JPS6156285B2 - - Google Patents

Info

Publication number
JPS6156285B2
JPS6156285B2 JP58109423A JP10942383A JPS6156285B2 JP S6156285 B2 JPS6156285 B2 JP S6156285B2 JP 58109423 A JP58109423 A JP 58109423A JP 10942383 A JP10942383 A JP 10942383A JP S6156285 B2 JPS6156285 B2 JP S6156285B2
Authority
JP
Japan
Prior art keywords
raw material
basicity
storage tank
ore storage
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58109423A
Other languages
Japanese (ja)
Other versions
JPS602606A (en
Inventor
Naoki Tanaka
Masamichi Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10942383A priority Critical patent/JPS602606A/en
Publication of JPS602606A publication Critical patent/JPS602606A/en
Publication of JPS6156285B2 publication Critical patent/JPS6156285B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Description

【発明の詳細な説明】 本発明は、高炉貯鉱槽からの原料切出し方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cutting out raw material from a blast furnace ore storage tank.

高炉の操業において、溶銑中の〔Si〕を目標値
どうりに安定化させることは重要なテーマであ
り、このためには炉熱の安定化とともにスラグ塩
基度、CaO/SiO2の安定化が重要な管理項目と
なつている。
In the operation of a blast furnace, it is an important theme to stabilize [Si] in hot metal to the target value, and for this purpose, it is necessary to stabilize the furnace heat, as well as the slag basicity and CaO/SiO 2 . It has become an important management item.

スラグ塩基度を目標値どおりに安定化させるた
めには、スラグ塩基度と炉頂から装入する高炉原
料の塩基度、CaO/SiO2(以下装入塩基度と略
す)との相関に基いて装入塩基度の目標値(以下
目標装入塩基度と略す)を定め、目標装入塩基度
を満足するように貯鉱槽から原料を切出さなけれ
ばならない。
In order to stabilize the slag basicity to the target value, based on the correlation between the slag basicity and the basicity of the blast furnace raw material charged from the top of the furnace, CaO/SiO 2 (hereinafter abbreviated as charging basicity). A target value for charging basicity (hereinafter abbreviated as target charging basicity) must be determined, and raw material must be cut out from the ore storage tank so as to satisfy the target charging basicity.

しかし、焼結鉱やペレツト等の高炉原料を製造
する工場(以下原料工場と云う)から高炉の貯鉱
槽へ供給される原料の塩基度は、目標装入塩基度
どおりの値で供給されるとは限らず、時々刻々変
化しているためそのまま高炉へ装入することはで
きない。
However, the basicity of the raw materials supplied from factories that manufacture blast furnace raw materials such as sintered ore and pellets (hereinafter referred to as raw material factories) to the blast furnace storage tank is the same as the target charging basicity. However, it is not always possible to charge the blast furnace as it is because it changes from moment to moment.

このため従来は以下のような方法がとられてい
た。
For this reason, the following methods have been used in the past.

まず、予め全貯鉱槽からの合計切出し量と有効
容量とから、貯鉱槽内の通過に要する平均時間
(以下平均通過時間と略す)を求めておく。一方
原料工場から供給される原料の塩基度CaO/
SiO2は、原料工場の出側でサンプリングして分
析されるのでサンプリング点〜貯鉱槽までの移動
時間と貯鉱槽内の平均通過時間とを加味すること
によつて高炉へ装入する原料の塩基度を知ること
ができる。そこで、高炉へ装入する原料の塩基度
と目標装入塩基度とを比較し、差が大きければ誤
差を補償するように石灰石や珪石等の塩基度調整
用副原料の切出し量を設定する。
First, the average time required for passage through the ore storage tank (hereinafter abbreviated as average passage time) is determined in advance from the total cut-out amount and effective capacity from all the ore storage tanks. On the other hand, the basicity of the raw material supplied from the raw material factory, CaO/
SiO 2 is sampled and analyzed at the exit side of the raw material factory, so by taking into account the travel time from the sampling point to the ore storage tank and the average transit time in the ore storage tank, the raw material to be charged into the blast furnace can be determined. You can know the basicity of. Therefore, the basicity of the raw material to be charged into the blast furnace is compared with the target charging basicity, and if the difference is large, the amount of auxiliary raw material for basicity adjustment such as limestone or silica stone is set to compensate for the error.

