JPS5841180A - Drilling bit - Google Patents

Drilling bit

Info

Publication number
JPS5841180A
JPS5841180A JP14008881A JP14008881A JPS5841180A JP S5841180 A JPS5841180 A JP S5841180A JP 14008881 A JP14008881 A JP 14008881A JP 14008881 A JP14008881 A JP 14008881A JP S5841180 A JPS5841180 A JP S5841180A
Authority
JP
Japan
Prior art keywords
sintered body
diamond sintered
drilling bit
support member
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14008881A
Other languages
Japanese (ja)
Other versions
JPS6156749B2 (en
Inventor
鴻野 雄一郎
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14008881A priority Critical patent/JPS5841180A/en
Publication of JPS5841180A publication Critical patent/JPS5841180A/en
Publication of JPS6156749B2 publication Critical patent/JPS6156749B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Earth Drilling (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はダイヤモンドを主体としたダイヤモンド焼結体
が超硬合金などよりなる支持部材と結合された複合ダイ
ヤモンド焼結体を刃先に有する掘削ビットの改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a drilling bit having a composite diamond sintered body on its cutting edge, in which a diamond sintered body mainly composed of diamond is bonded to a support member made of cemented carbide or the like.

従来、石油、天然ガス、地熱などの地下資源利用のため
、石油弁、地熱井の掘削が行われている。
Conventionally, oil valves and geothermal wells have been drilled to utilize underground resources such as oil, natural gas, and geothermal heat.

掘削にはドリルビットと称する掘削用具が用いられ、こ
の刃先材料として超硬合金が主に用いられてきた。
A drilling tool called a drill bit is used for drilling, and cemented carbide has been mainly used as the cutting edge material.

ところが地層の中でも比較的軟質の堆積層では超硬合金
製ドリルビットで充分な掘削能率とビット寿命が得られ
るが、堆積層でも硬質のものや、火成岩では非常にビッ
ト寿命が短かく殆んど掘削できない場合もあるのが実情
であった。
However, although a cemented carbide drill bit can provide sufficient drilling efficiency and long bit life in comparatively soft sedimentary layers among geological formations, the bit life is extremely short in hard sedimentary layers or igneous rocks, and the bit life is very short. The reality was that there were some cases where it was not possible to excavate.

料としてダイヤモンド粒子を超高圧下で焼結した多結晶
焼結ダイヤモンドが開発され使用され出している。
As a raw material, polycrystalline sintered diamond, which is made by sintering diamond particles under ultra-high pressure, has been developed and is beginning to be used.

多結晶焼結ダイヤモンドは、最初、金属材料切削用工具
として開発され、第1図に示すような多結晶ダイヤモン
ド層lが超硬合金層2に接合された形のものが使用され
ていた。
Polycrystalline sintered diamond was first developed as a tool for cutting metal materials, and a tool in which a polycrystalline diamond layer 1 was bonded to a cemented carbide layer 2 as shown in FIG. 1 was used.

掘削用途用のものも第1図とほぼ同じ形のものが使用さ
れ、これを刃先に固着した掘削用ビットが使用されてい
る。
Bits for excavation use are also used in a shape similar to that shown in Fig. 1, and drilling bits with this bit fixed to the cutting edge are used.

ところが、掘削用途では通常の金属切削と異なり掘削時
に非常に大きな衝撃が刃先に加わり、かつ地層が硬質で
ある場合には刃先に対する摩耗作用も非常に厳しい。
However, in excavation applications, unlike ordinary metal cutting, a very large impact is applied to the cutting edge during excavation, and if the stratum is hard, the abrasion effect on the cutting edge is also very severe.

この内掘削時の衝撃が大きいのが特に問題で、このため
第2図のビットにより掘削した際刃先の焼結ダイヤモン
ド層が大きく欠損してしまいビットが使用に耐えなくな
ってしまうのがこれまでの焼結ダイヤモンドを使用した
掘削ビットの最大の問題であった。
A particular problem is that the impact during excavation is large, and for this reason, when excavating with the bit shown in Figure 2, the sintered diamond layer on the cutting edge is severely damaged, making the bit unusable. This was the biggest problem with drilling bits that used sintered diamond.

