JPS6156693B2 - - Google Patents

Info

Publication number
JPS6156693B2
JPS6156693B2 JP56093274A JP9327481A JPS6156693B2 JP S6156693 B2 JPS6156693 B2 JP S6156693B2 JP 56093274 A JP56093274 A JP 56093274A JP 9327481 A JP9327481 A JP 9327481A JP S6156693 B2 JPS6156693 B2 JP S6156693B2
Authority
JP
Japan
Prior art keywords
current
resistor
cross
transformer
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56093274A
Other languages
Japanese (ja)
Other versions
JPS57208829A (en
Inventor
Koji Morioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56093274A priority Critical patent/JPS57208829A/en
Publication of JPS57208829A publication Critical patent/JPS57208829A/en
Publication of JPS6156693B2 publication Critical patent/JPS6156693B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 本発明は横流補償装置に関し、特に複数の発電
機を並列運転する時に生じる無効横流を抑制し、
特に並列運転される複数の発電機変流器のCT比
が異なる場合にも新たに変流器を追加することな
く簡単に補償することができるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cross-current compensator, and particularly to a cross-current compensator that suppresses invalid cross-current that occurs when multiple generators are operated in parallel.
In particular, even if the CT ratios of multiple generator current transformers operated in parallel differ, it can be easily compensated for without adding a new current transformer.

従来この種の装置として第1図に示すものがあ
つた。図において1は発電機、2は例えばS相に
設けられた電流検出用の電流変成器、3は電圧検
出用の変圧器、4は変成器2の出力端に接続され
た横流検出抵抗、5は発電機1が並列運転に入る
と開く並列運転リレーの接点、6は自動電圧調整
器をそれぞれ示す。
A conventional device of this type is shown in FIG. In the figure, 1 is a generator, 2 is a current transformer for current detection provided, for example, in the S phase, 3 is a voltage detection transformer, 4 is a cross-current detection resistor connected to the output end of the transformer 2, and 5 1 shows a contact point of a parallel operation relay that opens when the generator 1 enters parallel operation, and 6 shows an automatic voltage regulator.

第1図の構成において、発電機1の電機子電流
は変流器2により検出され、横流検出抵抗4によ
り電圧の形の電流検出信号に変換される。発電機
1が他の発電機と並列運転に入ると接点5は開状
態にあり、自動電圧調整装置6へは、発電機電圧
を変圧器3で降圧した電圧信号と、抵抗4の両端
間に得られる電流検出信号とがベクトル的に合成
されて入力される。今変圧器3の2次電圧をV〓T
、抵抗4の両端電圧をV〓I、自動電圧調整装置
6の入力電圧をV〓c、発電機S相電流をI〓とすれ
ば、これらの関係は第2図に示すようになる。
In the configuration shown in FIG. 1, the armature current of the generator 1 is detected by a current transformer 2 and converted by a cross current detection resistor 4 into a current detection signal in the form of a voltage. When the generator 1 enters parallel operation with another generator, the contact 5 is open, and the voltage signal obtained by stepping down the generator voltage by the transformer 3 is sent to the automatic voltage regulator 6 between both ends of the resistor 4. The obtained current detection signal is vector-combined and input. Now the secondary voltage of transformer 3 is V〓 T
Assuming that R is the voltage across the resistor 4, V〓I is the voltage across the resistor 4, V〓c is the input voltage of the automatic voltage regulator 6, and I is the S-phase current of the generator, these relationships are as shown in FIG.

今例えば、この発電機1に遅れ(これを+θと
する)の横流が流れると第2図に示す様に入力電
圧V〓cは2次電圧V〓TRより大となる。このとき自
動電圧調整装置6は発電機電圧が大きくなつたこ
とを検出し、界磁電流を減らして遅れの横流を減
らすように動作する。
For example, if a delayed cross current (this is defined as +θ) flows through the generator 1, the input voltage V〓c becomes larger than the secondary voltage V〓TR , as shown in Fig. 2. At this time, the automatic voltage regulator 6 detects that the generator voltage has increased and operates to reduce the field current and reduce the delayed cross current.

逆に発電機1に進み(すなわち−θ)の横流が
流れると、自動電圧調整装置への入力V〓cは発電
機電圧V〓TRよりも小さくなり、自動電圧調整装置
6は界磁電流を増加し、進みの横流を減らすよう
に動作する。
Conversely, when a forward (i.e. -θ) cross current flows to the generator 1, the input V〓 c to the automatic voltage regulator becomes smaller than the generator voltage V〓 TR , and the automatic voltage regulator 6 reduces the field current. It acts to increase and reduce the cross-current of advance.

