JPH0515041Y2 - - Google Patents

Info

Publication number
JPH0515041Y2
JPH0515041Y2 JP1986017979U JP1797986U JPH0515041Y2 JP H0515041 Y2 JPH0515041 Y2 JP H0515041Y2 JP 1986017979 U JP1986017979 U JP 1986017979U JP 1797986 U JP1797986 U JP 1797986U JP H0515041 Y2 JPH0515041 Y2 JP H0515041Y2
Authority
JP
Japan
Prior art keywords
magnetic
shaft
track
linear scale
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986017979U
Other languages
Japanese (ja)
Other versions
JPS62133108U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986017979U priority Critical patent/JPH0515041Y2/ja
Publication of JPS62133108U publication Critical patent/JPS62133108U/ja
Application granted granted Critical
Publication of JPH0515041Y2 publication Critical patent/JPH0515041Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、プリンタ、ロボツト、数値制御機械
などの各種の分野において直線上の位置を磁気的
に検出する磁気リニアスケールに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic linear scale that magnetically detects a position on a straight line in various fields such as printers, robots, and numerically controlled machines.

[従来の技術] 従来の磁気リニアスケールは、鉄製の直線状の
歯型スケールと、ホール素子、強磁性体抵抗素子
などの磁気センサとの組合わせ、或いは非磁性の
直線状板に塗布した磁性媒体と磁気センサとの組
合わせによるものなどが用いられている。従来、
第2図の例に示すように、高保磁力円柱状の磁性
体シヤフト1の外周面に、磁極の向きが交互に反
対となるように、磁性体シヤフト1の軸方向に所
定の書込み寸法P1で連続的に磁気書込みを行う
ことにより磁気トラツク3が設定されている。ま
た、磁気トラツク3に近接し、且つ、磁気トラツ
ク3に沿つて移動できるように磁気センサ2が設
けられている。この磁気センサ2は、磁気トラツ
ク3に沿つて磁性体シヤフト1上を移動する時、
書込み寸法P1に対応した電圧を出力する。
[Prior art] Conventional magnetic linear scales are a combination of a linear tooth-shaped scale made of iron and a magnetic sensor such as a Hall element or a ferromagnetic resistance element, or a magnetic sensor coated on a non-magnetic linear plate. A combination of a medium and a magnetic sensor is used. Conventionally,
As shown in the example of FIG. 2, a predetermined writing dimension P1 is written on the outer peripheral surface of the high coercivity cylindrical magnetic shaft 1 in the axial direction of the magnetic shaft 1 so that the direction of the magnetic poles is alternately opposite. A magnetic track 3 is set by continuously performing magnetic writing. Further, a magnetic sensor 2 is provided close to the magnetic track 3 and movable along the magnetic track 3. When this magnetic sensor 2 moves on the magnetic shaft 1 along the magnetic track 3,
A voltage corresponding to the writing dimension P1 is output.

磁気センサ2は、主として面内磁場での感度が
高い強磁性体磁気抵抗素子(MR素子)が使用さ
れ、感度の点で他のホール素子などの磁気センサ
よりも優れている。第2図における書込み寸法P
1は、磁気センサ2の出力レベルに影響を与え
る。第3図のごとく、書込み寸法P1が減少する
に従つて出力電圧は単調に減少する傾向がある。
The magnetic sensor 2 mainly uses a ferromagnetic magnetoresistive element (MR element) that is highly sensitive to in-plane magnetic fields, and is superior to other magnetic sensors such as Hall elements in terms of sensitivity. Written dimension P in Figure 2
1 influences the output level of the magnetic sensor 2. As shown in FIG. 3, as the writing dimension P1 decreases, the output voltage tends to decrease monotonically.

[考案が解決しようとする課題] 第2図のような従来の構成においては、スケー
ルとしての分解能を高めるためには書込み寸法P
1を小さくすることが必要である。しかし、それ
に従つて磁気センサの出力電圧も減少し、高分解
能とすることは、電気的、機械的に困難となる欠
点がある。
[Problem to be solved by the invention] In the conventional configuration as shown in Fig. 2, in order to increase the resolution as a scale, the writing dimension P
It is necessary to make 1 small. However, the output voltage of the magnetic sensor also decreases accordingly, and there is a drawback that achieving high resolution is electrically and mechanically difficult.