本発明はこのような従来の焼結ダイヤモンドを使用した
掘削ビットの欠点を改良し、刃先の焼結ダイヤモンド層
の大欠けが生じない長寿命掘削ビットを提供するもので
ある。
The present invention improves the drawbacks of conventional drilling bits using sintered diamond, and provides a long-life drilling bit in which large chips do not occur in the sintered diamond layer at the cutting edge.

本発明はダイヤモンドを60容量%以上含むダイヤモン
ド焼結体と該ダイヤモンド焼結体の上下両面全面に支持
部材が直接に、あるいは中間接合層を介して結合されて
いる複合ダイヤモンド焼結体をビット本体に鑞付け、圧
入その他適当な方法により埋め込み固着して刃先材料と
したことを特徴とする掘削ビットである。
The present invention provides a bit body comprising a diamond sintered body containing 60% by volume or more of diamond and a composite diamond sintered body in which support members are bonded to the entire upper and lower surfaces of the diamond sintered body either directly or through an intermediate bonding layer. This drilling bit is characterized in that the cutting edge material is embedded and fixed by brazing, press-fitting, or other appropriate methods.

さて、本発明掘削ビットの効果を第2図により説明する
Now, the effects of the drilling bit of the present invention will be explained with reference to FIG.

第2図は本発明による掘削ビットの頭部の1つの複合ダ
イヤモンド焼結体刃先に注目したもので、第2図(イ)
に示すように両面に支持部材2,3を有する複合ダイヤ
モンド焼結体5がビット本体4に埋め込み固着されてい
る。
Figure 2 focuses on one composite diamond sintered cutting edge of the head of the drilling bit according to the present invention.
As shown in FIG. 2, a composite diamond sintered body 5 having supporting members 2 and 3 on both sides is embedded and fixed in the bit body 4.

この状態ではダイヤモンド焼結体刃先は穏れており、支
持部材8が上面に出ている。この状態で掘削を開始する
と支持部材3が超硬合金である場合には、最初は支持部
材超硬合釡層で掘削を行う。
In this state, the cutting edge of the diamond sintered body is smooth, and the support member 8 is exposed on the upper surface. When excavation is started in this state, if the support member 3 is made of cemented carbide, the excavation is initially performed in the support member cemented carbide layer.

ところが硬質岩層になると表面の超硬合金支持部材層は
摩耗してしまい下層のダイヤモンド焼結体層があられれ
てこれで掘削を行うようになる。支持部材がIVa、 
Va、 Vla族その他の金属層である場合は、金属層
の摩耗が早期に生じ、すぐ下部のダイヤモンド焼結体層
があられれる。この状態を模式的に示したものが第2図
(ロ)である。上部支持部材8が摩耗して下部のダイヤ
モンド焼結体1があられれ、その切刃11が掘削作用を
行うようになる。
However, when it comes to hard rock layers, the cemented carbide support member layer on the surface wears out, and the underlying diamond sintered body layer cracks, allowing excavation to be performed using this layer. The supporting member is IVa,
In the case of a Va, Vla group, or other metal layer, the metal layer wears out quickly, and the diamond sintered body layer immediately below is cracked. This state is schematically shown in FIG. 2(b). As the upper support member 8 wears out, the lower diamond sintered body 1 cracks, and its cutting edge 11 begins to perform an excavating action.

こうするとダイヤモンド焼結体層は掘削作用を行うに必
要なだけの切刃が露出し、他の部分は支持部材8に覆わ
れていることになる。
In this way, only the cutting edge of the diamond sintered body layer necessary for performing the excavation action is exposed, and the other portions are covered by the support member 8.

支持部材3は、ダイヤモンド焼結体lに比べてねばい。The support member 3 is more sticky than the diamond sintered body 1.

このため刃先11に大きな衝撃力が加わって欠けが発生
しても亀裂は支持部材8で覆われている領域には進展せ
ず、従って大きな欠損によってこのダイヤモンド焼結体
層が使用不能になってしまうということがない。
Therefore, even if a large impact force is applied to the cutting edge 11 and a chip occurs, the crack will not propagate to the area covered by the support member 8, and the large chip will make this diamond sintered body unusable. There is no need to put it away.