従来の横流補償装置は以上のように動作するの
で、自動電圧調整装置6への入力信号V〓cには発
電機電流に相当する電流検出信号V〓Iが含まれて
おり、発電機負荷に応じて、実際の発電機電圧が
変動するという欠点があつた。
Since the conventional cross current compensator operates as described above, the input signal V〓c to the automatic voltage regulator 6 includes the current detection signal V〓I corresponding to the generator current, and the current detection signal V〓I corresponding to the generator current is The drawback was that the actual generator voltage varied accordingly.

本発明は上記のような従来のものの欠点を除去
しようとするもので、発電機電流を検出する変流
器を調整抵抗回路を介して各発電機とリング接続
することにより、発電機負荷に応じて実際の発電
機電圧が変動しないようにした横流補償装置を提
供しようとするものである。
The present invention attempts to eliminate the drawbacks of the conventional ones as described above, and by connecting a current transformer that detects the generator current to each generator in a ring through a regulating resistance circuit, it is possible to adjust the current transformer according to the generator load. The present invention aims to provide a cross current compensator that prevents the actual generator voltage from fluctuating.

本発明に係る横流補償装置は、並列運転する各
発電機の電圧及び電流を検出する変圧器及び電流
変成器と、該電流変成器の出力端に接続される横
流検出抵抗と、上記各発電機に対してそれぞれ設
けられた上記変圧器及び電流変成器の出力をベク
トル加算してそれぞれ受ける自動電圧調整装置
と、上記電流変成器の出力端に2つの抵抗をL型
に接続し、上記横流検出抵抗とでπ型抵抗回路し
て形成される調整抵抗回路とを備えてなり、上記
全ての発電機に対して設けられた上記調整抵抗回
路の出力端を順次リング状に接続する構成であ
る。
A cross-current compensation device according to the present invention includes: a transformer and a current transformer that detect the voltage and current of each generator operating in parallel; a cross-current detection resistor connected to the output end of the current transformer; an automatic voltage regulator that receives the vector addition of the outputs of the transformer and current transformer respectively provided to the current transformer, and two resistors connected in an L-shape to the output end of the current transformer, The generator includes an adjustment resistance circuit formed as a π-type resistance circuit with a resistor, and the output ends of the adjustment resistance circuits provided for all the generators are sequentially connected in a ring shape.

以下本発明の一実施例を第1図との対応部分に
同一符号を附して示す第3図について説明する。
第3図において、電流変成器2の出力端と横流検
出抵抗4との間に調整抵抗回路11を挿入する。
この調整抵抗回路11としては横流検出抵抗4に
L型に接続した抵抗12及び13を接続し、かく
して横流検出抵抗4と共にπ形抵抗回路を構成す
る。
An embodiment of the present invention will be described below with reference to FIG. 3, in which parts corresponding to those in FIG. 1 are denoted by the same reference numerals.
In FIG. 3, an adjustment resistance circuit 11 is inserted between the output end of the current transformer 2 and the cross current detection resistor 4.
The adjustment resistance circuit 11 includes resistors 12 and 13 connected in an L-shape to the cross-current detection resistor 4, thus forming a π-type resistance circuit together with the cross-current detection resistor 4.

そしてこの調整抵抗回路11の2つの出力端t1
及びt2は電源R,S,Tに共通に接続されて並行
運転される第2の発電機1Aの同様の調整抵抗回
路11Aの出力端t2及びt1にそれぞれ接続され、
かくしてリング状接続回路を構成している。な
お、第2の発電機1Aの第1の発電機1に対する
横流補償回路の対応部分には添字Aを附して示
す。
And the two output terminals t 1 of this adjustment resistance circuit 11
and t 2 are respectively connected to the output terminals t 2 and t 1 of a similar regulating resistance circuit 11A of the second generator 1A which is commonly connected to the power supplies R, S, T and operated in parallel,
In this way, a ring-shaped connection circuit is constructed. Note that the corresponding portion of the cross-current compensation circuit of the second generator 1A to the first generator 1 is indicated with a subscript A.

第3図の構成において横流検出抵抗4,4Aの
両端間に得られる検出信号は変圧器3,3Aの2
次電圧とベクトル合成されてそれぞれ自動電圧調
整装置6及び6Aに入力される。
In the configuration shown in Fig. 3, the detection signal obtained between both ends of the cross current detection resistors 4 and 4A is
It is vector-combined with the next voltage and input to automatic voltage regulators 6 and 6A, respectively.