従来、該副原料の切出し量の設定は、オペレー
ターに任されていたため以下のような問題があつ
た。
Conventionally, the setting of the amount of the auxiliary raw material to be cut out was left to the operator, which caused the following problems.

(1) 副原料切出し量の設定は、本来貯鉱槽から切
出す頻度(すなわち2〜3分頻度)で更新する
必要があるが、操作上の制約や各貯鉱槽内の原
料の塩基度分布に対する情報不足から現実的に
は2時間に1回程度しか意味のある更新を行う
ことができないため十分な精度で目標装入塩基
度どおりに切出すことができず結果としてスラ
グ塩基度が目標値からはずれることが多かつ
た。
(1) The setting of the amount of auxiliary raw material to be cut should normally be updated at the frequency of cutting from the ore storage tank (i.e., every 2 to 3 minutes), but due to operational constraints and the basicity of the raw material in each ore storage tank. Due to the lack of information on the distribution, meaningful updates can realistically only be made once every two hours, so it is not possible to cut the slag according to the target charge basicity with sufficient accuracy, and as a result, the slag basicity becomes the target. It often deviated from the value.

(2) 原料工場から高炉の貯鉱槽へ供給される原料
の塩基度は、時々刻々変化しているが、2日程
度の長期間の平均値は一定値に近いことが多
い。したがつて、生成時刻の異なる原料のブレ
ンド等により、時々刻々の変化を十分に平均化
できれば、CaOやSiO2源となる高価な副原料
の使用量を大幅に節約できるはずであるが、従
来の技術レベルでは実現することができなかつ
た。
(2) The basicity of the raw material supplied from the raw material factory to the blast furnace storage tank changes from moment to moment, but the average value over a long period of about two days is often close to a constant value. Therefore, if momentary changes could be sufficiently averaged out by blending raw materials with different generation times, it would be possible to significantly reduce the amount of expensive auxiliary raw materials used as sources of CaO and SiO2 . This could not be achieved at the current technological level.

本発明は、このような問題を解決するために、
複数の貯鉱槽を持つ高炉原料装入設備において、
各貯鉱槽からの合計切出し量の目標値を満足し、
かつ目標装入塩基度との差の絶対値が最小となる
ように各貯鉱槽毎の塩基度情報に基いて各貯鉱槽
毎の切出し量を切出しの都度自動的に設定するよ
うにしたものである。
In order to solve such problems, the present invention has the following features:
In blast furnace raw material charging equipment with multiple ore storage tanks,
Satisfy the target value of the total amount cut out from each ore storage tank,
In addition, the cutting amount for each ore storage tank is automatically set each time the ore storage tank is cut, based on the basicity information for each ore storage tank, so that the absolute value of the difference from the target charging basicity is minimized. It is something.

以下図面に基いて本発明を説明する。 The present invention will be explained below based on the drawings.

第1図は高炉装入設備の全体説明図である。原
料工場1で製造された高炉原料は、原料コンベア
2によつて複数個の貯鉱槽3に順次供給される。
各貯鉱槽3に貯えられた原料は、各貯鉱槽の真下
に設置された秤量ホツパー4に対して各貯鉱槽ご
とに与えられた設定値に到達するまで切出され、
その後コンベア2Aによつてサージホツパー5へ
輸送され、さらに炉頂ホツパー6を経由して高炉
7へ装入される。
FIG. 1 is an overall explanatory diagram of the blast furnace charging equipment. The blast furnace raw material produced in the raw material factory 1 is sequentially supplied to a plurality of ore storage tanks 3 by a raw material conveyor 2.
The raw material stored in each ore storage tank 3 is cut out to a weighing hopper 4 installed directly below each ore storage tank until a set value given to each ore storage tank is reached.
Thereafter, it is transported to the surge hopper 5 by the conveyor 2A, and further charged into the blast furnace 7 via the furnace top hopper 6.