さて、この支持部材による大欠損防止効果は支持部材3
とダイヤモンド焼結体1とが強固に接合していればいる
程大となる。
Now, the effect of this support member on preventing large damage is that the support member 3
The stronger the bond between the diamond sintered body 1 and the diamond sintered body 1, the larger the bond.

この点で支持部材とダイヤモンド焼結体層が直接接合し
ている場合はやや問題がある。
In this respect, there is a slight problem when the supporting member and the diamond sintered body layer are directly joined.

すなわち、ダイヤモンド焼結体と支持部材が直接接合し
た状態でこれを焼結しようとすると焼結中にダイヤモン
ドを構成する炭素が支持部材中に拡散し、このために界
面近傍の支持部材中に炭化物を形成するな、どして界面
近傍の支持部材が脆くなり、このためダイヤモンド焼結
体と支持部材の結合強度かや゛や低下する。
In other words, if an attempt is made to sinter a diamond sintered body and a supporting member in a state where they are directly joined, the carbon that makes up the diamond will diffuse into the supporting member during sintering, and as a result, carbides will form in the supporting member near the interface. Otherwise, the supporting member near the interface becomes brittle, and the bonding strength between the diamond sintered body and the supporting member decreases considerably.

この界面反応を生じさせず、かつダイヤモンド焼結体、
支持部材相互と強固に接合する中間接合層を用いてやれ
ばこの問題は解決し、より好ましいものとなる。
A diamond sintered body that does not cause this interfacial reaction,
This problem can be solved by using an intermediate bonding layer that firmly bonds the support members to each other, which is more preferable.

このような中間接合層として、立方晶窒化硼素(CB 
N)の含有率が70容量%以下で、残部が周期律表■a
族のTi、Zr、Hfの炭化物、窒化物、炭窒化物ある
いは硼化物の一種もしくはこれらの混合物または相互固
溶体化合物を主体としたものとこれにAノおよび/また
はSiを0.1重量%以上含有させたものが適している
。この中間層が適しているのは比較的低温で支持部材、
ダイヤモンド焼結体相方と強固な接合を形成し、かつ耐
熱性にもすぐれていることによる。
As such an intermediate bonding layer, cubic boron nitride (CB
The content of N) is 70% by volume or less, and the remainder is from the periodic table ■a
Ti, Zr, Hf carbides, nitrides, carbonitrides, or borides, a mixture thereof, or a mutual solid solution compound, and 0.1% by weight or more of A and/or Si. It is suitable that it contains This intermediate layer is suitable for supporting materials at relatively low temperatures.
This is because it forms a strong bond with its diamond sintered counterpart and has excellent heat resistance.

さて、このダイヤモンド焼結体層の大欠損を防止する支
持部材の厚みは、ダイヤモンド焼結体層の厚み以下であ
ればよい。ダイヤモンド焼結体層は通常0.5〜1.0
JLiL程度であるが、支持部材の厚みがこれ以上ある
と先に説明した第2図(ロ)のようにダイヤモンド焼結
体層が一部露出した状態となったとき、この支持部材が
掘削した岩石の小片の流出を却って妨げる状態になる可
能性があるからである。
Now, the thickness of the support member that prevents large defects in the diamond sintered body layer may be equal to or less than the thickness of the diamond sintered body layer. The diamond sintered body layer usually has a thickness of 0.5 to 1.0
JLiL, but if the supporting member is thicker than this, when the diamond sintered layer is partially exposed as shown in Figure 2 (b), this supporting member will be excavated. This is because there is a possibility that the situation may actually hinder the outflow of small pieces of rock.

又、中間接合層を有する場合は、この中間接合層はダイ
ヤモンド焼結体層と支持部材を強固に接合するのが目的
であるため、通常0.5#IJW以下で充分であり、こ
れ以上の厚みは不必要で不経済である。
In addition, when an intermediate bonding layer is provided, since the purpose of this intermediate bonding layer is to firmly bond the diamond sintered body layer and the support member, it is usually sufficient to use less than 0.5 #IJW, and more Thickness is unnecessary and uneconomical.

以下、本発明の実施例を第3図−を参照して以下に説明
する。
Embodiments of the present invention will be described below with reference to FIG.

