JPS6156903A - Magnetic scale - Google Patents

Magnetic scale

Info

Publication number
JPS6156903A
JPS6156903A JP16620085A JP16620085A JPS6156903A JP S6156903 A JPS6156903 A JP S6156903A JP 16620085 A JP16620085 A JP 16620085A JP 16620085 A JP16620085 A JP 16620085A JP S6156903 A JPS6156903 A JP S6156903A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic recording
scale
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16620085A
Other languages
Japanese (ja)
Inventor
Hiroyuki Okubo
大久保 浩之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Magnescale Inc
Original Assignee
Sony Magnescale Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Magnescale Inc filed Critical Sony Magnescale Inc
Priority to JP16620085A priority Critical patent/JPS6156903A/en
Publication of JPS6156903A publication Critical patent/JPS6156903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To secure the mechanical strength of a magnetic scale and to make it possible to form the scale with a material having a desired thermal expansion coefficient in an arbitrary shape, by magnetizing a magnetic recording medium, which is embedded in a part of a base body, and forming a magnetic lattice. CONSTITUTION:A main body 10 of a magnetic scale is formed by embedding a magnetic recording medium 2 along the longitudinal direction of the outer surface of a base body 1, which is formed in a cylindrical shape by iron. The magnetic recording medium 2 is formed by a magnetic material, which has a readily magnetizing axis in the direction of the thickness and has magnetic anisotropy. Magnetism Hs is provided along the specified axial length by the logitudinal magnetic recording. Magnetization for forming a magnetic lattice Hs is provided in each of neighboring regions along the axial direction of the magnetic recording medium 2, in the reverse directions one another.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気格子を利用した測尺を行うための磁気ス
ケールに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic scale for measuring length using a magnetic grid.

〔発明の概要〕[Summary of the invention]

本発明は、磁気格子を利用した測尺を行うための磁気ス
ケールにおいて、上記磁気格子が形成される磁気記録媒
体を基体に埋設するようにすることによって、製造が容
易で、機械的な耐久性や温度膨張率の改善□を図るよう
にしたものである。
The present invention provides a magnetic scale for measuring length using a magnetic grating, in which the magnetic recording medium on which the magnetic grating is formed is embedded in a base, thereby facilitating manufacture and improving mechanical durability. It is designed to improve the thermal expansion coefficient.

〔従来の技術〕[Conventional technology]

従来より磁気記録媒体に磁気格子を形成した磁気スケー
ルが、工作機械における各種操作量等の測定を行うため
の例えばスピンドル型磁気スケール装置等の測尺装置と
して広く用いられている。
2. Description of the Related Art Conventionally, magnetic scales in which a magnetic grating is formed on a magnetic recording medium have been widely used as measuring devices such as spindle-type magnetic scale devices for measuring various manipulated variables in machine tools.

一般に、上記磁気スケールは、その圧延方向すなわち軸
長方向に磁気容易軸を有する圧延磁気異゛方性を呈する
圧延合金型磁性材料にて円柱形状に形成された磁気記録
媒体に、その軸長方向の磁気容易軸に沿って面内磁□化
を施して横磁界記録に゛よる磁気格子が形成されている
In general, the magnetic scale described above is applied to a magnetic recording medium formed into a cylindrical shape from a rolled alloy type magnetic material exhibiting rolled magnetic anisotropy having a magnetic easy axis in the rolling direction, that is, in the axial direction. A magnetic lattice is formed by transverse magnetic recording by performing in-plane magnetization along the magnetic easy axis.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

