JP2549194B2 - Voltage fluctuation compensator for feeder circuit - Google Patents

Voltage fluctuation compensator for feeder circuit

Info

Publication number
JP2549194B2
JP2549194B2 JP2255840A JP25584090A JP2549194B2 JP 2549194 B2 JP2549194 B2 JP 2549194B2 JP 2255840 A JP2255840 A JP 2255840A JP 25584090 A JP25584090 A JP 25584090A JP 2549194 B2 JP2549194 B2 JP 2549194B2
Authority
JP
Japan
Prior art keywords
feeder
voltage
transformer
winding
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2255840A
Other languages
Japanese (ja)
Other versions
JPH04133826A (en
Inventor
芳文 持永
惇 西台
紀夫 宮田
茂 陰野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Nissin Electric Co Ltd
Original Assignee
Railway Technical Research Institute
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Nissin Electric Co Ltd filed Critical Railway Technical Research Institute
Priority to JP2255840A priority Critical patent/JP2549194B2/en
Publication of JPH04133826A publication Critical patent/JPH04133826A/en
Application granted granted Critical
Publication of JP2549194B2 publication Critical patent/JP2549194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はき電回路用電圧変動補償装置に関する。TECHNICAL FIELD The present invention relates to a voltage fluctuation compensating device for a feeder circuit.

(従来の技術) 東海道新幹線などの交流電気車への電力供給には、き
電用三巻線変圧器を電鉄用変電所に設置し、き電回線に
単巻変圧器(AT)を設置するATき電方式で行なわれてい
る。
(Prior art) To supply power to AC electric vehicles such as the Tokaido Shinkansen, install a three-winding transformer for feeders at a substation for electric railways, and an autotransformer (AT) on feeder lines. It is carried out by AT feeding system.

第4図は従来のき電回路の構成を示し、1は三相電
源、2は電源インピーダンス(Zo)、3は三巻線き電用
のスコット変圧器、3A、3Bは、前記変圧器3から得たT
座及びM座の単相回路で、例えば東海道新幹線の場合、
東京方面を単相回路3A、大阪方面を単相回路3Bより給電
する。
FIG. 4 shows the structure of a conventional feeder circuit, 1 is a three-phase power source, 2 is a power source impedance (Zo), 3 is a Scott transformer for three-winding feeder, 3A and 3B are the transformers 3 described above. Got from T
In the single-phase circuit of Zodiac and M seat, for example, in case of Tokaido Shinkansen
Power is supplied from Tokyo to the single-phase circuit 3A and to Osaka from the single-phase circuit 3B.

4は変圧器3の洩れインピーダンス(ZT,ZN,ZF)、
5は単巻変圧器AT、6は単巻変圧器ATの洩れインピーダ
ンス(ZAT)、7は電車、Zは電車負荷インピーダンス
(Z)、T,R,Fはそれぞれトロリ線、レール、き電線を
示す。
4 is the leakage impedance of the transformer 3 (ZT, ZN, ZF),
5 is the autotransformer AT, 6 is the leakage impedance (ZAT) of the autotransformer AT, 7 is the train, Z is the load impedance of the train (Z), T, R and F are the trolley wire, rail and feeder, respectively. Show.

第4図のうちから一方の座の等価回路を抽出して示し
たものが第5図である。
FIG. 5 shows the equivalent circuit of one seat extracted from FIG.

同図において、1′は単相等価電源、2′は単相に換
算した電源インピーダンス、3′は単相等価三巻線変圧
器である。
In the figure, 1'is a single-phase equivalent power supply, 2'is a power impedance converted into a single phase, and 3'is a single-phase equivalent three-winding transformer.

ここで電源1′の電圧をVo、変圧器3′の電圧をV1、
単巻変圧器ATの電圧をVAT、変圧器のT相、F相、中性
点に流れる電流を、IT,IF,IN、負荷である電車7に流
れる負荷電流をIとすれば、次の各式が成立する。
Here, the voltage of the power supply 1'is Vo, the voltage of the transformer 3'is V1,
If the voltage of the autotransformer AT is VAT, the currents flowing in the T-phase, F-phase, and the neutral point of the transformer are IT, IF, IN, and the load current flowing in the electric train 7 is I, then Each formula holds.

