JPS6156308B2 - - Google Patents

Info

Publication number
JPS6156308B2
JPS6156308B2 JP56122288A JP12228881A JPS6156308B2 JP S6156308 B2 JPS6156308 B2 JP S6156308B2 JP 56122288 A JP56122288 A JP 56122288A JP 12228881 A JP12228881 A JP 12228881A JP S6156308 B2 JPS6156308 B2 JP S6156308B2
Authority
JP
Japan
Prior art keywords
alloy
wear resistance
based sintered
porosity
plus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56122288A
Other languages
Japanese (ja)
Other versions
JPS5822305A (en
Inventor
Masayuki Iijima
Hidetoshi Akutsu
Kazuyuki Hoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP12228881A priority Critical patent/JPS5822305A/en
Publication of JPS5822305A publication Critical patent/JPS5822305A/en
Publication of JPS6156308B2 publication Critical patent/JPS6156308B2/ja
Priority to JP25088087A priority patent/JPH0192340A/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0242Making ferrous alloys by powder metallurgy using the impregnating technique

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた耐食性、耐摩耗性、およ
びなじみ性を有し、特に水中ポンプや燃料ポンプ
のハウジング、ロータ、ローラ、およびブレード
などの構造部材、さらにメカニカルシール材など
として使用するのに適したFe基焼結含浸材料に
関するものである。 従来、上記種類のポンプの構造部材やメカニカ
ルシールなどの製造に種々の焼結材料が用いら
れ、実用に供されていることは良く知られるとこ
ろである。 一方、近年、上記ポンプにも高性能化、小型
化、さらに軽量化が要求されるようになり、さら
に例えば燃料ポンプにあつては、低質ガソリンや
変質軽油、さらにはアルコール含有ガソリンやア
ルコールなどの燃料の輸送にも用いられるなど苛
酷な条件下での使用が強いられる傾向にあるが、
従来の材料では、耐食性、耐摩耗性、およびなじ
み性が不十分であるために、これらの要求を満足
させることができないばかりでなく、苛酷な条件
下での安定的使用も不可能であるのが現状であ
る。 そこで、本発明者等は、上述のような観点か
ら、耐食性、耐摩耗性、およびなじみ性にすぐれ
た材料を開発すべく研究を行なつた結果、C:
0.5〜3.5%、Cr:7〜35%、Mn:0.05〜3%を
含有し、さらに、必要に応じて、(a)MoおよびW
のうちの1種または2種:0.5〜10%、(b)Niおよ
びCoのうちの1種または2種:0.5〜10%、(c)
Nb、Ta、およびTiのうちの1種または2種以
上:0.1〜10%の(a)〜(c)のうちのいずれか1種ま
たは2種以上を含有し、残りがFeと不可避不純
物からなる組成(以上重量%)、並びに10〜30容
量%の空孔率を有するFe基焼結合金の空孔にCu
またはCu合金を溶浸してなるFe基焼結含浸材料
は、素地中に均一に分散析出した炭化物によつて
すぐれた耐摩耗性およびなじみ性をもつようにな
り、またCr固溶の素地によつてすぐれた耐食性
を、さらに空孔に溶浸したCuまたはCu合金によ
つてすぐれた耐食性およびなじみ性をもつように
なるという知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、以下に成分組成範囲および空孔率を
上記の通りに限定した理由を説明する。 (a) C C成分には、素地に固溶して、これを強化す
ると共に、Cr、さらに必要に応じて含有させ
たMo、W、Nb、Ta、およびTiと結合して炭化
物を形成して耐摩耗性を向上させる作用がある
が、その含有量が0.5%未満では前記作用に所
望の効果が得られず、一方3.5%を越えて含有
させると炭化物の析出量が多くなりすぎて脆化
するようになると共に、相手部材を損傷するよ
うになることから、その含有量を0.5〜3.5%と
定めた。 (b) Cr Cr成分には、素地に固溶して耐食性を向上
させると共に、これを強化し、さらにCと結合
して高硬度を有するCr炭化物を形成し、もつ
て耐摩耗性を向上させる作用があるが、その含
有量が7%未満では前記作用に所望の効果が得
られず、一方35%を越えて含有させると、材料
が脆化するようになることから、その含有量を
7〜35%と定めた。 (c) Mn Mn成分には、素地に固溶して、これを靭性
化するほか、耐食性を向上させ、さらにオース
テナイトを安定化し、かつMs点を下げて焼入
れ性を向上させる作用があるが、その含有量が
0.05%未満では前記作用に所望の効果が得られ
ず、一方3%を越えて含有させると、結晶粒に
粗大化傾向が現われて強度および耐食性の低下
をもたらすことから、その含有量を0.05〜3%
と定めた。 (d) MoおよびW これらの成分には、素地に固溶し、これを強
化するほか、Cと結合して炭化物を形成し、耐
摩耗性を向上させる作用があるので、特により
すぐれた耐摩耗性が要求される場合に必要に応
じて含有させるが、その含有量が0.5%未満で
は所望の耐摩耗性向上効果が得られず、一方10
%を越えて含有させると相手部材の損傷が大き
くなることから、その含有量を0.5〜10%と定
めた。 (e) NiおよびCo これらの成分には、一段と素地を強化し、か
つ相手部材とのなじみ性を改善するほか、耐食
性を一段と向上させる作用があるので、これら
の特性が要求される場合に必要に応じて含有さ
れるが、その含有量が0.5%未満では前記作用
に所望の効果が得られず、一方10%を越えて含
有させてもより一層の改善効果は現われず、経
済性を考慮して、その含有量を0.5〜10%と定
めた。 (f) Nb、Ta、およびTi これらの成分は、Cと強い親和力をもつた
め、これと結合して高硬度を有する炭化物を形
成するほか、Crをはじめとする炭化物形成成
分とともに複炭化物を形成して、分散相たる炭