主起磁気スケールを形成する磁気記録媒体として用いら
れる磁性材料は、材質的に柔らかいばかりでなく、測尺
装置の装着される各種工作機械を形成する鉄の熱膨張係
数(1’l x 1’O−6/’c)よりも大きな熱膨
張係数を有しているため、熱膨服による測定誤差や使用
条件の制約等に対する対策を必要とする。従って、実際
の使用環境におけ温度変化等を考慮して所望の測定精度
を確保すると 、ともに機械的な耐久性を得られるよう
な実用的な   ゛磁気スケールを製造することは極め
て大変であった。また、上記面内磁化により形成される
磁気格子では、強い信号磁界を得ることが難しいので、
一般に接触型の読取ヘッドにより信号読取りが行われ、
機械的な摩耗損傷を避けることができない。
The magnetic material used as the magnetic recording medium that forms the primary magnetic scale is not only soft, but also has a thermal expansion coefficient (1'l x 1') of iron that forms various machine tools to which measuring devices are installed. Since it has a coefficient of thermal expansion larger than O-6/'c), it is necessary to take measures against measurement errors due to thermal expansion and restrictions on usage conditions. Therefore, it has been extremely difficult to manufacture a practical magnetic scale that can ensure the desired measurement accuracy while taking into account temperature changes in the actual usage environment, as well as mechanical durability. . In addition, since it is difficult to obtain a strong signal magnetic field with the magnetic lattice formed by the above-mentioned in-plane magnetization,
Signal reading is generally performed using a contact-type read head.
Mechanical wear damage cannot be avoided.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る磁気スケールは、上述の如き問題点を解決
するために、磁気記録媒体を基体の長手方向に沿って上
記基体に埋設し、その表面に磁気格子を形成したことを
特徴とする。
In order to solve the above problems, the magnetic scale according to the present invention is characterized in that a magnetic recording medium is embedded in the base along the longitudinal direction of the base, and a magnetic grating is formed on the surface of the base.

〔作 用〕[For production]

本発明に係る磁気スケールでは、基体の一部に埋設した
磁気記録媒体に着磁を施すことにより磁1j     
ヮ、8イカ、工あゎお。よ8.カイゎ、よ、7−ケー7
゜の機械的な強度を確保するとともに、所望の温度膨張
率の材料にて任意の形状に形成したものを使用すること
ができる。
In the magnetic scale according to the present invention, by magnetizing the magnetic recording medium embedded in a part of the base, the magnetic 1j
Wow, 8 squid, Wow. Yo8. Kaiwa, yo, 7-K7
It is possible to use a material made of a material having a desired temperature expansion coefficient and having an arbitrary shape while ensuring mechanical strength of .

〔実施例〕〔Example〕

以下、本発明について一実施例を示す図面に従い詳細に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings showing one embodiment.

本発明に係る同軸型磁気スケールの一実施例を示す第1
図において、磁気スケール本体IOは、鉄を円筒形状に
形成した基体1の外周に長手方向に沿って磁気記録媒体
2を埋設して成る。
A first example showing an embodiment of a coaxial magnetic scale according to the present invention.
In the figure, the magnetic scale main body IO is constructed by embedding a magnetic recording medium 2 along the longitudinal direction on the outer periphery of a base body 1 formed of iron into a cylindrical shape.