I=IT+IF (1) Vo−V1=Zo(IT+IF) (2) V1−VAT=ZT・IT−2ZAT・IF+ZN(IT−IF)
(3) V1−VAT−ZN(IT−IF)+2ZAT・IF+ZF・IF
(4) VAT=Z・I+2ZAT・IF (5) IN=IT−IF (6) (1),(3),(4),(6)式より、IT,IF,IN
を求めると、次式となる。
I = IT + IF (1) Vo-V1 = Zo (IT + IF) (2) V1-VAT = ZT ・ IT-2ZAT ・ IF + ZN (IT-IF)
(3) V1-VAT-ZN (IT-IF) + 2ZAT / IF + ZF / IF
(4) VAT = Z · I + 2ZAT · IF (5) IN = IT−IF (6) From the equations (1), (3), (4) and (6),
Then, the following equation is obtained.

IT=(4ZAT+2ZN+ZF)/Δ・I (7) IF=(2ZN+ZT)/Δ・I (8) IN=(4ZAT+ZF−ZT)/Δ・I (9) ただし、Δ=4(ZAT+ZN)+ZT+ZF したがって、ZAT=0、かつ ZF=ZTのとき、IT
=IFとなり、三巻線変圧器3の利用率が100%となる。
IT = (4ZAT + 2ZN + ZF) / Δ · I (7) IF = (2ZN + ZT) / Δ · I (8) IN = (4ZAT + ZF−ZT) / Δ · I (9) However, Δ = 4 (ZAT + ZN) + ZT + ZF Therefore, ZAT = 0 and ZF = ZT, IT
= IF, and the utilization factor of the three-winding transformer 3 becomes 100%.

(発明が解決しようとする課題) しかしこのような構成において、ZN=0、ZF=ZT
とすることは、製造上可能であるが、ZAT=0とするの
は製造上可能であるため、IT≠IFとなり、三巻線変圧
器3の利用率が低下する。
(Problems to be solved by the invention) However, in such a configuration, ZN = 0, ZF = ZT
However, since it is possible to manufacture ZAT = 0, it follows that IT ≠ IF and the utilization factor of the three-winding transformer 3 decreases.

また負荷点電圧までの電圧降下(V1−ZI)は、
(3),(5)式より、 V1−ZI=ZT・IT+ZN(IT−IF) となり、インピーダンス降下分(ZT・IT)に、IT,IF
のアンバランスに起因する成分{ZN(IT−IF)}が
加わったものとなり、電圧降下が大きくなる。
The voltage drop (V1-ZI) to the load point voltage is
From Eqs. (3) and (5), V1−ZI = ZT · IT + ZN (IT−IF), and the impedance drop (ZT · IT) becomes IT, IF
The component {ZN (IT-IF)} resulting from the unbalance of is added, resulting in a large voltage drop.

この発明は、トロリ線側の電流と、き電線側の電流を
バランスさせて、三巻線変圧器の利用率を高めるととも
に、電車負荷電流による負荷点の電圧降下を補償するこ
とを目的とする。
It is an object of the present invention to balance the current on the trolley wire side and the current on the feeder line side to increase the utilization factor of the three-winding transformer and to compensate the voltage drop at the load point due to the train load current. .

(課題を解決するための手段) この発明は、三巻線き電用のスコット変圧器のき電側
の巻線のそれぞれに直列に、トロリ線側補償電源と、き
電線側補償電源を接続し、レールに流れる中性点電流が
零になるように、前記両補償電源の電圧の大きさを制御
してなることを特徴とする。
(Means for Solving the Problem) The present invention connects a trolley wire side compensating power source and a feeder line compensating power source in series with each of the feeding side windings of a Scott transformer for three winding feeding. However, the magnitudes of the voltages of the compensation power supplies are controlled so that the neutral point current flowing through the rail becomes zero.

(作用) 第5図の構成にトロリ線側補償電源と、き電線側補償
電源を接続した構成を第2図に示す。
(Operation) FIG. 2 shows a configuration in which a trolley wire side compensating power source and a feeder line compensating power source are connected to the configuration shown in FIG.