化物と結合相たる素地との結合を一段と強固に
し、もつて耐摩耗性をより一層向上させる一
方、これらの成分の炭化物はきわめて安定した
ものであるため耐食性の改善にも寄与する作用
をもつので、特により一段の耐摩耗性および耐
食性が要求される場合に必要に応じて含有され
るが、その含有量が0.1%未満では所望の特性
向上効果が得られず、一方10%を越えて含有さ
せると相手部材の損傷が大きくなることから、
その含有量を0.1〜10%と定めた。 (g) 空孔率 焼結体の空孔率が10容量%未満では、オープ
ンポア量が少なすぎて耐食性のすぐれたCuま
たはCu合金を十分に溶浸することができず、
この場合耐食性は勿論のこと、なじみ性および
強度も十分でなく、一方30容量%を越えた空孔
率になると、強度低下が著しく、かつ耐摩耗性
も劣化するようになることから、焼結体の空孔
率を10〜30容量%と定めた。なお、上記耐食性
のすぐれたCu合金としては、いずれも公知の
Cu−Sn合金、Cu−Sn−Zn合金、Cu−Sn−Pb
合金、Cu−Sn−Zn−Pb合金、Cu−Zn合金、
Cu−Pb合金、Cu−Zn−Pb合金、Cu−Co合
金、およびCu−Ni合金などの使用が望まし
い。 また、この発明の材料は、不可避不純物とし
て、P、Si、Al、および酸素などを含有する
が、これらの不純物は、その含有量が4%以下
であれば、材料特性に何らの悪影響を及ぼすも
のではない。 つぎに、この発明の材料を実施例により具体的
に説明する。 実施例 原料粉末として、いずれも水噴霧法により形成
した粒度:−150meshのFe粉末、Fe−Cr合金
(Cr:39%含有)粉末、Fe−Cr合金(Cr:67%
含有)粉末、Fe−Mn合金(Mn:75%含有)粉
末、Fe−Nb合金(Nb:68%含有)粉末、Fe−
Ta合金(Ta:67%含有)粉末、Fe−Ti合金
(Ti:72%含有)粉末、Fe−Cr−Mn合金(Cr:
22%、Mn:0.6%含有)粉末、Fe−Cr−Mn合金
(Cr:22%、Mn:0.06%含有)粉末、Fe−Cr−
Mn−Nb合金(Cr:22%、Mn:0.6%、Nb:10%
含有)粉末、Fe−Cr−Mn−Ta合金(Cr:22
%、Mn:0.6%、Ta:10%含有)粉末、粒度:
−150meshのりん片状黒鉛粉末、平均粒径:3μ
mを有するMo粉末、同粒径のW粉末、Ni粉末、
およびCo粉末を用意し、これら原料粉末を、そ
れぞれ第1表に示される配合組成に配合し、マイ
ニユートミキサにて30分間混合した後、それぞれ
2ton/cm2、3ton/cm2、6ton/cm2、7.5ton/cm2、お
よび8ton/cm2の成形圧力にて圧粉体に成形し、つ
いで前記圧粉体を、真空中、温度:1100〜1200℃
の温度範囲内の温度にて焼結して実質的に配合組
成と同一の最終成分組成をもつたFe基焼結合金
を形成
This invention has excellent corrosion resistance, wear resistance, and conformability, and is particularly suitable for use as structural members such as housings, rotors, rollers, and blades of submersible pumps and fuel pumps, as well as mechanical sealing materials. The present invention relates to Fe-based sintered impregnated materials. It is well known that various sintered materials have been used in the production of structural members, mechanical seals, etc. of the above-mentioned types of pumps and are in practical use. On the other hand, in recent years, the pumps mentioned above have also been required to have higher performance, smaller size, and even lighter weight.Furthermore, for example, fuel pumps are required to handle low-quality gasoline, denatured diesel oil, and alcohol-containing gasoline and alcohol. Although they tend to be used under harsh conditions, such as being used to transport fuel,
Conventional materials are not only unable to meet these requirements due to insufficient corrosion resistance, abrasion resistance, and conformability, but also cannot be used stably under harsh conditions. is the current situation. Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a material with excellent corrosion resistance, wear resistance, and conformability, and as a result, C:
0.5 to 3.5%, Cr: 7 to 35%, Mn: 0.05 to 3%, and further contains (a) Mo and W as necessary.
One or two of: 0.5-10%, (b) One or two of Ni and Co: 0.5-10%, (c)
One or more of Nb, Ta, and Ti: Contains 0.1 to 10% of one or more of (a) to (c), with the remainder being Fe and unavoidable impurities. Cu is added to the pores of Fe-based sintered alloy with a composition (more than % by weight) and a porosity of 10 to 30% by volume.
