentration of fish and shellfish extracts, fruit juice concentration of mandarin oranges, treatment of pectin and gelatin aqueous solutions, wastewater treatment of potato wastewater, dyeing, pulp wastewater, etc. obtain.

以下に本発明の実施例を挙げる。Examples of the present invention are listed below.

実施例1 第1図に示したように、直径40鵡の合成樹脂製外管内
に、種々の平均孔径の微孔を有する厚み60μmのポリ
テトラフルオロエチレン微孔r!を膜を同軸的に配設し
て直径約28mmの11り管を形成し、更にこの膜管内
に蒸気拡散空間の幅が2.3關となるようにステンレス
鋼製伝熱管を配設して、サーモパーベーパレーション装
置を構成した。装置における有効膜面積は240cn!
であった。
Example 1 As shown in Figure 1, polytetrafluoroethylene micropores with a thickness of 60 μm and having micropores with various average pore diameters are placed inside a synthetic resin outer tube with a diameter of 40 μm. The membranes were arranged coaxially to form a 11-way tube with a diameter of about 28 mm, and a stainless steel heat exchanger tube was further arranged within this membrane tube so that the width of the vapor diffusion space was 2.3 mm. , a thermopervaporation device was constructed. The effective membrane area in the device is 240cn!
Met.

この装置において、表面張カフ6 dyn/cmの3゜
5重量%の塩化ナトリウム水溶液A、及び3.5重量%
の塩化ナトリウム水?g t&にドデシルベンゼンスル
ホン酸ナトリウムを臨界ミセル濃度以上の濃度まで加え
て、表面張力を31 dyn/cmに調製した水溶液B
のそれぞれを温度60℃に加熱し、水溶液通路に流通さ
せ、温度4°Cの冷却水を伝熱管内に流通させて、各水
溶液を濃縮すると共に、凝縮水を得た。
In this device, a 3.5% by weight aqueous sodium chloride solution A with a surface tension cuff of 6 dyn/cm and 3.5% by weight
Sodium chloride water? Aqueous solution B prepared by adding sodium dodecylbenzenesulfonate to gt& to a concentration equal to or higher than the critical micelle concentration to adjust the surface tension to 31 dyn/cm.
Each of the aqueous solutions was heated to a temperature of 60°C and passed through an aqueous solution passage, and cooling water at a temperature of 4°C was passed through a heat transfer tube to concentrate each aqueous solution and obtain condensed water.

結果を表に示すように、表面張カフ 6 dyn/cm
の水溶液Aについては、微孔孔径によらず、凝縮水取得
速度及び除塩率共に同じ結果が得られたが、表面張′力
31 dyn/cmの水溶液Bについては、凝縮水取得
速度及び除塩率のいずれも微孔孔径への依存性が顕著で
あって、本発明実施例1及び2に従って平均孔径0.3
μm以下の微孔を有する微孔質膜を備えた装置によれば
、水溶液の膜透過なしに凝縮水を得ることができる。し
かし、微孔孔径がこれよりも大きいときは、除塩率の急
激な低下と凝縮水取得速度の著しい増大から、水溶液の
膜透過が生じていることが明らかである。
As the results are shown in the table, surface tension cuff 6 dyn/cm
For aqueous solution A with a surface tension of 31 dyn/cm, the same results were obtained for both condensed water acquisition rate and salt removal rate regardless of the micropore diameter, but for aqueous solution B with a surface tension of 31 dyn/cm, the condensed water acquisition rate and salt removal rate Both salt rates have a remarkable dependence on the micropore diameter, and according to Examples 1 and 2 of the present invention, the average pore diameter was 0.3.
According to an apparatus equipped with a microporous membrane having micropores of micrometers or less, condensed water can be obtained without an aqueous solution passing through the membrane. However, when the micropore diameter is larger than this, it is clear that membrane permeation of the aqueous solution occurs from the rapid decrease in the salt removal rate and the significant increase in the condensed water acquisition rate.

