JPS6156749B2 - - Google Patents

Info

Publication number
JPS6156749B2
JPS6156749B2 JP14008881A JP14008881A JPS6156749B2 JP S6156749 B2 JPS6156749 B2 JP S6156749B2 JP 14008881 A JP14008881 A JP 14008881A JP 14008881 A JP14008881 A JP 14008881A JP S6156749 B2 JPS6156749 B2 JP S6156749B2
Authority
JP
Japan
Prior art keywords
sintered body
diamond sintered
bit
layer
drilling bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14008881A
Other languages
Japanese (ja)
Other versions
JPS5841180A (en
Inventor
Juichiro Kono
Akio Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14008881A priority Critical patent/JPS5841180A/en
Publication of JPS5841180A publication Critical patent/JPS5841180A/en
Publication of JPS6156749B2 publication Critical patent/JPS6156749B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はダイヤモンドを主体としたダイヤモン
ド焼結体が超硬合金などよりなる支持部材と結合
された複合ダイヤモンド焼結体を刃先に有する掘
削ビツトの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a drilling bit having a composite diamond sintered body on its cutting edge, in which a diamond sintered body mainly composed of diamond is bonded to a support member made of cemented carbide or the like.

従来、石油、天然ガス、地熱などの地下資源利
用のため、石油井、地熱井の掘削が行われてい
る。掘削にはドリルビツトと称する掘削用具が用
いられ、この刃先材料として超硬合金が主に用い
られてきた。
Conventionally, oil wells and geothermal wells have been drilled to utilize underground resources such as oil, natural gas, and geothermal heat. A drilling tool called a drill bit is used for drilling, and cemented carbide has been mainly used as the cutting edge material.

ところが地層の中でも比較的軟質の堆積層では
超硬合金製ドリルビツトで充分な掘削能率とビツ
ト寿命が得られるが、堆積層でも硬質のものや、
火成岩では非常にビツト寿命が短かく殆んど掘削
できない場合もあるのが実情であつた。
However, although a drill bit made of cemented carbide can provide sufficient drilling efficiency and long bit life in relatively soft sedimentary layers, even in hard sedimentary layers,
The reality is that in igneous rocks, the bit life is so short that in some cases it is almost impossible to excavate.

さてこのような硬質地層掘削用のビツト刃先材
料としてダイヤモンド粒子を超高圧下で焼結した
多結晶焼結ダイヤモンドが開発され使用され出し
ている。
Now, polycrystalline sintered diamond, which is made by sintering diamond particles under ultra-high pressure, has been developed and is being used as a cutting edge material for bits used in hard geological excavation.

多結晶焼結ダイヤモンドは、最初、金属材料切
削用工具として開発され、第1図に示すような多
結晶ダイヤモンド層1が超硬合金層2に接合され
た形のものが使用されていた。
Polycrystalline sintered diamond was first developed as a tool for cutting metal materials, and a tool in which a polycrystalline diamond layer 1 was bonded to a cemented carbide layer 2 as shown in FIG. 1 was used.

掘削用途用のものも第1図とほぼ同じ形のもの
が使用され、これを刃先に固着した掘削用ビツト
が使用されている。
Bits for excavation are also used, having a shape almost the same as that shown in Figure 1, and are used as drilling bits with this bit fixed to the cutting edge.

ところが、掘削用途では通常の金属切削と異な
り掘削時に非常に大きな衝撃が刃先に加わり、か
つ地層が硬質である場合に刃先に対する摩耗作用
も非常に厳しい。
However, in excavation applications, unlike ordinary metal cutting, a very large impact is applied to the cutting edge during excavation, and if the stratum is hard, the abrasion effect on the cutting edge is also very severe.

この内掘削時の衝撃が大きいのが特に問題で、
このため第2図のビツトにより掘削した際刃先の
焼結ダイヤモンド層が大きく欠損してしまいビツ
トが使用に耐えなくなつてしまうのがこれまでの
焼結ダイヤモンドを使用した掘削ビツトの最大の
問題であつた。
A particular problem is that the impact during excavation is large.
For this reason, when drilling with the bit shown in Figure 2, the sintered diamond layer on the cutting edge is severely damaged, making the bit unusable, which is the biggest problem with conventional drilling bits that use sintered diamond. It was hot.