Alternatively, Fe-based sintered impregnated materials made by infiltrating Cu alloys have excellent wear resistance and conformability due to carbides uniformly dispersed and precipitated in the base material, and due to the Cr solid solution base material. They obtained the knowledge that in addition to the excellent corrosion resistance, Cu or Cu alloy infiltrated into the pores also provides excellent corrosion resistance and conformability. This invention has been made based on the above findings, and the reason why the component composition range and porosity are limited as described above will be explained below. (a) C The C component is solid-dissolved in the base material to strengthen it, and also combines with Cr and Mo, W, Nb, Ta, and Ti contained as necessary to form carbides. However, if the content is less than 0.5%, the desired effect cannot be obtained, while if the content exceeds 3.5%, the amount of carbide precipitation will be too large, resulting in brittleness. The content was determined to be 0.5 to 3.5% because it would cause damage to the mating member. (b) Cr The Cr component is dissolved in the base material to improve corrosion resistance, strengthen it, and further combine with C to form Cr carbide with high hardness, thereby improving wear resistance. However, if the content is less than 7%, the desired effect cannot be obtained, while if the content exceeds 35%, the material becomes brittle. It was set at ~35%. (c) Mn The Mn component has the effect of forming a solid solution in the base material, making it tough, improving corrosion resistance, further stabilizing austenite, and lowering the Ms point to improve hardenability. Its content is
If the content is less than 0.05%, the desired effect cannot be obtained; on the other hand, if the content exceeds 3%, the crystal grains tend to coarsen, resulting in a decrease in strength and corrosion resistance. 3%
It was determined that (d) Mo and W These components dissolve in solid solution in the base material and strengthen it, as well as combine with C to form carbide and improve wear resistance. It is included as necessary when wear resistance is required, but if the content is less than 0.5%, the desired effect of improving wear resistance cannot be obtained;
If the content exceeds 0.5% to 10%, the damage to the mating member will increase, so the content was set at 0.5% to 10%. (e) Ni and Co These components have the effect of further strengthening the base material, improving compatibility with mating parts, and further improving corrosion resistance, so they are necessary when these properties are required. However, if the content is less than 0.5%, the desired effect on the above action cannot be obtained, and on the other hand, if the content exceeds 10%, no further improvement effect will be obtained, and economic efficiency should be considered. The content was determined to be 0.5-10%. (f) Nb, Ta, and Ti These components have a strong affinity with C, so they combine with C to form carbides with high hardness, and also form double carbides with carbide-forming components such as Cr. This further strengthens the bond