図中8はトロリ線側補償電源、9はき電線側補償電源
である。トロリ線側補償電源8の電圧をVt、き電線側補
償電源9の電圧をVfとすると、第2図の回路では次式が
成り立つ。
In the figure, 8 is a trolley wire side compensating power supply, and 9 is a feeder line compensating power supply. When the voltage of the trolley wire side compensating power supply 8 is Vt and the voltage of the feeder side compensating power supply 9 is Vf, the following equation is established in the circuit of FIG.

I=IT+IF (10) Vo−V1=Zo′(IT+IF) (11) V1+Vt−VAT=ZT・IT−2ZAT・IF+ZN(IT−IF)
(12) V1+Vf−VAT=−ZN(IT−IF)+2ZAT・IF+ZF・
IF (13) VAT=Z・I+2ZAT・IF (14) IN=IT−IF (15) (10),(12),(13),(15)式より、IT,IF,IN
を求めると、次式となる。
I = IT + IF (10) Vo-V1 = Zo '(IT + IF) (11) V1 + Vt-VAT = ZT.IT-2ZAT.IF + ZN (IT-IF)
(12) V1 + Vf−VAT = −ZN (IT−IF) + 2ZAT ・ IF + ZF ・
IF (13) VAT = Z · I + 2ZAT · IF (14) IN = IT−IF (15) From equations (10), (12), (13) and (15), IT, IF, IN
Then, the following equation is obtained.

IT={(2ZN+ZT)・I−(Vt−Vf)}/Δ (16) IF={(4ZAT+2ZN+ZF)・I+(Vt−Vf)}/Δ(1
7) IN={(4ZAT+ZF−ZT)・I+2(Vt−Vf)}/Δ
(18) ただし、Δ=4(ZAT+ZN)+(ZF+ZT) ここでIN=0となるためには、(18)式を0とおい
て、 Vt−Vf=(4ZAT+ZF−ZT)/2・I (19) 一方(12)式と(13)式とを加算すると、次式が得ら
れる。
IT = {(2ZN + ZT) · I− (Vt−Vf)} / Δ (16) IF = {(4ZAT + 2ZN + ZF) · I + (Vt−Vf)} / Δ (1
7) IN = {(4ZAT + ZF−ZT) · I + 2 (Vt−Vf)} / Δ
(18) However, Δ = 4 (ZAT + ZN) + (ZF + ZT) where IN = 0, Vt−Vf = (4ZAT + ZF−ZT) / 2 · I (19) is set as 0. ) On the other hand, by adding the equations (12) and (13), the following equation is obtained.

Vt+Vf=ZT・IT+ZF・IF−2(V1−VAT) (20) (20)式に(10),(11),(14)式を代入して整理
すると、 Vt+Vf=ZT・IT+ZF・IF−2(Vo−I・Zo′−Z・
I−2VAT・IF) (21) 負荷点電圧Z・Iを電源電圧Voと等しくすれば、電圧
降下はなくなる。したがってZ・I=Voとすると、(2
1)式は次式となる。
Vt + Vf = ZT • IT + ZF • IF-2 (V1−VAT) (20) When the expressions (10), (11) and (14) are substituted into the expression (20) and rearranged, Vt + Vf = ZT • IT + ZF • IF-2 (Vo-I / Zo'-Z /
I−2VAT · IF) (21) If the load point voltage Z · I is made equal to the power supply voltage Vo, there will be no voltage drop. Therefore, if Z · I = Vo, (2
Equation 1) is as follows.

Vt+Vf=(4ZAT+4Zo′+ZF+ZT)/2・I (22) (19),(20)式より、Vt,Vfを求めると、次式とな
る。
Vt + Vf = (4ZAT + 4Zo ′ + ZF + ZT) / 2 · I (22) When Vt and Vf are calculated from the equations (19) and (20), the following equation is obtained.