本発明はこのような従来の焼結ダイヤモンドを
使用した掘削ビツトの欠点を改良し、刃先の焼結
ダイヤモンド層の大欠けが生じない長寿命掘削ビ
ツトを提供するものである。
The present invention aims to improve the drawbacks of conventional drilling bits using sintered diamond, and provide a long-life drilling bit in which the sintered diamond layer at the cutting edge does not suffer from major chipping.

本発明はダイヤモンドを60容量%以上含むダイ
ヤモンド焼結体と該ダイヤモンド焼結体の上下両
面全面に支持部材が直接に、あるいは中間接合層
を介して結合されている複合ダイヤモンド焼結体
をビツト本体に鑞付け、圧入その他適当な方法に
より埋め込み固着して刃先材料としたことを特徴
とする掘削ビツトである。
The present invention provides a bit body comprising a diamond sintered body containing 60% by volume or more of diamond, and a composite diamond sintered body in which support members are bonded to the entire upper and lower surfaces of the diamond sintered body either directly or through an intermediate bonding layer. This drilling bit is characterized in that the cutting edge material is embedded and fixed by brazing, press-fitting, or other suitable methods.

さて、本発明掘削ビツトの効果を第2図により
説明する。
Now, the effects of the drilling bit of the present invention will be explained with reference to FIG.

第2図は本発明による掘削ビツトの頭部の1つ
の複合ダイヤモンド焼結体刃先に注目したもの
で、第2図イに示すように両面に支持部材2,3
を有する複合ダイヤモンド焼結体5がビツト本体
4に埋め込み固着されている。
FIG. 2 focuses on one composite diamond sintered cutting edge of the head of the drilling bit according to the present invention, and as shown in FIG.
A composite diamond sintered body 5 having a diameter is embedded and fixed in the bit body 4.

この状態ではダイヤモンド焼結体刃先は穏れて
おり、支持部材3が上面に出ている。この状態で
掘削を開始すると支持部材3が超硬合金である場
合には、最初は支持部材超硬合金層で掘削を行
う。ところが硬質岩層になると表面の超硬合金支
持部材層は摩耗してしまい下層のダイヤモンド焼
結体層があらわれてこれで掘削を行うようにな
る。支持部材がa、a、a族その他の金属
層である場合は、金属層の摩耗が早期に生じ、す
ぐ下部のダイヤモンド焼結体層があらわれる。こ
の状態を模式的に示したものが第2図ロである。
上部支持部材3が摩耗して下部のダイヤモンド焼
結体1があらわれ、その刃先11が掘削作用を行
うようになる。
In this state, the cutting edge of the diamond sintered body is smooth, and the support member 3 is exposed on the upper surface. When excavation is started in this state, if the support member 3 is made of cemented carbide, excavation is first performed in the support member cemented carbide layer. However, when it comes to hard rock layers, the cemented carbide support member layer on the surface wears away, revealing the underlying diamond sintered body layer, which is used for excavation. When the supporting member is a metal layer of group A, A, group A, or other metal layer, the metal layer wears out quickly, and the diamond sintered body layer immediately below is exposed. This state is schematically shown in FIG. 2B.
As the upper support member 3 wears away, the lower diamond sintered body 1 appears, and its cutting edge 11 begins to perform an excavating action.

こうするとダイヤモンド焼結体層は掘削作用を
行うに必要なだけの切刃が露出し、他の部分は支
持部材3に覆われていることになる。
In this way, only the cutting edge of the diamond sintered body layer necessary for performing the excavation action is exposed, and the other portions are covered by the support member 3.

支持部材3はダイヤモンド焼結体1に比べてね
ばい。このため刃先11に大きな衝撃力が加わつ
て欠けが発生しても亀裂は支持部材3で覆われて
いる領域には進展せず、従つて大きな欠損によつ
てこのダイヤモンド焼結体層が使用不能になつて
しまうということがない。
The support member 3 is more sticky than the diamond sintered body 1. Therefore, even if a large impact force is applied to the cutting edge 11 and a chip occurs, the crack will not propagate to the area covered by the support member 3, and the diamond sintered body layer will become unusable due to the large chip. I never get used to it.