between the carbide, which is the dispersed phase, and the base material, which is the binder phase, further improving wear resistance.However, since the carbide of these components is extremely stable, it can also improve corrosion resistance. Since it has a contributing effect, it is included as necessary especially when higher wear resistance and corrosion resistance are required, but if the content is less than 0.1%, the desired property improvement effect cannot be obtained; If the content exceeds 10%, damage to the mating component will increase, so
Its content was set at 0.1-10%. (g) Porosity If the porosity of the sintered body is less than 10% by volume, the amount of open pores is too small to allow sufficient infiltration of Cu or Cu alloy, which has excellent corrosion resistance.
In this case, not only corrosion resistance but also conformability and strength are insufficient, and on the other hand, if the porosity exceeds 30% by volume, the strength will drop significantly and the wear resistance will also deteriorate. The porosity of the body was determined to be 10 to 30% by volume. In addition, all of the above-mentioned Cu alloys with excellent corrosion resistance are known
Cu-Sn alloy, Cu-Sn-Zn alloy, Cu-Sn-Pb
alloy, Cu-Sn-Zn-Pb alloy, Cu-Zn alloy,
Preferably, Cu-Pb alloy, Cu-Zn-Pb alloy, Cu-Co alloy, Cu-Ni alloy, etc. are used. Furthermore, the material of the present invention contains P, Si, Al, oxygen, etc. as unavoidable impurities, but if the content of these impurities is 4% or less, they do not have any adverse effect on the material properties. It's not a thing. Next, the material of the present invention will be specifically explained using Examples. Examples Fe powder, Fe-Cr alloy (containing 39% Cr) powder, Fe-Cr alloy (containing 39% Cr) powder, Fe-Cr alloy (containing 39% Cr), and Fe-Cr alloy (containing 39% Cr) were used as raw material powders, all of which were formed by a water spray method with a particle size of -150mesh.
) powder, Fe-Mn alloy (containing 75% Mn) powder, Fe-Nb alloy (containing 68% Nb) powder, Fe-
Ta alloy (contains 67% Ta) powder, Fe-Ti alloy (contains 72% Ti) powder, Fe-Cr-Mn alloy (Cr:
22%, Mn: 0.6% content) powder, Fe-Cr-Mn alloy (Cr: 22%, Mn: 0.06% content) powder, Fe-Cr-
Mn-Nb alloy (Cr: 22%, Mn: 0.6%, Nb: 10%
Contains) powder, Fe-Cr-Mn-Ta alloy (Cr: 22
%, Mn: 0.6%, Ta: 10%) powder, particle size:
-150mesh flaky graphite powder, average particle size: 3μ
Mo powder with m, W powder with the same particle size, Ni powder,
and Co powder were prepared, and these raw material powders were blended into the compositions shown in Table 1, and mixed for 30 minutes in a miniute mixer, followed by 2 ton/cm 2 , 3 ton/cm 2 , and 6 ton/cm , respectively. 2 , 7.5 ton/cm 2 and 8 ton/cm 2 into a green compact, and then the green compact is heated in vacuum at a temperature of 1100 to 1200°C.
sintered at a temperature within the temperature range to form an Fe-based sintered alloy with a final component composition that is substantially the same as the blended composition.