実施例1゜ 第3図は本発明に基づく第1の実施例で、厚さ2荘のW
C−10%Co超硬合金支持部材6上に厚さ0.5肌の
ダイヤモンド焼結体7、さらにその上に厚さ0JIIu
ILのWC−10%Co超硬合金支持部材8が結合した
複合ダイヤモンド焼結体9がビット本体10に固着され
ている。
Embodiment 1゜Figure 3 shows the first embodiment based on the present invention.
A diamond sintered body 7 with a thickness of 0.5 skin is placed on a C-10%Co cemented carbide support member 6, and a sintered diamond body 7 with a thickness of 0JIIu is further placed on top of that.
A composite diamond sintered body 9 to which an IL WC-10% Co cemented carbide support member 8 is bonded is fixed to the bit body 10.

これと比較のため、厚さ2鰭のWC−10%Co超硬合
金上に厚さ0.5IuLのダイヤモンド焼結体を固着し
た同一形状のビットも作成した。このビットを用い圧縮
強度1,400 K5+/m2 の安山岩のドリル試験
を行った。回転数は140rpm、  ドリル穿孔速度
は10 cm/111151 、水使用の条件である。
For comparison, a bit of the same shape was also made by fixing a diamond sintered body with a thickness of 0.5 IuL on a WC-10% Co cemented carbide with a thickness of 2 fins. Using this bit, a drilling test was conducted on andesite with a compressive strength of 1,400 K5+/m2. The rotational speed was 140 rpm, the drilling speed was 10 cm/111151, and water was used.

こげ結果本発明ビットは30分のドリリング後継続使用
可の状態であったのに対し、比較用ビットは2分のドリ
リングでダイヤモンド焼結体部が大破し、使用不能とな
った。
As a result of burning, the bit of the present invention was usable for continued use after 30 minutes of drilling, whereas the comparative bit suffered severe damage to the diamond sintered body portion after 2 minutes of drilling, making it unusable.

実施例2゜ 第2の実施例はやはり第3図に示したものと同一形状の
もので、厚さ2HのWC−15%Co超硬合金支持部材
上に厚さ0.5飢のダイヤモンド焼結体層、更にその上
に厚さ0.2荘mのモリブデン層が形成され、かつ、超
硬合金支持部材、モリブデン各層とダイヤモンド焼結体
層との界面に厚さ0.05Mで、60容量%のCBNを
TiN−20重量%Aノの結合剤で結合した中間接合層
を介して結合された複合ダイヤモンド焼結体を刃先に固
着したドリルビットである。この場合もやは“り比較の
ため厚さ2憇のWC−15%Co超硬合金支持部材上に
厚さ0.5餞のダイヤモンド焼結体層が形成された複合
ダイヤモンド焼結体を刃先に固着した同一形状のドリル
ビットも作成した。
Example 2 The second example has the same shape as that shown in FIG. A molybdenum layer with a thickness of 0.2 m is formed on the compact layer, and a 0.05 m thick molybdenum layer is formed on the interface between the cemented carbide support member, each molybdenum layer and the diamond sintered compact layer. This drill bit has a composite diamond sintered body bonded to the cutting edge through an intermediate bonding layer in which % by volume of CBN is bonded with a binder of TiN and 20% by weight of A. In this case, for comparison, a composite diamond sintered body in which a diamond sintered body layer with a thickness of 0.5 thick was formed on a WC-15% Co cemented carbide support member with a thickness of 2 mm was used at the cutting edge. A drill bit of the same shape was also made that was fixed to the .

これらのドリルビットを用い圧縮強度l、s o o 
Ky/cm”の花崗岩のドリル試験を行った。試験条件
は第1の実施例と同じである。
Using these drill bits, compressive strength l, so o
Ky/cm" granite drill test was conducted. The test conditions were the same as in the first example.