それ故に、本考案の課題は、スケールとしての
分解能が高い磁気リニアスケールを提供すること
にある。
Therefore, an object of the present invention is to provide a magnetic linear scale with high resolution as a scale.

[課題を解決するための手段] 本考案によれば、高保磁力の磁性金属よりなる
円柱状の磁性体シヤフトと、該磁性体シヤフトの
外周を一定の長さで磁極の向きが交互に逆となる
ように磁化することにより前記磁性体シヤフトの
外周面に形成された磁気トラツクと、該磁気トラ
ツクに沿つて移動可能なように設けられ、前記磁
気トラツクから漏れる磁束を検出する磁気センサ
とを含む磁気リニアスケールにおいて、前記磁気
トラツクが前記磁性体シヤフトの軸方向と一定の
角度をなすように前記磁性体シヤフトの外周面に
螺旋状に形成され、前記磁気センサが前記磁気ト
ラツクに沿つて螺旋状に移動するように設けられ
ていることを特徴とする磁気リニアスケールが得
られる。
[Means for Solving the Problems] According to the present invention, there is provided a cylindrical magnetic shaft made of a magnetic metal with high coercive force, and a magnetic pole whose direction is alternately reversed at a constant length around the outer periphery of the magnetic shaft. a magnetic track formed on the outer circumferential surface of the magnetic shaft by magnetizing it so that In the magnetic linear scale, the magnetic track is spirally formed on the outer peripheral surface of the magnetic shaft so as to form a certain angle with the axial direction of the magnetic shaft, and the magnetic sensor is spirally formed along the magnetic track. A magnetic linear scale is obtained, which is characterized in that it is provided so as to move.

[作用] 従来の磁気リニアスケールの場合、通常、検出
対象の物体が距離Dだけ移動すると、磁気センサ
もDだけ移動するように成つている。これに対
し、本考案の磁気リニアスケールの場合、磁性体
シヤフトの軸方向と磁気トラツクの長手方向とが
成す角度をθとすると、磁気センサは磁気トラツ
クに沿つて螺旋状に移動するので、通常、検出対
象の物体が距離Dだけ移動すると、磁気センサ
は、D・1/cosθだけ移動するように成つてい
る。即ち、距離Dを検出するのに用いられる磁気
トラツクの長さは、通常、従来ではDであるのに
対して、本考案ではD・1/cosθである。従つ
て、従来の磁気リニアスケールと本考案の磁気リ
ニアスケールとで、磁気トラツクの書込み寸法を
同じにした場合、本考案の磁気リニアスケールの
方が1/cosθ倍だけ、書込み数を増やすことがで
きるので、分解能が向上する。
[Operation] In the case of a conventional magnetic linear scale, when the object to be detected moves by a distance D, the magnetic sensor also moves by D. On the other hand, in the case of the magnetic linear scale of the present invention, if the angle between the axial direction of the magnetic shaft and the longitudinal direction of the magnetic track is θ, the magnetic sensor moves in a spiral along the magnetic track. , when the object to be detected moves by a distance D, the magnetic sensor moves by D·1/cosθ. That is, the length of the magnetic track used to detect the distance D is normally D in the conventional case, but in the present invention it is D·1/cos θ. Therefore, if the writing dimensions of the magnetic tracks are the same between the conventional magnetic linear scale and the magnetic linear scale of the present invention, the number of writes can be increased by 1/cosθ times with the magnetic linear scale of the present invention. This improves resolution.

[実施例] 第1図は本考案の一実施例による磁気リニアス
ケールの磁気検知部分の構成略図である。
[Embodiment] FIG. 1 is a schematic diagram of the configuration of a magnetic sensing portion of a magnetic linear scale according to an embodiment of the present invention.

第1図を参照して、本実施例の磁気リニアスケ
ールは、磁性体シヤフト1と、磁気センサ2と、
磁気トラツク3とを有している。
Referring to FIG. 1, the magnetic linear scale of this embodiment includes a magnetic shaft 1, a magnetic sensor 2,
It has a magnetic track 3.