【表】【table】

【表】 し、引続いて前記Fe基焼結合金上に、それぞれ
第1表に示される溶浸材の圧粉体を載置し、水素
雰囲気中、温度:950〜1130℃の温度範囲内の温
度に加熱の条件にて前記焼結体の空孔内に前記溶
浸材をそれぞれ溶浸し、溶浸後、900〜950℃から
急冷し、温度:180℃に1時間保持の焼戻し処理
を行なうことによつて本発明材料1〜26および比
較材料1〜8をそれぞれ製造した。 ついで、この結果得られた本発明材料1〜26お
よび比較材料1〜8について、密度および硬さ
(ビツカース硬さ)を測定すると共に、耐摩耗試
験および耐食試験を行なつた。 耐摩耗試験は、上記の各材料から、直径:30mm
φ×厚さ:5mmの寸法を有する回転部材を形成
し、この回転部材を、ロツクウエル硬さHRC:
34を有するJIS・SCM−21製リングに嵌め込んだ
状態で、2%H2O含有ガソリン内に浸漬し、面
圧:5Kg/cm2、回転数:3200r.p.m.の条件で400時
間運転し、運転後、前記回転部材およびリング
(相手部材)のそれぞれの摺動面における平均摩
耗深さを測定することにより行なつた。 また、耐食試験は、それぞれ温度:28℃、湿
度:86%の雰囲気中に50時間放置、および劣化ガ
ソリン中に50時間浸漬の条件で行ない、前記湿気
雰囲気試験においては、錆発生状況を観察し、錆
発生全くなしを◎印、錆発生わずかに有りを〇
印、全面に錆発生ありを×印にて評価し、さらに
前記ガソリン浸漬試験においては、変色状況を観
察し、変色なしを◎印、変色ありを×印で評価し
た。これらの結果を第1表に合せて示した。 第1表に示される結果から、成分組成および空
孔率のうちのいずれか(第1表に※印を付したも
の)がこの発明の範囲から外れた比較材料1〜8
においては、耐摩耗性、なじみ性、および耐食性
のうちの少なくとも1つの特性が劣つたものにな
つているのに対して、本発明材料1〜26は、いず
れもすぐれた耐摩耗性、なじみ性、および耐食性
を兼ね備えていることが明らかである。 上述のように、この発明の材料は、すぐれた耐
摩耗性、なじみ性、および耐食性を有しているの
で、通常のガソリンや軽油などの燃料は勿論のこ
と、劣化ガソリンやH2O含有ガソリン、さらにア
ルコール含有ガソリンやアルコールなどの燃料の
輸送用ポンプの構造部材として、さらに高性能
化、小型化、および軽量化が要求される燃料ポン
プや水中ポンプの構造部材として、またメカニカ
ルシール材として使用することができ、しかも実
用に際しては長期に亘つて安定してすぐれた性能
を発揮するなど工業上有利な特性を有するもので
ある。
[Table] Then, a green compact of the infiltrant material shown in Table 1 was placed on the Fe-based sintered alloy, and heated in a hydrogen atmosphere within a temperature range of 950 to 1130°C. The infiltrating material is infiltrated into the pores of the sintered body under the conditions of heating to a temperature of 1. After infiltration, the material is rapidly cooled from 900 to 950°C, and then tempered at a temperature of 180°C for 1 hour. Inventive materials 1 to 26 and comparative materials 1 to 8 were respectively produced by the following steps. Next, the resulting Inventive Materials 1 to 26 and Comparative Materials 1 to 8 were measured for density and hardness (Vickers hardness), and were also subjected to wear resistance tests and corrosion resistance tests. Abrasion resistance tests were conducted on each of the above materials, diameter: 30 mm.
A rotating member having dimensions of φ×thickness: 5 mm is formed, and this rotating member has Rockwell hardness H R C:
It was fitted into a JIS/SCM-21 ring with 34 mm, immersed in gasoline containing 2% H 2 O, and operated for 400 hours at a surface pressure of 5 Kg/cm 2 and a rotational speed of 3200 rpm. After the operation, the average depth of wear on the sliding surfaces of the rotating member and the ring (mating member) was measured. In addition, the corrosion resistance test was conducted under the conditions of being left in an atmosphere at a temperature of 28°C and humidity of 86% for 50 hours, and immersed in degraded gasoline for 50 hours. , No rust at all is evaluated with ◎, slight rust is ○, and rust is present on the entire surface with ×.Furthermore, in the gasoline immersion test, discoloration was observed, and no discoloration was evaluated with ◎. , The presence of discoloration was evaluated with an x mark. These results are also shown in Table 1. From the results shown in Table 1, Comparative Materials 1 to 8 in which any of the component composition and porosity (those marked with * in Table 1) are outside the scope of this invention.
In contrast, inventive materials 1 to 26 all have excellent abrasion resistance and conformability. It is clear that it has both corrosion resistance and corrosion resistance. As mentioned above, the material of the present invention has excellent wear resistance, conformability, and corrosion resistance, so it can be used not only for fuels such as ordinary gasoline and diesel oil, but also for degraded gasoline and gasoline containing H 2 O. Furthermore, it is used as a structural component of pumps for transporting fuels such as alcohol-containing gasoline and alcohol, as a structural component of fuel pumps and submersible pumps that require higher performance, smaller size, and lighter weight, and as a mechanical seal material. Moreover, in practical use, it has industrially advantageous properties such as stable and excellent performance over a long period of time.