さて、この支持部材による大欠損防止効果は支
持部材3とダイヤモンド焼結体1とが強個に接合
していればいる程大となる。
Now, the effect of preventing large chipping by this support member becomes greater as the support member 3 and the diamond sintered body 1 are more strongly joined together.

この点で支持部材とダイヤモンド焼結体層が直
接接合している場合はやや問題がある。
In this respect, there is a slight problem when the supporting member and the diamond sintered body layer are directly joined.

すなわち、ダイヤモンド焼結体と支持部材が直
接接合した状態でこれを焼結しようとすると焼結
中にダイヤモンドを構成する炭素が支持部材中に
拡散し、このために界面近傍の支持部材中に炭化
物を形成するなどして界面近傍の支持部材が脆く
なり、このためダイヤモンド焼結体と支持部材の
結合強度がやや低下する。
In other words, if an attempt is made to sinter a diamond sintered body and a supporting member in a state where they are directly joined, the carbon that makes up the diamond will diffuse into the supporting member during sintering, and as a result, carbides will form in the supporting member near the interface. The supporting member near the interface becomes brittle due to the formation of a diamond sintered body, and the bonding strength between the diamond sintered body and the supporting member decreases slightly.

この界面反応を生じさせず、かつダイヤモンド
焼結体、支持部材相互と強固に接合する中間接合
層を用いてやればこの問題は解決し、より好まし
いものとなる。
This problem can be solved by using an intermediate bonding layer that does not cause this interfacial reaction and firmly bonds the diamond sintered body and the support member to each other, which is more preferable.

このような中間接合層として、立方晶窒化硼素
(CBN)の含有率が70容量%以下で、残部が周期
律表a族のTi、Zr、Hfの炭化物、窒化物、炭
窒化物あるいは硼化物の一種もしくはこれらの混
合物または相互固溶体化合物を主体としたものと
これにAlおよび/またはSiを0.1重量%以上含有
させたものが適している。この中間層が適してい
るのは比較的低温で支持部材、ダイヤモンド焼結
体相方と強固な接合を形成し、かつ耐熱性にもす
ぐれていることによる。
As such an intermediate bonding layer, the content of cubic boron nitride (CBN) is 70% by volume or less, and the remainder is a carbide, nitride, carbonitride, or boride of Ti, Zr, or Hf from Group A of the Periodic Table. or a mixture thereof, or a mutual solid solution compound, and a material containing Al and/or Si in an amount of 0.1% by weight or more are suitable. This intermediate layer is suitable because it forms a strong bond with the supporting member and the diamond sintered body partner at a relatively low temperature, and also has excellent heat resistance.

さて、このダイヤモンド焼結体層の大欠損を防
止する支持部材の厚みは、ダイヤモンド焼結体層
の厚み以下であればよい。ダイヤモンド焼結体層
は通常0.5〜1.0mm程度であるが、支持部材の厚み
がこれ以上あると先に説明した第2図ロのように
ダイヤモンド焼結体層が一部露出した状態となつ
たとき、この支持部材が掘削した岩石の小片の流
出を却つて妨げる状態になる可能性があるからで
ある。
Now, the thickness of the support member that prevents large defects in the diamond sintered body layer may be equal to or less than the thickness of the diamond sintered body layer. The diamond sintered layer is usually about 0.5 to 1.0 mm thick, but if the supporting member is thicker than this, the diamond sintered layer will be partially exposed, as shown in Figure 2 (b) explained earlier. This is because there is a possibility that this support member may actually be in a state of obstructing the outflow of small pieces of excavated rock.

又、中間接合層を有する場合は、この中間接合
層はダイヤモンド焼結体層と支持部材を強固に接
合するのが目的であるため、通常0.5mm以下で充
分であり、これ以上の厚みは不必要で不経済であ
る。以下、本発明の実施例を第3図を参照して以
下に説明する。
In addition, when an intermediate bonding layer is provided, the purpose of this intermediate bonding layer is to firmly bond the diamond sintered compact layer and the supporting member, so a thickness of 0.5 mm or less is usually sufficient, and a thickness greater than this is not acceptable. Necessary and uneconomical. Hereinafter, embodiments of the present invention will be described below with reference to FIG.