磁性体シヤフト1は、高保磁力の磁性金属より
なり、円柱状を呈する。磁気トラツク1の外周面
には、磁気トラツク3が1本形成されている。磁
気トラツク3は、磁性体シヤフト1の軸方向と一
定の角度θを成す方向に磁性体シヤフト1の外周
面に螺旋状に形成されている。磁気トラツク3を
構成する磁気書込みは、従来と同様に、書込み寸
法P1で多数一定に磁性体シヤフト1の外周に記
録され、且つ、磁気書込みの磁極の向きが交互に
180°逆となるように記録されている。尚、角度θ
を大きくしていくと、磁性体シヤフト1の軸方向
において、磁気トラツク3のピツチが小さくな
り、軸方向において隣合う磁気書込み同士の漏洩
磁束が干渉するようになるので、これを防ぐた
め、角度θは、軸方向において隣合う磁気書込み
同士が離れるようにしてこれらの間で漏洩磁束の
干渉が生じないように設定される。
The magnetic shaft 1 is made of a magnetic metal with high coercive force and has a cylindrical shape. One magnetic track 3 is formed on the outer peripheral surface of the magnetic track 1. The magnetic track 3 is spirally formed on the outer peripheral surface of the magnetic shaft 1 in a direction forming a constant angle θ with the axial direction of the magnetic shaft 1. As in the conventional case, a large number of magnetic writings constituting the magnetic track 3 are recorded on the outer periphery of the magnetic shaft 1 at a fixed number with a writing dimension P1, and the direction of the magnetic poles of the magnetic writings is alternately arranged.
Recorded 180° in reverse. Furthermore, the angle θ
As the angle is increased, the pitch of the magnetic tracks 3 becomes smaller in the axial direction of the magnetic shaft 1, and leakage magnetic flux between adjacent magnetic writes in the axial direction will interfere with each other. θ is set so that magnetic writing adjacent to each other in the axial direction is separated from each other so that interference of leakage magnetic flux does not occur between them.

磁気センサ2は、磁気トラツク3に接近して対
向し、且つ、磁気トラツク3に沿つて螺旋状に移
動するように設けられている。このように磁気セ
ンサ2は、磁気トラツク3に沿つて螺旋状に移動
し、近似正弦波状の磁束変化を検出する。磁気セ
ンサ2を螺旋状に移動させる機構としては、ボー
ル送りネジなどの機構がある。
The magnetic sensor 2 is provided close to and opposite the magnetic track 3 and so as to move helically along the magnetic track 3. In this manner, the magnetic sensor 2 moves spirally along the magnetic track 3 and detects changes in the magnetic flux in the form of an approximately sinusoidal wave. As a mechanism for moving the magnetic sensor 2 in a spiral manner, there is a mechanism such as a ball feed screw.

今、磁性体シヤフト1の軸方向と、磁気トラツ
ク3の基準線を成す角度がθである場合は、磁気
トラツク3を磁性体シヤフト1の軸方向に形成す
る場合と比較して同一書込み寸法で、磁性体シヤ
フト1の軸方向に1/cosθ倍の分解能が得られ
る。即ち、書込み寸法P1と比べて、磁性体シヤ
フト1の直径dが十分に大きい場合は、磁気セン
サ2の出力レベルを減少することなしに、分解能
を高めることが可能である。
Now, if the angle between the axial direction of the magnetic shaft 1 and the reference line of the magnetic track 3 is θ, the same writing dimension will be obtained compared to the case where the magnetic track 3 is formed in the axial direction of the magnetic shaft 1. , a resolution of 1/cos θ can be obtained in the axial direction of the magnetic shaft 1. That is, if the diameter d of the magnetic shaft 1 is sufficiently large compared to the writing dimension P1, it is possible to increase the resolution without reducing the output level of the magnetic sensor 2.