しかるに抵抗4及び4A従つて調整抵抗回路1
1及び11Aの両端電圧は次のようにして求める
ことができる。今、抵抗4,4Aの抵抗値R4、
R4AをR、抵抗7の抵抗値R7をKR(0<K
1)、抵抗8の抵抗値R8を(1−k)R、抵抗7
Aの抵抗値R7AをlR(0<l1)、抵抗8Aの
抵抗値R8Aを(1−l)Rとし、また変流器2,
2Aの二次電流をそれぞれI〓1、I〓1Aとする
と、この回路は第4図の等価回路として表わすこ
とができる。ここで、電流変成器2及び2Aは電
流源I〓1及びI〓1Aとして表わし得る。
However, the resistor 4 and 4A therefore the adjustment resistor circuit 1
The voltages across 1 and 11A can be determined as follows. Now, the resistance value R4 of resistor 4.4A,
R4A is R, resistance value R7 of resistor 7 is KR (0<K
1), the resistance value R8 of resistor 8 is (1-k)R, resistor 7
The resistance value R7A of A is lR (0<l1), the resistance value R8A of resistor 8A is (1-l)R, and the current transformer 2,
Assuming that the secondary currents of 2A are I〓1 and I〓1A, respectively, this circuit can be expressed as the equivalent circuit shown in FIG. Here, current transformers 2 and 2A can be represented as current sources I〓1 and I〓1A.

第4図において、抵抗4及び4Aに流れる電流
I〓a1及びI〓b1は電流源I〓から流出する電流であ
り、また電流I〓a2及びI〓a2は電流源I〓1Aから流出
する電流であり、次式によつて求められる。
In Fig. 4, the currents I〓 a1 and I〓 b1 flowing through the resistors 4 and 4A are the currents flowing out from the current source I〓 1 , and the currents I〓 a2 and I〓 a2 are flowing out from the current source I〓 1A . It is a current and is determined by the following formula.

I〓a1=I〓b1=kR〓1/kR+(1−k)R+R/3×1/3=k/4I〓1 ……………(1) I〓a2=I〓b2=lR〓1A/lR+(1−l)R+R/3×1/3=l/4I〓1A……………(2
) 従つて抵抗4の両端電圧は R(I〓a1−I〓b2=R/4(kI〓1−lI〓1A)…
…(3) となり、また抵抗4Aの両端電圧は R(I〓a2−I〓b1)=R/4(lI〓1A−kI〓1)
……(4) となる。ここで定数k、lの値は並列する発電機
容量が等しく、かつ変流器2,2Aの変流比が等
しいときには、0でない互いに等しい値に設定さ
れ、従つて|I〓1|と|I〓1A|の大きさと位相
が一致すると抵抗4,4A従つて調整抵抗回路
6,6Aの両端電圧は0になる。
I〓 a1 =I〓 b1 =kR〓1/kR+(1-k)R+R/3×1/3=k/4I〓1 ……………(1) I〓 a2 =I〓 b2 =lR〓1A /lR+(1-l)R+R/3×1/3=l/4I〓1A…………(2
) Therefore, the voltage across the resistor 4 is R(I〓 a1 −I〓 b2 = R/4(kI〓1−lI〓1A)...
...(3), and the voltage across the resistor 4A is R (I〓 a2 - I〓 b1 ) = R/4 (lI〓1A - kI〓1)
...(4) becomes. Here, when the capacities of the parallel generators are equal and the current transformation ratios of the current transformers 2 and 2A are equal, the values of the constants k and l are set to mutually equal values that are not 0, and therefore |I〓1| and | When the magnitude and phase of I〓1A| match, the voltage across the resistors 4, 4A and therefore the adjusting resistance circuits 6, 6A becomes 0.

これに対して発電機容量が異なるとが、変流比
が異なる場合には、定数k、lの値は次のように
設定される。例えば発電機1,1Aが定格運転し
ている時の変流器2,2Aの2次電流を|I〓1|
=2〔A〕、|I〓1A|=3〔A〕とすれべk/l
=3/2となるように選定する。
On the other hand, when the generator capacity is different and the current transformation ratio is different, the values of the constants k and l are set as follows. For example, the secondary current of the current transformer 2, 2A when the generator 1, 1A is operating at its rated value is |I〓1|
=2 [A], |I〓1A|=3 [A] and slebe k/l
= 3/2.