上記磁気記録媒体2は、その厚み方向に磁化容易軸を有
する磁気異方性を呈する磁性材料、例えば溶体化処理後
に所定の磁界中で磁性熱処理を施、  すことにより、
上記磁界の向きに応じた磁気異方性を呈するFe・CO
・Cr系合金等のスピノーダル型磁性材料にて形成され
ており、上記基体1に埋設して、円筒研磨処理等の表面
仕上げが施されている。そして、上記磁気記録媒体2に
は、その厚み方向すなわち磁化容易軸方向の着磁が施さ
れ、縦磁界記録による磁気H3が所定の軸長に亘って形
成されている。上記磁気格子Hsを形成するための着磁
は、磁気記録媒体2の軸長方向について互いに隣接する
各領域に対して相反する向きに施されている。この実施
例では、上記磁気記録媒体2の軸長方向に隣接する各′
fr4域の磁化状態を模式的に示した第2図Aおよび第
2EBに示すように、上記磁気記録媒体2の軸、長方向
に隣接する各領域の磁化状態を模式的に示した第2図A
および第2図Bに示すように、同軸型磁気スケール本体
10の径方向の着磁にて縦磁界記録による磁気格子Hs
が上記磁気記録媒体2に亘って形成されている。上記縦
磁界記録による磁気格子Hsは、一般的な面内磁化なわ
ち横磁界記録による磁気格子と比較して、強力な着磁が
可能で強い信号磁界を発生することができる。また、こ
の実施例のように高透磁率材料である休にて形成した基
体1に磁気記録媒体2を埋設して、上記磁気記録媒体2
に磁気格子Hsを形成するようにするれば、上記磁気記
録媒体2に形成した磁気格子Hsの磁路として上記基体
1が作用するので、磁気格子Hsによる信号磁界をより
強めることができる。さらに、同軸型磁気スケール本体
10の温度膨張係数を工作機械を形成する材料(一般に
鉄)の温度膨張係数に近づけることができ、周囲環境の
温度変化による測定誤差や使用制限等を少なくすること
ができる。
The magnetic recording medium 2 is made of a magnetic material exhibiting magnetic anisotropy with an axis of easy magnetization in the thickness direction, for example, by performing magnetic heat treatment in a predetermined magnetic field after solution treatment.
Fe/CO exhibiting magnetic anisotropy depending on the direction of the magnetic field mentioned above
- It is made of a spinodal magnetic material such as a Cr-based alloy, and is embedded in the base 1 and subjected to surface finishing such as cylindrical polishing. The magnetic recording medium 2 is magnetized in its thickness direction, that is, in the direction of its easy axis of magnetization, and a magnetic field H3 is formed over a predetermined axial length by longitudinal magnetic field recording. The magnetization for forming the magnetic lattice Hs is performed in opposite directions for each region adjacent to each other in the axial direction of the magnetic recording medium 2. In this embodiment, each '' adjacent in the axial direction of the magnetic recording medium 2 is
As shown in FIGS. 2A and 2EB, which schematically show the magnetization state in the fr4 region, FIG. A
As shown in FIG. 2B, the magnetic grating Hs by longitudinal magnetic field recording is generated by magnetizing the coaxial magnetic scale body 10 in the radial direction.
is formed over the magnetic recording medium 2. The magnetic grating Hs based on longitudinal magnetic field recording can be strongly magnetized and generate a strong signal magnetic field, compared to a magnetic grating based on general in-plane magnetization, that is, transverse magnetic field recording. Further, as in this embodiment, the magnetic recording medium 2 is embedded in the base body 1 made of a material with high magnetic permeability, and the magnetic recording medium 2 is
By forming the magnetic grating Hs on the magnetic recording medium 2, the base body 1 acts as a magnetic path for the magnetic grating Hs formed on the magnetic recording medium 2, so that the signal magnetic field due to the magnetic grating Hs can be further strengthened. Furthermore, the coefficient of thermal expansion of the coaxial magnetic scale body 10 can be made close to the coefficient of thermal expansion of the material (generally iron) forming the machine tool, and measurement errors and usage restrictions due to temperature changes in the surrounding environment can be reduced. can.

従って、上述の如き構成の実施例は、貫通型のマルチギ
ャップ磁気ヘッドや強磁性磁気格子抵抗素子等の薄膜型
磁気検出ヘッドにより信号読取りを行う非接触型の測尺
装置における磁気スケールとして最適である。
Therefore, the embodiment with the above-mentioned configuration is most suitable as a magnetic scale in a non-contact measuring device that reads signals using a thin-film magnetic detection head such as a through-type multi-gap magnetic head or a ferromagnetic magnetic grating resistance element. be.

また、第3図に示す実施例において、磁気スケール本体
10Aは、高透磁率材料を丸棒状に成形した鉄芯を基体
1として用いて、上記基体1に磁気記録媒体2を埋設し
て、上記磁気記録媒体2に磁気格子Hsが形成されてい
る。
In the embodiment shown in FIG. 3, the magnetic scale main body 10A uses an iron core made of a high magnetic permeability material in the shape of a round bar as the base body 1, and embeds the magnetic recording medium 2 in the base body 1. A magnetic lattice Hs is formed on the magnetic recording medium 2.

この実施例では、上記基体lに信号磁界用の上記磁気格
子Hsを形成する磁気記録媒体2を埋設するとともに、
原点信号用の磁気記録媒体3を埋設して、上記磁気記録
媒体3に原点信号用の発磁部4の着磁を施しである。さ
らに、上記基体1の一端側を図示しない測長装置あるい
は該測長装置の装着される工作機械等への取付は用のシ
ャンク部4とし、このシャンク部4の外周面4aにキー
溝5を形成してスケール本体10Aの回転防止が可能な
構造としである。
In this embodiment, a magnetic recording medium 2 forming the magnetic grating Hs for a signal magnetic field is embedded in the base l, and
A magnetic recording medium 3 for the origin signal is embedded, and the magnetic recording medium 3 is magnetized by a magnetizing section 4 for the origin signal. Further, one end of the base 1 is provided with a shank portion 4 for attachment to a length measuring device (not shown) or a machine tool on which the length measuring device is mounted, and a key groove 5 is formed in the outer circumferential surface 4a of the shank portion 4. The scale main body 10A has a structure that can be formed to prevent rotation of the scale body 10A.