[考案の効果] 以上説明したごとく、本考案によれば、従来の
磁気リニアスケールに比較して、磁気センサの出
力レベルを減少させる事なしに分解能を向上させ
ることができる。
[Advantages of the Invention] As described above, according to the present invention, it is possible to improve the resolution without reducing the output level of the magnetic sensor, as compared with the conventional magnetic linear scale.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例による磁気リニアス
ケールの磁気検知部分の構成略図、第2図は従来
の磁気リニアスケールの一例における磁気検知部
分の構成略図、第3図は磁気トラツクの書込み寸
法に対する磁気センサの最大出力電圧との関係を
示す特性曲線図である。 1……磁性体シヤフト、2……磁気センサ、3
……磁気トラツク。
Fig. 1 is a schematic diagram of the structure of the magnetic detection part of a magnetic linear scale according to an embodiment of the present invention, Fig. 2 is a schematic diagram of the structure of the magnetic detection part of an example of a conventional magnetic linear scale, and Fig. 3 is the writing dimension of the magnetic track. FIG. 3 is a characteristic curve diagram showing the relationship between the maximum output voltage of the magnetic sensor and the maximum output voltage of the magnetic sensor. 1... Magnetic shaft, 2... Magnetic sensor, 3
...magnetic track.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高保磁力の磁性金属よりなる円柱状の磁性体シ
ヤフトと、該磁性体シヤフトの外周を一定の長さ
で磁極の向きが交互に逆となるように磁化するこ
とにより前記磁性体シヤフトの外周面に形成され
た磁気トラツクと、該磁気トラツクに沿つて移動
可能なように設けられ、前記磁気トラツクから漏
れる磁束を検出する磁気センサとを含む磁気リニ
アスケールにおいて、前記磁気トラツクが前記磁
性体シヤフトの軸方向と一定の角度をなすように
前記磁性体シヤフトの外周面に螺旋状に形成さ
れ、前記磁気センサが前記磁気トラツクに沿つて
螺旋状に移動するように設けられていることを特
徴とする磁気リニアスケール。
A cylindrical magnetic shaft made of a magnetic metal with a high coercive force, and a magnetized outer periphery of the magnetic shaft for a certain length so that the direction of the magnetic poles are alternately reversed. A magnetic linear scale including a magnetic track formed therein, and a magnetic sensor that is movably provided along the magnetic track and detects magnetic flux leaking from the magnetic track, wherein the magnetic track is aligned with the axis of the magnetic shaft. The magnetism is formed in a spiral shape on the outer peripheral surface of the magnetic material shaft so as to form a certain angle with the direction, and the magnetic sensor is provided so as to move in a spiral shape along the magnetic track. linear scale.
JP1986017979U 1986-02-10 1986-02-10 Expired - Lifetime JPH0515041Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986017979U JPH0515041Y2 (en) 1986-02-10 1986-02-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986017979U JPH0515041Y2 (en) 1986-02-10 1986-02-10

Publications (2)

Publication Number Publication Date
JPS62133108U JPS62133108U (en) 1987-08-22
JPH0515041Y2 true JPH0515041Y2 (en) 1993-04-21

Family

ID=30811234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986017979U Expired - Lifetime JPH0515041Y2 (en) 1986-02-10 1986-02-10

Country Status (1)

Country Link
JP (1) JPH0515041Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168542A1 (en) * 2016-03-29 2017-10-05 株式会社日立システムズ Position detection apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892909A (en) * 1981-11-30 1983-06-02 Matsushita Electric Ind Co Ltd Magnetic graduated scale

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892909A (en) * 1981-11-30 1983-06-02 Matsushita Electric Ind Co Ltd Magnetic graduated scale

Also Published As

Publication number Publication date
JPS62133108U (en) 1987-08-22

Similar Documents

Publication Publication Date Title
US6118271A (en) Position encoder using saturable reactor interacting with magnetic fields varying with time and with position
JP5079816B2 (en) Preferably a magnetic position sensor having a magnet shape that varies pseudo-sinusoidally.
JP2536566Y2 (en) Rotation sensor
US6160395A (en) Non-contact position sensor
US7112957B2 (en) GMR sensor with flux concentrators
JP3457086B2 (en) Throttle type rotational position sensor for internal combustion engine with throttle
US5497082A (en) Quadrature detector with a hall effect element and a magnetoresistive element
JPH07260412A (en) Rotational position sensor
US6346806B1 (en) Device for detecting the position of a moveable magnet to produce a magnetic field
JPH0685927U (en) Spline bearing
CN102227614A (en) Magnetic encoder
JPH0515041Y2 (en)
CA2283209C (en) Device for detecting the position of a moveable magnet for generating a magnetic field
JPH10170212A (en) Absolute value type magnetic displacement detecting device
JP5348009B2 (en) Angle sensor
JP6387788B2 (en) Magnetic medium for magnetic encoder, magnetic encoder, and method for manufacturing magnetic medium
JPS5914305B2 (en) Ram displacement detection device in die-casting machine
JP2960570B2 (en) Magnetic encoder
JP3358074B2 (en) Angle detector
JP4912595B2 (en) Position detection device
JPH074986A (en) Reference position detector
US11796301B2 (en) Sensor element for storing rotation or position information
JP2003257738A (en) Permanent magnet, its manufacturing method, and position sensor
JPH0315702A (en) Position detector for driving cylinder
US20220120587A1 (en) Sensor apparatus and operating method therefor