この時の抵抗4の両端電圧は電流I〓1、I〓1A
の位相をθ、θとすれば、 R/4(kI〓1−lI〓1A)=lR/4(k/lI〓1−I〓1A)=lR/4(3∠θ−3∠θ)…
…………(5) となる。また抵抗4Aの両端電圧は R/4(lI〓1A−kI〓1)=lR/4(3∠θ
3∠θ ) ……………(6) となり、位相つまり発電機力率が一致すればそれ
ぞれ0となる。
At this time, the voltage across the resistor 4 is the current I〓1, I〓1A
Let the phases of ∠θ2 )...
………(5) becomes. Also, the voltage across the resistor 4A is R/4(lI〓1A−kI〓1)=lR/4( 3∠θ2−
3∠θ 1 ) ……………(6), and if the phases, that is, the generator power factors match, each becomes 0.

従つて、の時各自動電圧調整器6,6Aの入力
は単に変圧器3または3Aの出力信号のみとな
る。なお、抵抗4の両端電圧は各発電機力率に差
があれば、これを減少させるように変圧器3,3
Aの2次側信号とベクトル加算されている。この
ことはリング接続をやめれば第2図の回路が第1
図と等価となることからも分かる。従つて定常的
にはθ=θとなる。
Therefore, at the time of , the input to each automatic voltage regulator 6, 6A is simply the output signal of the transformer 3 or 3A. In addition, if there is a difference in the power factor of each generator, the voltage across the resistor 4 is changed to the transformers 3 and 3 to reduce this difference.
A vector is added to the secondary side signal of A. This means that if you stop the ring connection, the circuit in Figure 2 will become the
This can be seen from the fact that it is equivalent to the figure. Therefore, θ 12 on a steady basis.

なお上述の実施例では発電機が2台の場合を示
したが、2台以上複数の場合も、同様に調整抵抗
回路11,11A………の出力をリング接続して
行けば良い。
Although the above-mentioned embodiment shows the case where there are two generators, in the case where there are two or more generators, the outputs of the adjusting resistance circuits 11, 11A, . . . may be similarly connected in a ring.

また調整抵抗回路11,11Aをπ型抵抗回路
で構成した抵抗7,8及び7A,8Aを1個の可
変抵抗で構成しても良い。
Moreover, the resistors 7, 8 and 7A, 8A may be constructed from a single variable resistor, while the adjustment resistor circuits 11, 11A are constructed from π-type resistor circuits.

以上のように、本発明によれば変流器の出力端
にπ型接続される抵抗素子にて形成される調整抵
抗回路を設け、この調整抵抗回路を他の並列発電
機の調整抵抗回路とリング接続すると共に、各調
整抵抗回路の各抵抗により横流検出抵抗4,4A
に流れる変流器電流を調整できるようにしたの
で、変流比等により変流器の2次側電流が異なる
場合もこの調整抵抗回路を調整することにより、
横流が流れていない時の補償出力を零とすること
ができ、これにより発電機電圧を変動させない横
流補償を行なう効果を奏する。特に調整抵抗回路
をπ型接続される抵抗素子にて形成したことから
並列運転される複数の発電機の変流器における
CT比が異なつている場合でも新たに変流器を追
加して設置することなく簡単な回路で横流補償を
行なうことができる。
As described above, according to the present invention, an adjustment resistance circuit formed of resistance elements connected in a π-type is provided at the output end of a current transformer, and this adjustment resistance circuit is connected to the adjustment resistance circuit of another parallel generator. Along with the ring connection, the cross current detection resistor 4,4A is connected by each resistor of each adjustment resistor circuit.
By adjusting this adjustment resistance circuit, even if the secondary current of the current transformer differs due to the current transformation ratio, etc., the current that flows through the current transformer can be adjusted.
The compensation output when no cross current is flowing can be made zero, thereby achieving the effect of performing cross current compensation without changing the generator voltage. In particular, since the adjustment resistance circuit is formed with resistance elements connected in a π-type, it is useful for current transformers of multiple generators operated in parallel.
Even if the CT ratio differs, cross current compensation can be performed with a simple circuit without the need to add and install a new current transformer.