また、比較例1の場合は、膜は水溶液Bに濡れなかった
が、水溶液の膜透過が生じた。比較例2及び3の場合は
、膜は完全に水溶液Bに濡れ、特に、後者においては、
水溶液通路へ水溶液を循環させるポンプを止めても、水
溶液はその静圧で膜を透過した。
In addition, in the case of Comparative Example 1, although the membrane was not wetted by the aqueous solution B, the aqueous solution permeated through the membrane. In the case of Comparative Examples 2 and 3, the membrane was completely wetted by the aqueous solution B, especially in the latter case.
Even when the pump that circulated the aqueous solution to the aqueous solution passage was stopped, the aqueous solution permeated through the membrane due to its static pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるサーモパーベーパレーションの一
例を示す縦断面図、第2図は第1図において線A−A線
に沿う断面図、第3図は微孔質膜の有する微孔の平均孔
径をASTM Designation: F316−
80に記載された方法に従って求めた一例を示すグラフ
である。 1・・・外管、2・・・膜管、3・・・水溶液通路、4
・・・水溶液導入管、5・・・水溶液導出管、7・・・
水溶液供給管、9・・・伝熱管、10・・・蒸気拡散空
間、11・・・冷却媒体導入管、12・・・冷却媒体導
出管、13・・・凝縮水取出管。
FIG. 1 is a longitudinal sectional view showing an example of thermopervaporation according to the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. The average pore diameter is determined by ASTM Designation: F316-
80 is a graph showing an example obtained according to the method described in No. 80. 1... Outer tube, 2... Membrane tube, 3... Aqueous solution passage, 4
...Aqueous solution inlet pipe, 5...Aqueous solution outlet pipe, 7...
Aqueous solution supply pipe, 9... Heat transfer tube, 10... Vapor diffusion space, 11... Cooling medium introduction pipe, 12... Cooling medium outlet pipe, 13... Condensed water extraction pipe.

Claims (1)

【特許請求の範囲】[Claims] (1)水溶液は透過させないが、水蒸気は透過させる疎
水性微孔質膜の一面側に水溶液を接触させ、この水溶液
から水蒸気を発生させ、これを上記微孔質膜の他面側に
透過させ、冷却して凝縮させるサーモパーベーパレーシ
ョン法による水溶液の処理方法において、表面張力が6
5〜25dyn/cmの範囲にある水溶液を平均孔径0
.4μm以下の微孔を有する微孔質膜に接触させること
を特徴とするサーモパーベーパレーション法による水溶
液の処理方法。
(1) An aqueous solution is brought into contact with one side of the hydrophobic microporous membrane that does not allow the aqueous solution to pass through, but allows water vapor to pass through, and water vapor is generated from the aqueous solution and is allowed to pass through the other side of the microporous membrane. , in a method for treating an aqueous solution using the thermopervaporation method, which involves cooling and condensing, the surface tension is 6.
An aqueous solution in the range of 5 to 25 dyn/cm with an average pore size of 0
.. A method for treating an aqueous solution by a thermopervaporation method, which comprises bringing the solution into contact with a microporous membrane having micropores of 4 μm or less.
JP17889984A 1984-08-27 1984-08-27 Treatment of aqueous solution by thermo-pervaporation method Pending JPS6157205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17889984A JPS6157205A (en) 1984-08-27 1984-08-27 Treatment of aqueous solution by thermo-pervaporation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17889984A JPS6157205A (en) 1984-08-27 1984-08-27 Treatment of aqueous solution by thermo-pervaporation method

Publications (1)

Publication Number Publication Date
JPS6157205A true JPS6157205A (en) 1986-03-24

Family

ID=16056631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17889984A Pending JPS6157205A (en) 1984-08-27 1984-08-27 Treatment of aqueous solution by thermo-pervaporation method

Country Status (1)

Country Link
JP (1) JPS6157205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133805A1 (en) 2011-03-30 2012-10-04 日本ゴア株式会社 Composite membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133805A1 (en) 2011-03-30 2012-10-04 日本ゴア株式会社 Composite membrane
US9358507B2 (en) 2011-03-30 2016-06-07 W.L. Gore & Associates, Co., Ltd. Composite membrane

Similar Documents

Publication Publication Date Title
US4620900A (en) Thermopervaporation apparatus
US5078755A (en) Method of removing dissolved gas from liquid
US4781837A (en) Method of performing osmetic distillation
JP2018038367A (en) Method for concentration of liquid food
Tomaszewska Membrane distillation
JPS6157205A (en) Treatment of aqueous solution by thermo-pervaporation method
Gabino et al. Evaluation of the cleaning of a new hydrophobic membrane for osmotic evaporation
US4743378A (en) Rapid vapor transport through unwetted porous barriers
JPS60147201A (en) Treatment of aqueous solution containing volatile substance
DasGupta et al. Membrane applications in fruit processing technologies
JPS6154206A (en) Thermopervaporation apparatus
JPS60206409A (en) Separation of liquid
JPS60206408A (en) Concentration of stick-water
JPS60118204A (en) Thermo-pervaporization apparatus
JPS60206410A (en) Method and apparatus for separating liquid
JPS60203173A (en) Concentration of fruit juice
JP2898080B2 (en) Operation method of degassing membrane device
JPS60147285A (en) Treatment of aqueous acid or alkali solution
JPS6185169A (en) Concentration of albumen
AU571371B2 (en) Rapid vapour-transport through unwetted porous barriers
JPS60147286A (en) Treatment of aqueous solution containing high- molecular substance
JPS6227008A (en) Membrane distillation device
JPS60118205A (en) Thermo-pervaporization apparatus
JP2022146345A (en) Raw material liquid concentration system and method
JPH06121902A (en) Deaerating device and deaerating method