実施例 1 第3図は本発明に基づく第1の実施例で、厚さ
2mmのWC−10%Co超硬合金支持部材6上に厚さ
0.5mmのダイヤモンド焼結体7、さらにその上に
厚さ0.3mmのWC−10%Co超硬合金支持部材8が
結合した複合ダイヤモンド焼結体9がビツト本体
10に固着されている。
Embodiment 1 FIG. 3 shows a first embodiment based on the present invention.
A composite diamond sintered body 9 comprising a 0.5 mm diamond sintered body 7 and a 0.3 mm thick WC-10% Co cemented carbide support member 8 bonded thereon is fixed to the bit body 10.

これと比較のため、厚さ2mmのWC−10%Co超
硬合金上に厚さ0.5mmのダイヤモンド焼結体を固
着した同一形状のビツトも作成した。このビツト
を用い圧縮強度1400Kg/mm2の安山岩のドリル試験
を行つた。回転数は140rpm、ドリル穿孔速度は
10cm/min、水使用の条件である。この結果本発
明ビツトは30分のドリリング後継続使用可の状態
であつたのに対し、比較用ビツトは2分のドリリ
ングでダイヤモンド焼結体部が大破し、使用不能
となつた。
For comparison, a bit of the same shape was also made by fixing a 0.5 mm thick diamond sintered body onto a 2 mm thick WC-10% Co cemented carbide. Using this bit, we conducted a drill test on andesite with a compressive strength of 1400Kg/mm 2 . The rotation speed is 140 rpm, and the drilling speed is
10cm/min, water usage condition. As a result, the bit of the present invention remained usable after 30 minutes of drilling, whereas the comparative bit suffered severe damage to the diamond sintered body portion after 2 minutes of drilling, making it unusable.

実施例 2 第2の実施例はやはり第3図に示したものと同
一形状のもので、厚さ2mmのWC−15%Co超硬合
金支持部材上に厚さ0.5mmのダイヤモンド焼結体
層、更にその上に厚さ0.2mmのモリブデン層が形
成され、かつ、超硬合金支持部材、モリブデン各
層とダイヤモンド焼結体層との界面に厚さ0.05mm
で、60容量%のCBNをTiN−20重量%Alの結合剤
で結合した中間接合層を介して結合された複合ダ
イヤモンド焼結体を刃先に固着したドリルビツト
である。この場合もやはり比較のため厚さ2mmの
WC−15%Co超硬合金支持部材上に厚さ0.5mmの
ダイヤモンド焼結体層が形成された複合ダイヤモ
ンド焼結体を刃先に固着した同一形状のドリルビ
ツトも作成した。
Example 2 The second example has the same shape as shown in FIG. 3, with a 0.5 mm thick diamond sintered body layer on a 2 mm thick WC-15% Co cemented carbide support member. Furthermore, a molybdenum layer with a thickness of 0.2 mm is formed on it, and a layer with a thickness of 0.05 mm is formed on the interface between the cemented carbide support member, each molybdenum layer and the diamond sintered body layer.
This is a drill bit with a composite diamond sintered body bonded to the cutting edge via an intermediate bonding layer in which 60% by volume CBN is bonded with a binder of TiN and 20% by weight Al. In this case, for comparison, a 2 mm thick
A drill bit with the same shape was also created, in which a composite diamond sintered body, in which a 0.5 mm thick diamond sintered body layer was formed on a WC-15%Co cemented carbide support member, was fixed to the cutting edge.

これらのドリルビツトを用い圧縮強度1800Kg/
cm2の花崗岩のドリル試験を行つた。試験条件は第
1の実施例と同じである。
Using these drill bits, compressive strength of 1800Kg/
cm 2 granite drill test was carried out. The test conditions are the same as in the first example.