そして、この実施例の磁気スケール本体10Aは、例え
ば第4図に示すように、スピンドル型測長ユニットに適
用される。
The magnetic scale main body 10A of this embodiment is applied to a spindle type length measuring unit, as shown in FIG. 4, for example.

第4図に示したスピンドル型測長ユニット30の実施例
において、磁気スケール本体10Aは、上記磁気スケー
ル本体10Aは、軸受部32により軸長方向に摺動自在
に支持されており、上記基体1に埋設した磁気記録媒体
2に着磁されている磁気格子Hsによる信号磁界が・薄
膜型の検出ヘソ、  ド3. I Aにて読み取られる
とともに、上記基体1に埋設した域記録媒体4に着磁さ
れている発磁部、j       4による原点信号が
原点検出用の検出ヘッド31Bにて検出されるようにな
っている。上記発磁部4による原点信号は、上記磁気格
子Hsによる測定値に絶対原点の情報を与える。従って
、この実施例では、アブソリュート方・式の測定を行う
ことができる。
In the embodiment of the spindle type length measuring unit 30 shown in FIG. 3. The signal magnetic field generated by the magnetic grating Hs magnetized in the magnetic recording medium 2 embedded in the thin film type detection hem. At the same time, the origin signal from the magnetizing section j4 magnetized in the area recording medium 4 embedded in the base 1 is detected by the detection head 31B for detecting the origin. There is. The origin signal from the magnetization unit 4 provides absolute origin information to the measured value by the magnetic grid Hs. Therefore, in this embodiment, absolute method measurement can be performed.

上述の如き実施例における各測長ユニット30は、機械
的に耐久性の有る同軸型磁気スケール本体10Aを備え
ているので、該磁気スケール本体をIOA計測要素とと
もに機械要素として兼用でき、例えば産業用ロボット、
組立機、搬送機、建設機械、輸送機械、その他の各種機
械装置の自動化等を行う場合のアクチュエータやシリン
ダ等のスピンドル軸あるいは移動台の案内軸等として上
記同軸型磁気スケール本体を用いることができる。
Each length measuring unit 30 in the embodiments described above is equipped with a mechanically durable coaxial magnetic scale main body 10A, so the magnetic scale main body can be used as a mechanical element together with an IOA measuring element, for example, for industrial use. robot,
The above coaxial magnetic scale body can be used as a spindle shaft of an actuator or cylinder, or a guide shaft of a moving platform when automating assembly machines, transport machines, construction machines, transportation machines, and other various mechanical devices. .

なお、上述の各実施例では、高透磁率材料の鉄にて形成
した基体1に磁気記録媒体2を埋設して、上記磁気記録
媒体2にNW +n界記録による磁気格子Hsを形成し
てか、本発明は上述の実施例のみに限定されるものでな
く、例えば非磁性材料にて形成した基体に磁気記録媒体
を埋設して、横磁界記録記録による磁気格子を上記磁気
記録媒体に形成するようにするようにしても良い。
In each of the above embodiments, the magnetic recording medium 2 is embedded in the base 1 made of iron, which is a high magnetic permeability material, and the magnetic lattice Hs by NW +n field recording is formed in the magnetic recording medium 2. However, the present invention is not limited to the above-described embodiments; for example, a magnetic recording medium is embedded in a base made of a non-magnetic material, and a magnetic lattice by transverse magnetic field recording is formed in the magnetic recording medium. You can do it like this.