かくするにつき上述の実施例のように調整抵抗
回路11,11Aとしてπ型抵抗回路を用いるよ
うにすれば、比較的簡易な構成で済ませることが
できる。
Therefore, if π-type resistance circuits are used as the adjustment resistance circuits 11 and 11A as in the above embodiment, a relatively simple configuration can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の横流補償装置を示す接続図、第
2図はその検出出力の関係を示すベクトル図、第
3図は本発明に依る横流補償装置の一例を示す接
続図、第4図は第3図の等価回路を示す接続図、
第5図及び第6図はその各電流源についての電流
分布を分解して示す接続図である。 1,1A……発電機、2,2A……電流変成
器、3,3A……変圧器、4,4A……横流検出
抵抗、5,5A……並列運転リレー、6,6A…
…自動電圧調整器、11,11A……調整抵抗回
路。
FIG. 1 is a connection diagram showing a conventional cross current compensator, FIG. 2 is a vector diagram showing the relationship between its detection outputs, FIG. 3 is a connection diagram showing an example of the cross current compensator according to the present invention, and FIG. A connection diagram showing the equivalent circuit of Fig. 3,
FIGS. 5 and 6 are connection diagrams showing the current distribution of each current source broken down. 1,1A... Generator, 2,2A... Current transformer, 3,3A... Transformer, 4,4A... Cross current detection resistor, 5,5A... Parallel operation relay, 6,6A...
...Automatic voltage regulator, 11,11A...Adjustment resistance circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 並列運転する各発電機の電圧及び電流を検出
する変圧器及び電流変成器と、該電流変成器の出
力端に接続される横流検出抵抗と、上記各発電機
に対してそれぞれ設けられた上記変圧器及び電流
変成器の出力をベクトル加算してそれぞれ受ける
自動電圧調整装置とを有する横流補償装置におい
て、上記電流変成器の出力端に2つの抵抗をL型
に接続し、この接続されたL型の抵抗と上記横流
検出抵抗とでπ型の抵抗回路として形成される調
整抵抗回路を備えてなり、上記全ての発電機に対
して設けられた上記調整抵抗回路の出力端を順次
リング状に接続する構成としたことを特徴とする
横流補償装置。
1. A transformer and current transformer that detect the voltage and current of each generator operating in parallel, a cross-current detection resistor connected to the output end of the current transformer, and the above-mentioned In a cross current compensator having an automatic voltage regulator that receives vector addition of the outputs of a transformer and a current transformer, two resistors are connected to the output end of the current transformer in an L shape, and the connected L A regulating resistor circuit is formed as a π-shaped resistor circuit by a type resistor and the cross current detection resistor, and the output ends of the regulating resistor circuit provided for all of the generators are sequentially connected in a ring shape. A cross-current compensator characterized in that it is configured to be connected.
JP56093274A 1981-06-16 1981-06-16 Cross current compensating device Granted JPS57208829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56093274A JPS57208829A (en) 1981-06-16 1981-06-16 Cross current compensating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56093274A JPS57208829A (en) 1981-06-16 1981-06-16 Cross current compensating device

Publications (2)

Publication Number Publication Date
JPS57208829A JPS57208829A (en) 1982-12-22
JPS6156693B2 true JPS6156693B2 (en) 1986-12-03

Family

ID=14077859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56093274A Granted JPS57208829A (en) 1981-06-16 1981-06-16 Cross current compensating device

Country Status (1)

Country Link
JP (1) JPS57208829A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141437U (en) * 1983-03-11 1984-09-21 日本車輌製造株式会社 Cross-current compensation circuit for parallel operation
JP2716602B2 (en) * 1991-06-26 1998-02-18 三菱電機株式会社 Generator parallel operation system

Also Published As

Publication number Publication date
JPS57208829A (en) 1982-12-22

Similar Documents

Publication Publication Date Title
JPH0782402B2 (en) Phase shifter
US4013942A (en) Phase shifter
JPH08124768A (en) On-load tap changing type ac constant voltage device
US2253053A (en) Conversion of single phase alternating electric currents to polyphase currents
JPS6156693B2 (en)
GB1262572A (en) Three-phase regulator systems
US3944919A (en) Direct current measuring system for rectifiers
JPS5834922B2 (en) Tansoutanmakihen Atsukino Denatsuchiyouseihoshiki
JPH02216508A (en) Two-point output power source
JP3071787B1 (en) Three-phase to single-phase converter.
SU997018A2 (en) Device for power supply of single-phase load from three-phase network
JPS5828813B2 (en) Chiyokuryuutatanshikei Tonoki Dohoushiki
US3614599A (en) Three-phase delta-connected voltage-regulating system and method therefor
JPS6110479Y2 (en)
JP3028213B2 (en) Voltage regulator
JP2614057B2 (en) AC automatic voltage regulator
SU1737619A1 (en) Method of compensation for losses of voltage in feeding power network
JPS6046619B2 (en) line voltage drop compensator
JPS60112121A (en) Phase adjusting device
SU968880A1 (en) Three-phase ac voltage to dc voltage converter
JP2001249146A (en) Burden adjusting circuit of current transformer
JP2549194B2 (en) Voltage fluctuation compensator for feeder circuit
JPH0716175Y2 (en) Automatic voltage regulator during load
SU647788A1 (en) Transformer device for regulating phase shift of mains voltages
JPS6345814Y2 (en)