この結果、比較用ビツトはわずか1分のドリリ
ングでダイヤモンド焼結体部が大破し、使用不能
となつたのに対し、本発明ビツトは20分のドリリ
ング後も継続使用可の状態であつた。
As a result, the diamond sintered body of the comparative bit was severely damaged after just one minute of drilling, and the bit became unusable, whereas the bit of the present invention remained usable even after 20 minutes of drilling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の掘削ビツト用複合ダイヤモンド
焼結体の外観図、第2図は本発明の掘削ビツトの
刃先部の外観図、第3図は本発明の掘削ビツトの
実施例を示す上面図イと正面図ロである。 1,7:ダイヤモンド焼結体、2,6:下部支
持部材、3,8:上部支持部材、4,10:ビツ
ト本体、5,9:複合ダイヤモンド焼結体、1
1:切刃。
Fig. 1 is an external view of a conventional composite diamond sintered body for a drilling bit, Fig. 2 is an external view of the cutting edge of the drilling bit of the present invention, and Fig. 3 is a top view showing an embodiment of the drilling bit of the present invention. A and front view B. 1, 7: Diamond sintered body, 2, 6: Lower support member, 3, 8: Upper support member, 4, 10: Bit body, 5, 9: Composite diamond sintered body, 1
1: Cutting blade.

Claims (1)

【特許請求の範囲】 1 ダイヤモンドを60容量%以上含むダイヤモン
ド焼結体と該ダイヤモンド焼結体の上下両面全面
に支持部材が直接にあるいは中間接合層を介して
結合されている複合ダイヤモンド焼結体をビツト
本体に鑞付け、圧入等の方法により埋め込み固着
された上記複合ダイヤモンド焼結体を刃先として
使用することを特徴とする掘削ビツト。 2 複合ダイヤモンド焼結体の両方の支持部材が
周期律表a、a、a族元素の炭化物、ある
いはこれらの相互固溶体炭化物を鉄族金属で結合
した超硬合金であることを特徴とする特許請求の
範囲第1項の掘削ビツト。 3 複合ダイヤモンド焼結体の両方の支持部材が
周期律表a、a、a族金属、Mn、Fe、
Co、Ni、Cuまたはこれらの合金であることを特
徴とする特許請求の範囲第1項記載の掘削ビツ
ト。 4 複合ダイヤモンド焼結体の支持部材のうち、
一方が、周期律表a、a、a族元素の炭化
物あるいはこれらの相互固溶体炭化物を鉄族金属
で結合した超硬合金であり、他方が周期律表
a、a、a族の金属、Mn、Fe、Co、Ni、
Cuまたはこれらの合金であることを特徴とする
特許請求の範囲第1項記載の掘削ビツト。 5 複合ダイヤモンド焼結体の支持部材のうち一
方の厚みがダイヤモンド焼結体層の厚みよりも小
であることを特徴とする特許請求の範囲第1項乃
至第4項記載の掘削ビツト。 6 特許請求の範囲第1〜第5項に記載した掘削
ビツトにおいて、複合ダイヤモンド焼結体の中央
のダイヤモンド焼結体と支持部材との一方又は両
方の界面に中間接合層を有し、かつ該中間接合層
が、70容量%未満の立方晶型窒化硼素と残部が周
期律表a族のTi、Zr、Hfの炭化物、窒化物、
炭窒化物、あるいは硼化物の一種もしくはこれら
の混合物、相互固溶体化合物を主体とし、これに
Alおよび/またはSiを0.1重量%以上含有するこ
とを特徴とする掘削ビツト。 7 複合ダイヤモンド焼結体のダイヤモンド焼結
体と支持部材との間の中間接合層の厚みが0.5mm
以下であることを特徴とする特許請求の範囲第6
項記載の掘削ビツト。
[Claims] 1. A composite diamond sintered body comprising a diamond sintered body containing 60% by volume or more of diamond, and supporting members bonded to the entire upper and lower surfaces of the diamond sintered body directly or via an intermediate bonding layer. An excavation bit characterized in that the above-mentioned composite diamond sintered body is embedded and fixed into the bit body by a method such as brazing or press-fitting, and is used as a cutting edge. 2. A patent claim characterized in that both supporting members of the composite diamond sintered body are carbides of elements in group a, Excavation bit of the first term in the range. 3 Both supporting members of the composite diamond sintered body are metals of group a, a, group a of the periodic table, Mn, Fe,
The drilling bit according to claim 1, characterized in that it is made of Co, Ni, Cu or an alloy thereof. 4 Among the supporting members of the composite diamond sintered body,
One is a cemented carbide made of carbides of elements in groups a, a, and a of the periodic table or their mutual solid solution carbides combined with iron group metals, and the other is a carbide of metals in groups a, a, and a of the periodic table, Mn, Fe, Co, Ni,
The drilling bit according to claim 1, characterized in that it is made of Cu or an alloy thereof. 5. The drilling bit according to claim 1, wherein the thickness of one of the supporting members of the composite diamond sintered body is smaller than the thickness of the diamond sintered body layer. 6. The drilling bit according to claims 1 to 5, which has an intermediate bonding layer at one or both interfaces between the central diamond sintered body and the support member of the composite diamond sintered body, and The intermediate bonding layer is made of less than 70% by volume of cubic boron nitride and the remainder is carbide or nitride of Ti, Zr, or Hf from group a of the periodic table.
Mainly carbonitrides, borides, or mixtures thereof, mutual solid solution compounds;
A drilling bit characterized by containing 0.1% by weight or more of Al and/or Si. 7 The thickness of the intermediate bonding layer between the diamond sintered body and the support member of the composite diamond sintered body is 0.5 mm.
Claim 6 is characterized in that:
Drilling bit as described in section.
JP14008881A 1981-09-04 1981-09-04 Drilling bit Granted JPS5841180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14008881A JPS5841180A (en) 1981-09-04 1981-09-04 Drilling bit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14008881A JPS5841180A (en) 1981-09-04 1981-09-04 Drilling bit