Claims (1)

【特許請求の範囲】 1 C:0.5〜3.5%、Cr:7〜35%、Mn:0.05
〜3%を含有し、残りがFeと不可避不純物から
なる組成(以上重量%)、並びに10〜30容量%の
空孔率を有するFe基焼結合金の空孔にCuまたは
Cu合金を溶浸してなる耐食性および耐摩耗性に
すぐれたFe基焼結含浸材料。 2 C:0.5〜3.5%、Cr:7〜35%、Mn:0.05
〜3%を含有し、さらにNiおよびCoのうちの1
種または2種:0.5〜10%を含有し、残りがFeと
不可避不純物からなる組成(以上重量%)、並び
に10〜30容量%の空孔率を有するFe基焼結合金
の空孔にCuまたはCu合金を溶浸してなる耐食性
および耐摩耗性にすぐれたFe基焼結含浸材料。 3 C:0.5〜3.5%、Cr:7〜35%、Mn:0.05
〜3%を含有し、さらにNb、Ta、およびTiのう
ちの1種または2種以上:0.1〜10%を含有し、
残りがFeと不可避不純物からなる組成(以上重
量%)、並びに10〜30容量%の空孔率を有するFe
基焼結合金の空孔にCuまたはCu合金を溶浸して
なる耐食性および耐摩耗性にすぐれたFe基焼結
含浸材料。 4 C:0.5〜3.5%、Cr:7〜35%、Mn:0.05
〜3%を含有し、さらにMoおよびWのうちの1
種または2種:0.5〜10%と、Nb、Ta、およびTi
のうちの1種または2種以上:0.1〜10%を含有
し、残りがFeと不可避不純物からなる組成(以
上重量%)、並びに10〜30容量%の空孔率を有す
るFe基焼結合金の空孔にCuまたはCu合金を溶浸
しなる耐食性および耐摩耗性にすぐれたFe基焼
結含浸材料。 5 C:0.5〜3.5%、Cr:7〜35%、Mn:0.05
〜3%を含有し、さらにNiおよびCoのうちの1
種または2種:0.5〜10%と、Nb、Ta、およびTi
のうちの1種または2種以上:0.1〜10%を含有
し、残りがFeと不可避不純物からなる組成(以
上重量%)、並びに10〜30容量%の空孔率を有す
るFe基焼結合金の空孔にCuまたはCu合金を溶浸
してなる耐食性および耐摩耗性にすぐれたFe基
焼結含浸材料。 6 C:0.5〜3.5%、Cr:7〜35%、Mn:0.05
〜3%を含有し、さらにMoおよびWのうちの1
種または2種:0.5〜10%と、NiおよびCoのうち
の1種または2種:0.5〜10%と、Nb、Ta、およ
びTiのうちの1種または2種以上:0.1〜10%を
含有し、残りがFeと不可避不純物からなる組成
(以上重量%)、並びに10〜30容量%の空孔率を有
するFe基焼結合金の空孔にCuまたはCu合金を溶
浸してなる耐食性および耐摩耗性にすぐれたFe
差焼結含浸材料。
[Claims] 1 C: 0.5-3.5%, Cr: 7-35%, Mn: 0.05
~3%, with the remainder consisting of Fe and unavoidable impurities (wt%), and a porosity of 10 to 30% by volume.
Fe-based sintered impregnated material with excellent corrosion and wear resistance made by infiltrating Cu alloy. 2 C: 0.5-3.5%, Cr: 7-35%, Mn: 0.05
~3%, plus one of Ni and Co
Species or 2 types: Fe-based sintered alloy containing 0.5 to 10%, the rest consisting of Fe and unavoidable impurities (weight%), and a porosity of 10 to 30% by volume. Or Fe-based sintered impregnated material with excellent corrosion and wear resistance made by infiltrating Cu alloy. 3 C: 0.5-3.5%, Cr: 7-35%, Mn: 0.05
-3%, and further contains one or more of Nb, Ta, and Ti: 0.1 to 10%,
Fe with a composition (more than % by weight) in which the remainder consists of Fe and unavoidable impurities, and a porosity of 10 to 30% by volume