∴Vt/Vf=(ZT+Zo′)/(4ZAT+ZF+Zo′) (24) (24)式において、ZT,Zo′,ZAT,ZFは既知の値であ
るから、Vt/Vfは一定値となる。したがって、き電回路
送り出し点の電圧を検出して、これを電圧目標値に等し
くなるようにVt,Vfを発生させ、同時にVt/Vfが(24)式
で定まる一定の値となるように閉ループ制御を行なえ
ば、中性点電流INは零となり、負荷電流はバランスす
ると同時に負荷点の電圧降下を補償することができるよ
うになる。
∴Vt / Vf = (ZT + Zo ′) / (4ZAT + ZF + Zo ′) (24) In the equation (24), since ZT, Zo ′, ZAT, and ZF are known values, Vt / Vf is a constant value. Therefore, the voltage at the feeding point of the feeder circuit is detected, Vt and Vf are generated so that this becomes equal to the target voltage value, and at the same time, Vt / Vf becomes a constant value determined by equation (24). If the control is performed, the neutral point current IN becomes zero, the load current is balanced, and at the same time, the voltage drop at the load point can be compensated.

なお通常の系統では、インピーダンスの抵抗分はリア
クタンス分に比べて十分小さいので、Vt,Vfとして負荷
電流Iの90°進み、または90°遅れの電圧を発生させれ
ばよい。したがって有効電力を補償する必要がないの
で、補償装置の容量は小さくて済む。
In a normal system, the resistance component of the impedance is sufficiently smaller than the reactance component, so that the load current I may be advanced by 90 ° or delayed by 90 ° as Vt and Vf. Therefore, since it is not necessary to compensate active power, the capacity of the compensator can be small.

(実施例) この発明の実施例を第1図によって説明する。なお第
4図と同じ符号を付した部分は、同一または対応する部
分を示す。第2図に示した等価回路における補償の直列
電源7,8は、変圧器3の中性点側に接続してある。
(Embodiment) An embodiment of the present invention will be described with reference to FIG. In addition, the same reference numerals as those in FIG. 4 indicate the same or corresponding portions. The compensating series power supplies 7 and 8 in the equivalent circuit shown in FIG. 2 are connected to the neutral point side of the transformer 3.

変圧器3の一方の座の具体例構成を示したのが第3図
である。ここでは直列補償電源8,9として、電圧型イン
バータを使用しており、その出力は変圧器10,11によっ
て送り出されている。
FIG. 3 shows a specific example configuration of one seat of the transformer 3. Here, voltage-type inverters are used as the series compensation power supplies 8 and 9, and the outputs thereof are sent out by the transformers 10 and 11.

き電回路送り出し点の電圧は電圧変成器12によって検
出され、比較器13に与えられる。比較器13には電圧目標
値として基準電圧Vrefが与えられており、ここで電圧変
成器12の出力と比較される。
The voltage at the feeding point of the feeder circuit is detected by the voltage transformer 12 and given to the comparator 13. The reference voltage Vref is given to the comparator 13 as a voltage target value, and is compared with the output of the voltage transformer 12 here.

そして両値の偏差にしたがい制御回路14を介して、き
電送り出し点の電圧が基準電圧Vrefとなると同時に、変
流器15によって検出した中性点電流INが0となるよう
に直列補償電源8,9を制御する。
Then, via the control circuit 14 according to the deviation between the two values, the voltage at the feeding point becomes the reference voltage Vref and, at the same time, the neutral point current IN detected by the current transformer 15 becomes 0. , 9 control.

なお直列補償電源8,9は図の例では三巻線変圧器3の
中性点側に接続しているが、これをトロリ線(T)側お
よびき電線(F)側に設置しても同様の効果が得られ
る。
The series compensating power supplies 8 and 9 are connected to the neutral point side of the three-winding transformer 3 in the example of the figure, but even if they are installed on the trolley wire (T) side and feeder line (F) side, The same effect can be obtained.

また、本装置の付帯的な機能として、負荷側電圧波形
ひずみを成形するアクティブフィルタとしての効果を具
備させることも可能である。
Further, as an additional function of this device, it is possible to provide an effect as an active filter for shaping the load side voltage waveform distortion.