Publications (2)

Publication Number Publication Date
JPS5841180A JPS5841180A (en) 1983-03-10
JPS6156749B2 true JPS6156749B2 (en) 1986-12-03

Family

ID=15260670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14008881A Granted JPS5841180A (en) 1981-09-04 1981-09-04 Drilling bit

Country Status (1)

Country Link
JP (1) JPS5841180A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117392A (en) * 1984-11-13 1986-06-04 工業技術院長 Blade chip material of drilling bit
AU2007359121B2 (en) * 2007-09-18 2015-05-07 Caterpillar Global Mining Europe Gmbh Roller drill or roller bit

Also Published As

Publication number Publication date
JPS5841180A (en) 1983-03-10

Similar Documents

Publication Publication Date Title
US5062865A (en) Chemically bonded superabrasive grit
CA1303365C (en) Temperature resistant abrasive polycrystalline diamond bodies
US7628234B2 (en) Thermally stable ultra-hard polycrystalline materials and compacts
US5096465A (en) Diamond metal composite cutter and method for making same
US7726421B2 (en) Diamond-bonded bodies and compacts with improved thermal stability and mechanical strength
US10124468B2 (en) Polycrystalline diamond constructions having improved thermal stability
US8925656B2 (en) Diamond bonded construction with reattached diamond body
US20090022952A1 (en) Novel cutting structures
US20080142276A1 (en) Thermally stable ultra-hard material compact constructions
US20100038148A1 (en) Intermetallic Aluminide Polycrystalline Diamond Compact (PDC) Cutting Elements
JP2000071111A (en) Polycrystalline diamond compact cutter whose cutting performance is improved by preventing chip accumulation
US6098731A (en) Drill bit compact with boron or beryllium for fracture resistance
CN105840104A (en) Thermal stable type high impact resistance polycrystalline diamond compact and making method thereof
JPH0222025B2 (en)
CA2380539C (en) A drill bit having large diameter pdc cutters
JPS6156749B2 (en)
EP1292414A2 (en) Composite diamond compacts
AU2001274364A1 (en) Composite diamond compacts
CA2028415C (en) Chemically bonded superabrasives grit
CN216714313U (en) Polycrystalline diamond compact for drilling complex oil and gas reservoir
JPS6350401B2 (en)
JP2735685B2 (en) Coated superabrasive abrasive grains and tools comprising the same
IE65120B1 (en) Coated superabrasive grit and use of same
ZA200209957B (en) Composite diamond compacts.
JPS5941594A (en) Drill bit