゛〔発明の効果〕 ・ 上述の各実施例の説明から明らかなように、本発明によ
れば 、本発明に係る磁気スケールは、基体の一部に埋設した
磁気記録媒体に着磁を施すことにより磁気格子を形成す
るので、磁気スケールの機械的な強度を確保するととも
に所望の温度膨張率の材料にて任意の形状に上記基体を
形、成したものを使用することができ、従って所期の目
的を十分に達成することができる。
[Effects of the Invention] As is clear from the description of each of the above-mentioned embodiments, according to the present invention, the magnetic scale according to the present invention is capable of magnetizing the magnetic recording medium embedded in a part of the base. Since a magnetic lattice is formed, the mechanical strength of the magnetic scale is ensured, and the base body can be formed into any shape using a material with a desired coefficient of thermal expansion, and therefore, it can be used as desired. can fully achieve its objectives.

【図面の簡単な説明】 第1図は本発明に係る磁気スケールの一実施例の一部断
面斜視図であり、第2図A、Bは上記実施例における磁
気記録媒体の磁化状態の各側を示す各断面図である。第
3図は、他の実施例を示す5各断面図であり、第4図は
上記実施例の磁気スケールを使用したスピンドル型測長
ユニットの構成を示す要部縦断面図である。 1・・・基体 2・・・磁気記録媒体 10、IOA・・・同軸型磁気スケールHs・・・磁気
格子 特許出願人 ソニーマグネスケール株式会社代理人 弁
理士  小 池  晃 同  田村榮− 第1図 第2図A    第2図8 第4図 手続ネ甫正書(自発) 昭和60年9月6日 特許庁長官 宇 賀 道 部 殿 1、事件の表示 昭和60年 特許願 第1662. o、 0号2、発
明の名称 磁気スケール 3、補正をする者 事件との関係 特許出願人 住所 東京部品用区西五反田3丁目9番17号名称 ソ
ニーマグネスケール株式会社 代表者長岡和男 4、代理人 住所 〒105東京都港区虎ノ門二丁目6番4号第11
森ビル11階 T E L (508)8266(代)
自  発 6、補正の対象 明細書の「発明の詳細な説明」の欄 7、補正の内容 (7−1)明細書の第5頁第8行目から同頁第10行目
に亘る記載「上記磁気記録媒体2の・・・第2図Bに示
すように、」を削除する。 (7−2)明細書の第7頁第4行目から同頁第6行目に
“ 亘る記載[シャンク部4とし、・・・キー溝5」を
「シャンク部5とし、このシャンク部5の外周面5aに
キー溝6」と訂正する。 (7,−3’)明細書の第7頁第13行目にある記載「
上記磁気スケール本体1’ O”Aは、」を削除する。 <r−4)明細書の第7頁第18行目に亘る記載「域記
録媒体4」を「記録媒体3」と訂正する。 (7−5)明細書の第8頁第7行目から同頁第8行目に
亘る記載「該磁気スケールをIOA’Jを「該磁気スケ
ールIOAを」と訂正する。 (7−6)明細書の第9頁第1行目にある記載「・・・
ようにしても良い。」の後に、次の記載を加入する。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a partially cross-sectional perspective view of an embodiment of a magnetic scale according to the present invention, and FIGS. 2A and 2B show each side of the magnetization state of the magnetic recording medium in the above embodiment. FIG. FIG. 3 is a cross-sectional view showing another embodiment, and FIG. 4 is a longitudinal cross-sectional view of a main part showing the structure of a spindle type length measuring unit using the magnetic scale of the above embodiment. 1...Substrate 2...Magnetic recording medium 10, IOA...Coaxial magnetic scale Hs...Magnetic grating Patent applicant Sony Magnescale Corporation Representative Patent attorney Kodo Koike Sakae Tamura - Figure 1 Figure 2 A Figure 2 8 Figure 4 Procedure Neho (self-motivated) September 6, 1985 Director General of the Patent Office Uga Michibe 1, Indication of the Case 1985 Patent Application No. 1662. o, No. 0 2, Name of the invention Magnetic scale 3, Relationship with the case of the person making the amendment Patent applicant address 3-9-17 Nishigotanda, Tokyo Parts Store Name Sony Magnescale Co., Ltd. Representative Kazuo Nagaoka 4, Agent Address: 11, 2-6-4 Toranomon, Minato-ku, Tokyo 105
Mori Building 11th floor TEL (508)8266 (Main)
Vol. 6, "Detailed Description of the Invention" column 7 of the specification to be amended, Contents of the amendment (7-1) The statement from page 5, line 8 to line 10 of the same page of the specification: In the magnetic recording medium 2, as shown in FIG. 2B, "" is deleted. (7-2) From the 4th line on page 7 to the 6th line of the same page of the specification, "The description [shank part 4, ... key groove 5]" is replaced with "shank part 5, this shank part 5". The key groove 6 is corrected to the outer circumferential surface 5a of the key groove 6. (7,-3') The statement on page 7, line 13 of the specification:
In the magnetic scale main body 1'O"A," is deleted. <r-4) The description "area recording medium 4" on page 7, line 18 of the specification is corrected to "recording medium 3." (7-5) The description from page 8, line 7 to line 8 of the same page of the specification, ``The magnetic scale IOA'J is corrected to ``the magnetic scale IOA''. (7-6) The statement in the first line of page 9 of the specification “...
You can do it like this. '', add the following statement:

Claims (1)

【特許請求の範囲】 磁気記録媒体を基体の長手方向に沿つて上記基体に埋設
し、 その表面に磁気格子を形成したことを特徴とする磁気ス
ケール。
[Claims] A magnetic scale characterized in that a magnetic recording medium is embedded in the base along the longitudinal direction of the base, and a magnetic lattice is formed on the surface of the base.
JP16620085A 1985-07-27 1985-07-27 Magnetic scale Pending JPS6156903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16620085A JPS6156903A (en) 1985-07-27 1985-07-27 Magnetic scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16620085A JPS6156903A (en) 1985-07-27 1985-07-27 Magnetic scale

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15515980A Division JPS5779410A (en) 1980-11-06 1980-11-06 Coaxial magnetic scale

Publications (1)

Publication Number Publication Date
JPS6156903A true JPS6156903A (en) 1986-03-22

Family

ID=15826945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16620085A Pending JPS6156903A (en) 1985-07-27 1985-07-27 Magnetic scale

Country Status (1)

Country Link
JP (1) JPS6156903A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606256A (en) * 1992-06-08 1997-02-25 Nippon Thompson Co., Ltd. Linear encoder and a guide unit on which it is equipped
JP2007286030A (en) * 2006-03-24 2007-11-01 Yamaha Corp Magnetic scale body manufacturing method and magnetic scale body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222545A (en) * 1975-08-15 1977-02-19 Mitsubishi Electric Corp Welding wire reel supporter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222545A (en) * 1975-08-15 1977-02-19 Mitsubishi Electric Corp Welding wire reel supporter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606256A (en) * 1992-06-08 1997-02-25 Nippon Thompson Co., Ltd. Linear encoder and a guide unit on which it is equipped
JP2007286030A (en) * 2006-03-24 2007-11-01 Yamaha Corp Magnetic scale body manufacturing method and magnetic scale body

Similar Documents

Publication Publication Date Title
US4855676A (en) Ferromagnetic eddy current probe having transmit and receive coil assemblies
JPS6275328A (en) Torque sensor
Seitz Fluxgate sensor in planar microtechnology
Singh et al. Modeling and experimental studies on 3D-magnetic flux leakage testing for enhanced flaw detection in carbon steel plates
JP4910535B2 (en) Magnetostrictive ring type torque sensor
JPS6156903A (en) Magnetic scale
Kikuchi et al. Consideration of magnetization and detection on magnetic rotary encoder using finite element method
JP2960570B2 (en) Magnetic encoder
US5475305A (en) Magnetic inspection probe for measurement of magnetic anisotropy
US6532832B2 (en) Magnetoelastic torque transducer for improved torque measurement
JPH0515041Y2 (en)
JP2566640B2 (en) Torque measuring device
JPH0132447B2 (en)
JPS63107849U (en)
JPH0710243Y2 (en) Magnetic linear scale
JPH0264911A (en) Magnetic memory medium and its production
JPS59228140A (en) Magnetic elastic torque converter
JPS60192233A (en) Torque sensor
Theiner New Set Ups in NDT for Magnetic and Magnetoelastic Structure Characterization
DE59809207D1 (en) MAGNETIC PROBE
Sasada Magnetostrictive methods of detecting torque from case-hardened steel shafts
JPH0272917U (en)
JPH0339617B2 (en)
JPH0431726A (en) Noncontact type torque sensor
JPH02281115A (en) Strain detector