Fe-based sintered impregnated material with excellent corrosion and wear resistance, made by infiltrating Cu or Cu alloy into the pores of a sintered alloy. 4 C: 0.5-3.5%, Cr: 7-35%, Mn: 0.05
~3%, plus one of Mo and W
Species or two: 0.5-10% plus Nb, Ta, and Ti
Fe-based sintered alloy containing one or more of the following: 0.1 to 10%, with the remainder consisting of Fe and unavoidable impurities (weight%), and a porosity of 10 to 30% by volume An Fe-based sintered impregnated material with excellent corrosion and wear resistance made by infiltrating Cu or Cu alloy into the pores of the material. 5 C: 0.5-3.5%, Cr: 7-35%, Mn: 0.05
~3%, plus one of Ni and Co
Species or two: 0.5-10% plus Nb, Ta, and Ti
Fe-based sintered alloy containing one or more of the following: 0.1 to 10%, with the remainder consisting of Fe and unavoidable impurities (weight%), and a porosity of 10 to 30% by volume Fe-based sintered impregnated material with excellent corrosion resistance and wear resistance, made by infiltrating Cu or Cu alloy into the pores of. 6 C: 0.5-3.5%, Cr: 7-35%, Mn: 0.05
~3%, plus one of Mo and W
Species or two: 0.5 to 10%, one or two of Ni and Co: 0.5 to 10%, and one or more of Nb, Ta, and Ti: 0.1 to 10% Corrosion resistance and Fe with excellent wear resistance
Difference sintering impregnation material.
JP12228881A 1981-08-04 1981-08-04 Fe base sintered and impregnated material excellent in resistance to corrosion and abrasion Granted JPS5822305A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12228881A JPS5822305A (en) 1981-08-04 1981-08-04 Fe base sintered and impregnated material excellent in resistance to corrosion and abrasion
JP25088087A JPH0192340A (en) 1981-08-04 1987-10-05 Fe-based sintered impregnated material having excellent corrosion resistance and water resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12228881A JPS5822305A (en) 1981-08-04 1981-08-04 Fe base sintered and impregnated material excellent in resistance to corrosion and abrasion