き電回路の電圧は電車の発生する高調波電流、き電回
路の定数によりひずんでいるが、誘導障害の軽減、電車
の制御への影響等の観点から、ひずみは少ないことが望
ましい。一方本装置による補償電圧は、出力側電圧を制
御目標とすべく基準正弦波電圧に合致するようにPWM制
御により発生させるので、出力側電圧を正弦波とするこ
とが可能である。
Although the voltage of the feeder circuit is distorted due to the harmonic current generated by the train and the constant of the feeder circuit, it is desirable that the distortion be small from the viewpoint of reducing inductive interference and affecting the control of the train. On the other hand, the compensation voltage generated by this device is generated by PWM control so that the output voltage matches the reference sine wave voltage so that the output voltage becomes the control target. Therefore, the output voltage can be a sine wave.

すなわち、本装置の入力側電圧および回路電流の改善
はできないが、き電側電車電圧を正弦波に近付け電車制
御の安定化を図るといった効果を具備させることが可能
である。
That is, although the input side voltage and the circuit current of this device cannot be improved, it is possible to bring the effect of bringing the feeding side train voltage close to a sine wave to stabilize the train control.

なお、この場合電車の発生する高調波電流が補償電源
を通過し、その内部インピーダンスによって出力側電圧
ひずみを生じるという問題があるが、補償電圧を基準正
弦波に対しオープンループで発生させるのではなく、出
力電圧のひずみを補償電圧のPWM制御にフィードバック
することにより所期の目的を達することができる。
In this case, there is a problem that the harmonic current generated by the train passes through the compensating power supply and the output side voltage distortion occurs due to its internal impedance, but the compensating voltage is not generated in open loop with respect to the reference sine wave. By feeding back the output voltage distortion to the PWM control of the compensation voltage, the intended purpose can be achieved.

(発明の効果) 以上詳述したようにこの発明によれば、トロリ線側の
電源とき電線側の電流とをバランスさせて、三巻線き電
用のスコット変圧器の利用率を高めることができ、かつ
列車負荷電流による負荷点の電圧降下を補償することが
できる効果を奏する。
(Effect of the Invention) As described in detail above, according to the present invention, it is possible to improve the utilization factor of the Scott transformer for three-winding feeding by balancing the power supply on the trolley wire side and the current on the wire side. It is possible to compensate for the voltage drop at the load point due to the train load current.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例を示す回路図、第2図は同等
価回路図、第3図は具体的構成例の等価回路図、第4図
は従来例の回路図、第5図は同等価回路図である。 3……三巻線き電用のスコット変圧器、5……単巻変圧
器、6……単巻変圧器の洩れインピーダンス、7……負
荷(電車)、8,9……補償用の直列電源、T……トロリ
線、R……レール、F……き電線、
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram thereof, FIG. 3 is an equivalent circuit diagram of a concrete configuration example, FIG. 4 is a circuit diagram of a conventional example, and FIG. It is the equivalent circuit diagram. 3 ... Scott transformer for three-winding feeder, 5 ... Autotransformer, 6 ... Leakage impedance of autotransformer, 7 ... Load (train), 8, 9 ... Series for compensation Power supply, T ... trolley wire, R ... rail, F ... feeding wire,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮田 紀夫 京都府京都市右京区梅津高畝町47番地 日新電機株式会社内 (72)発明者 陰野 茂 京都府京都市右京区梅津高畝町47番地 日新電機株式会社内 (56)参考文献 特開 昭60−163739(JP,A) 特公 昭50−1524(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norio Miyata 47 Umezu Takaunemachi, Ukyo-ku, Kyoto City, Kyoto Prefecture Nissin Electric Co., Ltd. (72) Inventor Shigeru 47 Umezu Takaunecho, Ukyo-ku, Kyoto Prefecture Electric Machinery Co., Ltd. (56) Reference JP-A-60-163739 (JP, A) JP-B-50-1524 (JP, B1)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】三相電源に接続されてある三巻線き電用変
圧器と、前記三巻線き電用変圧器のき電回線に設けられ
てある単巻変圧器と、前記三巻線き電用変圧器のき電側
に接続されてあるトロリー線側補償用の直列電源及びき
電線側補償用の直列電源と、き電回路送り出し点の電圧
を基準電圧と比較してその偏差を出力する比較手段と、
前記比較手段からの出力に基づいて、前記き電回路送り
出し点の電圧が前記基準電圧に等しくなるように前記両
直列電源の電圧を発生させるとともに、前記両直列電源
の電圧比が、前記三巻線き電用変圧器及び前記単巻変圧
器の各洩れインピーダンス並びに前記三相電源を単相に
換算した電源のインピーダンスで定まる一定の値となる
ように制御する制御手段とを備えてなるき電回路用電圧
変動補償装置。
1. A three-winding feeder transformer connected to a three-phase power source, a single-winding transformer provided in a feeder line of the three-winding feeder transformer, and the three-winding transformer. Difference between the series power supply for compensating the trolley wire side and the series power supply for compensating the feeder wire connected to the feeder side of the feeder for the feeder and the voltage at the feeding point of the feeder circuit compared to the reference voltage Comparing means for outputting
Based on the output from the comparison means, the voltages of the both series power supplies are generated so that the voltage at the feeding circuit sending point becomes equal to the reference voltage, and the voltage ratio of the both series power supplies is three turns. A feeder comprising a transformer for wire feeding and each leakage impedance of the autotransformer, and control means for controlling the three-phase power source to a constant value determined by the impedance of the power source converted into a single phase. Voltage fluctuation compensator for circuits.
JP2255840A 1990-09-25 1990-09-25 Voltage fluctuation compensator for feeder circuit Expired - Lifetime JP2549194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2255840A JP2549194B2 (en) 1990-09-25 1990-09-25 Voltage fluctuation compensator for feeder circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2255840A JP2549194B2 (en) 1990-09-25 1990-09-25 Voltage fluctuation compensator for feeder circuit