この結果、比較用ビットはわずか1分のドリリングでダ
イヤモンド焼結体部が大破し、使用不能となったのに対
し、本発明ビットは20分のドリリング後も継続使用可
の状態であった。
As a result, the diamond sintered compact part of the comparison bit was severely damaged after just 1 minute of drilling, making it unusable, whereas the bit of the present invention was usable even after 20 minutes of drilling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の掘削ビット用複合ダイヤモンド焼結体の
外観図、第2図は本発明の掘削ビットの刃先部の外観図
、第3図は本発明の掘削ビットの実施例を示す上面図(
イ)と正面図(ロ)である。 1、.7:ダイヤモンド焼結体、2,6:下部支持部材
3.8:上部支持部材、4.10:ビット本体、5.9
=複合ダイヤモンド焼結体、11:切刃7旧 芳2凹
Fig. 1 is an external view of a conventional composite diamond sintered body for drilling bits, Fig. 2 is an external view of the cutting edge of the drilling bit of the present invention, and Fig. 3 is a top view showing an embodiment of the drilling bit of the present invention. (
A) and a front view (B). 1. 7: Diamond sintered body, 2, 6: Lower support member 3.8: Upper support member, 4.10: Bit body, 5.9
= Composite diamond sintered body, 11: Cutting blade 7 old fan 2 concave

Claims (1)

【特許請求の範囲】 (1)ダイヤモンドを60容量%以上含むダイヤモンド
焼結体と該ダイヤモンド焼結体の上下両面全面に支持部
材が直接にあるいは中間接合層を介して結合されている
複合ダイヤモンド焼結体をビット本体に鑞付け、圧入等
の方法により埋め込み固着された上記複合ダイヤモンド
焼結体を刃先として使用することを特徴とする掘削ビッ
ト。 (2)複合ダイヤモンド焼結体の両方の支持部材が周期
律表1’%Ia 、 Va 、 ■a族元素の炭化物、
あるいはこれらの相互固溶体炭化物を鉄族金属で結合し
た超硬合金であることを特徴とする特許請求の範囲第(
1)項の掘削ビット。 (8)複合ダイヤモンド焼結体の両方の支持部材が周期
律表■a 、 Va 、 Via族金属、Mn、Fe、
Co、Ni 、Cuまたはこれらの合金であることを特
徴とする特許請求の範囲第(1)項記載の掘削ビット。 (4)複合ダイヤモンド焼結体の支持部材のうち、一方
が、周期律表IVa 、 Va 、 Vla族元素の炭
化物あるいはこれらの相互固溶体炭化物を鉄族金属で結
合した超硬合金であり、他方が周期律表IVa I V
a+■a族の金属、Mn、Fe、Co、Ni 、Cu 
またはこれらの合金であることを特徴とする特許請求の
範囲第(1)項記載の掘削ビット。 (5)複合ダイヤモンド焼結体の支持部材のうち一方の
厚みがダイヤモンド焼結体層の厚みよりも小であること
を特徴とする特許請求の範囲第(1)項乃至第(4)項
記載の掘削ビット。 (6)特許請求の範囲第(1)〜第(5)項に記載した
掘削ビットにおいて、複合ダイヤモンド焼結体の中央の
ダイヤモンド焼結体と支持部材との一方又は両方の界面
に中間接合層を有し、かつ該中間接合層が、70容量%
未溝の立方晶型窒化硼素と残部が周期律表■a族のTi
、Zr、Hfの炭化物、窒化物、炭窒化物、あるいは硼
化物の一種もしくはこれらの混合物、相互固溶体化合物
を主体とし、これにMおよび/またはSiを0.1重量
%以上含有することを特徴とする掘削ビット。 (7)複合ダイヤモンド焼結体のダイヤモンド焼結体と
支持部材との間の中間接合層の厚みが0.5uL以下で
あることを特徴とする特許請求の範囲第(6)項記載の
掘削ビット。
Scope of Claims: (1) A composite diamond sintered body comprising a diamond sintered body containing 60% by volume or more of diamond and a support member bonded to the entire upper and lower surfaces of the diamond sintered body directly or via an intermediate bonding layer. A drilling bit characterized in that the composite diamond sintered body is embedded and fixed in the bit body by a method such as brazing or press-fitting, and is used as a cutting edge. (2) Both supporting members of the composite diamond sintered body are carbides of 1'% Ia, Va, ■A group elements of the periodic table;
Alternatively, it is a cemented carbide made by bonding these mutual solid solution carbides with an iron group metal.
Item 1) Drilling bit. (8) Both supporting members of the composite diamond sintered body are made of metals from group ■a, Va, and Via of the periodic table, Mn, Fe,
The drilling bit according to claim 1, which is made of Co, Ni, Cu, or an alloy thereof. (4) Of the supporting members of the composite diamond sintered body, one is a cemented carbide made of carbides of elements of groups IVa, Va, and Vla of the periodic table or mutual solid solution carbides of these elements combined with iron group metals, and the other is Periodic table IVa IV
a+■A group metals, Mn, Fe, Co, Ni, Cu
or an alloy thereof, according to claim (1). (5) Claims (1) to (4), characterized in that the thickness of one of the supporting members of the composite diamond sintered body is smaller than the thickness of the diamond sintered body layer. drilling bit. (6) In the drilling bit described in claims (1) to (5), an intermediate bonding layer is provided at one or both interfaces between the diamond sintered body at the center of the composite diamond sintered body and the support member. and the intermediate bonding layer has a content of 70% by volume.
The ungrooved cubic boron nitride and the remainder are Ti from group a of the periodic table.
, Zr, Hf carbide, nitride, carbonitride, or boride, or a mixture thereof, or a mutual solid solution compound, and is characterized by containing 0.1% by weight or more of M and/or Si. and drilling bit. (7) The drilling bit according to claim (6), characterized in that the intermediate bonding layer between the diamond sintered body of the composite diamond sintered body and the support member has a thickness of 0.5 μL or less. .
JP14008881A 1981-09-04 1981-09-04 Drilling bit Granted JPS5841180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14008881A JPS5841180A (en) 1981-09-04 1981-09-04 Drilling bit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14008881A JPS5841180A (en) 1981-09-04 1981-09-04 Drilling bit