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP25088087A Division JPH0192340A (en) 1981-08-04 1987-10-05 Fe-based sintered impregnated material having excellent corrosion resistance and water resistance

Publications (2)

Publication Number Publication Date
JPS5822305A JPS5822305A (en) 1983-02-09
JPS6156308B2 true JPS6156308B2 (en) 1986-12-02

Family

ID=14832239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12228881A Granted JPS5822305A (en) 1981-08-04 1981-08-04 Fe base sintered and impregnated material excellent in resistance to corrosion and abrasion

Country Status (1)

Country Link
JP (1) JPS5822305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129313U (en) * 1989-03-31 1990-10-25

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564528B2 (en) * 1987-01-06 1996-12-18 日立金属株式会社 High corrosion and wear resistant tools, materials for parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5060409A (en) * 1973-09-28 1975-05-24
JPS5130515A (en) * 1974-09-10 1976-03-15 Toyota Motor Co Ltd BARUBUSHIITOYOTETSUKEISHOKETSUGOKIN
JPS55145157A (en) * 1979-04-27 1980-11-12 Toyota Motor Corp Wear resistant sintered iron alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5060409A (en) * 1973-09-28 1975-05-24
JPS5130515A (en) * 1974-09-10 1976-03-15 Toyota Motor Co Ltd BARUBUSHIITOYOTETSUKEISHOKETSUGOKIN
JPS55145157A (en) * 1979-04-27 1980-11-12 Toyota Motor Corp Wear resistant sintered iron alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129313U (en) * 1989-03-31 1990-10-25

Also Published As

Publication number Publication date
JPS5822305A (en) 1983-02-09

Similar Documents

Publication Publication Date Title
JP3520093B2 (en) Secondary hardening type high temperature wear resistant sintered alloy
JP2003089831A5 (en)
JP3469435B2 (en) Valve seat for internal combustion engine
WO2007080824A1 (en) Copper base sintered slide member
JPH0115584B2 (en)
JPH10226855A (en) Valve seat for internal combustion engine made of wear resistant sintered alloy
JPH0115582B2 (en)
JP2000297356A (en) High temperature wear resistant sintered alloy
JPS6156308B2 (en)
JPH0120223B2 (en)
JP3682556B2 (en) Heat and wear resistant sintered stainless steel
JPH041061B2 (en)
JPS6315985B2 (en)
JPH0116905B2 (en)
JP2517675B2 (en) Sintered copper alloy for high load sliding
JPH0115581B2 (en)
JP2677813B2 (en) High temperature wear resistant iron-based sintered alloy
JPS5828342B2 (en) Valve seat for internal combustion engines with excellent heat and wear resistance and machinability
SU1624044A1 (en) Powdery antifriction iron-based material
JPS6133052B2 (en)
JPH0115580B2 (en)
JPH0676649B2 (en) Sintered trochoidal rotor for oil motor
JPH0354175B2 (en)
JPH1088299A (en) Two-layer valve seat made of ferrum-base sintered alloy, excellent in wear resistance
JPS62127454A (en) Wear-resistant composite sintered material