Publications (2)

Publication Number Publication Date
JPH04133826A JPH04133826A (en) 1992-05-07
JP2549194B2 true JP2549194B2 (en) 1996-10-30

Family

ID=17284323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2255840A Expired - Lifetime JP2549194B2 (en) 1990-09-25 1990-09-25 Voltage fluctuation compensator for feeder circuit

Country Status (1)

Country Link
JP (1) JP2549194B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7949545B1 (en) 2004-05-03 2011-05-24 The Medical RecordBank, Inc. Method and apparatus for providing a centralized medical record system

Also Published As

Publication number Publication date
JPH04133826A (en) 1992-05-07

Similar Documents

Publication Publication Date Title
US5397927A (en) Active filter for reducing non-fundamental currents and voltages
US4661763A (en) Phase shifter
US5984173A (en) Neutral point connected apparatus providing compensation to an AC power line
US5781428A (en) Transformer for 12-pulse series connection of converters
US10790697B2 (en) System for converting electrical energy supplied by a network and a conversion method implemented by means of such a conversion system
Pinyol Harmonics: Causes, effects and minimization
JP4973139B2 (en) Feeder voltage compensation device
US10644612B2 (en) System of input current sharing for compact architecture in a power converter
CN111697552B (en) Voltage regulator-based arc suppression coil automatic tuning method and device
KR101655415B1 (en) Hybrid transformer with high-efficiency energy-saving
JP2549194B2 (en) Voltage fluctuation compensator for feeder circuit
Goudie Steady-state stability of parallel hvac-dc power-transmission systems
JP3316860B2 (en) Power converter
Bagawade et al. Interleaved boost based AC/DC bidirectional converter with four quadrant power control based on one-cycle controller (OCC)
KR101783239B1 (en) Hybrid power quality improving device with high-efficiency energy-saving
JP2682241B2 (en) Power failure countermeasure device
US2264836A (en) Electric distribution system and multiwinding transformer therefor
JPS5834922B2 (en) Tansoutanmakihen Atsukino Denatsuchiyouseihoshiki
JPS6334472Y2 (en)
KR101655436B1 (en) Hybrid transformer with high-efficiency energy-saving
US2180192A (en) Protection of alternating current systems
Nasiri Series-parallel active filter/uninterruptible power supply systems: Configuration, modeling, and digital control
WO1997003451A1 (en) Power saving apparatus using mutual inductive reactor
JPH08340637A (en) Method of compensating reactive power, etc., of power system having generator facilities
SU603975A2 (en) Three-phase inductive-capacitive converter of voltage source to current source