Publications (2)

Publication Number Publication Date
JPS5841180A true JPS5841180A (en) 1983-03-10
JPS6156749B2 JPS6156749B2 (en) 1986-12-03

Family

ID=15260670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14008881A Granted JPS5841180A (en) 1981-09-04 1981-09-04 Drilling bit

Country Status (1)

Country Link
JP (1) JPS5841180A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117392A (en) * 1984-11-13 1986-06-04 工業技術院長 Blade chip material of drilling bit
JP2010539353A (en) * 2007-09-18 2010-12-16 ビュサイラス・ヨーロッパ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Roller drill or roller bit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117392A (en) * 1984-11-13 1986-06-04 工業技術院長 Blade chip material of drilling bit
JPS6342071B2 (en) * 1984-11-13 1988-08-19 Kogyo Gijutsuin
JP2010539353A (en) * 2007-09-18 2010-12-16 ビュサイラス・ヨーロッパ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Roller drill or roller bit

Also Published As

Publication number Publication date
JPS6156749B2 (en) 1986-12-03

Similar Documents

Publication Publication Date Title
CA1303365C (en) Temperature resistant abrasive polycrystalline diamond bodies
US7377341B2 (en) Thermally stable ultra-hard material compact construction
US8057562B2 (en) Thermally stable ultra-hard polycrystalline materials and compacts
JP4203318B2 (en) Manufacturing method of composite abrasive compact
US8197936B2 (en) Cutting structures
US8061454B2 (en) Ultra-hard and metallic constructions comprising improved braze joint
US8852304B2 (en) Thermally stable diamond bonded materials and compacts
US20070029114A1 (en) Polycrystalline diamond composite constructions comprising thermally stable diamond volume
JP2000071111A (en) Polycrystalline diamond compact cutter whose cutting performance is improved by preventing chip accumulation
CN105840104A (en) Thermal stable type high impact resistance polycrystalline diamond compact and making method thereof
JPS5879881A (en) Composite diamond sintered body for bit
JPS5841180A (en) Drilling bit
EP1251239A2 (en) Drill bit having large diameter pdc cutters
JPS60145973A (en) Composite sintered tool
CN216714313U (en) Polycrystalline diamond compact for drilling complex oil and gas reservoir
JPS6350401B2 (en)
Bybee Faster and longer bit runs with new-generation PDC cutter
JPS5879879A (en) Composite diamond sintered body
US9650836B2 (en) Cutting elements leached to different depths located in different regions of an earth-boring tool and related methods
JPS60246985A (en) Drill bit
JPH0881729A (en) Hard material
US20140144713A1 (en) Eruption control in thermally stable pcd products
JPS5941594A (en) Drill bit
JPS5865893A (en) Drill bit
IE85884B1 (en) Thermally stable ultra-hard polycrystalline materials and compacts