これらの工程のうち、各貯鉱槽3に貯えられた
原料を高炉7へ装入するまでの一連の運転制御
は、運転制御装置8によつて行われる。又、各貯
鉱槽3ごとの切出し量の設定値はあらかじめ切出
し量設定装置9より運転制御装置8に対して与え
られている。
Among these steps, a series of operation controls up to charging the raw materials stored in each ore storage tank 3 into the blast furnace 7 are performed by the operation control device 8. Further, the set value of the cutting amount for each ore storage tank 3 is given in advance to the operation control device 8 from the cutting amount setting device 9.

以下に該切出し量設定装置9の機能について詳
しく説明する。
The functions of the cutting amount setting device 9 will be explained in detail below.

切出し量設定装置9の機能は、各貯鉱槽内トラ
ツキング機能と各貯鉱槽切出し量設定機能との2
つから成る。各貯鉱槽内トラツキング機能は、各
貯鉱槽の中の高さ方向の原料の塩基度分布を把握
するものであり、以下のように行う。
The cutting amount setting device 9 has two functions: a tracking function within each ore storage tank and a function of setting the cutting amount for each ore storage tank.
Consists of one. The tracking function within each ore storage tank is to grasp the basicity distribution of the raw material in the height direction within each ore storage tank, and is performed as follows.

まず、原料コンベア2上のサンプリング点10
において一定周期で原料をサンプリングし、分析
した結果得られた塩基度、CaO/SiO2とサンプ
リング時刻とを取込む。一方原料コンベア2を通
過する量は、コンベアスケール11から常時読込
む。そして塩基度分析値・サンプリング時刻・通
過量の各情報に、別途得られる輸送ルート及び速
度の情報を加味して各貯鉱槽へ入槽される高炉原
料の塩基度と量を把握する。
First, sampling point 10 on raw material conveyor 2
The raw material is sampled at regular intervals, and the basicity, CaO/SiO 2 and sampling time obtained as a result of analysis are taken in. On the other hand, the amount passing through the raw material conveyor 2 is constantly read from the conveyor scale 11. Then, the basicity and amount of the blast furnace raw material entering each ore storage tank is determined by adding information on the transportation route and speed, which is obtained separately, to the basicity analysis value, sampling time, and passing amount information.

次に各貯鉱槽からの切出した量を運転制御装置
8から取込む。入槽された高炉原料は切出した量
だけ貯鉱槽内をある規則に従つて移動する。この
規則は貯鉱槽内の下部中心部→上部中心部→下部
側壁部の順に切出されるというもので、予め実験
的に求めることができる。したがつて、上記入槽
原料の塩基度・入槽量・切出し量の情報から貯鉱
槽内の高さ方向の高炉原料の塩基度分布が把握で
きる。把握したトラツキング情報の一例を第2図
に示す。(数字は塩基度を示す) 一方、各貯鉱槽切出し量設定機能は以下のごと
くである。
Next, the amount cut out from each ore storage tank is taken in from the operation control device 8. The blast furnace raw material that has been placed in the tank is moved within the storage tank according to certain rules by the amount that has been cut out. This rule states that the ore storage tank is cut out in the order of lower center → upper center → lower side wall, and can be determined experimentally in advance. Therefore, the basicity distribution of the blast furnace raw material in the height direction in the ore storage tank can be grasped from the information on the basicity, input amount, and cut-out amount of the raw material input into the tank. An example of the tracked information is shown in Figure 2. (Numbers indicate basicity) On the other hand, the cutout amount setting function for each ore storage tank is as follows.

あらかじめ1回あたりの各貯鉱槽からの合計切
出し量(以下全切出し量と略す)を生産計画が炉
況に応じて与えておき、又、目標装入塩基度はス
ラグ塩基度の目標値に応じて与えておく。一方各
貯鉱槽から切出す高炉原料の塩基度情報は、前述
のとおり各貯鉱槽内トラツキング機能によつて把
握しているので、該塩基度情報をもとに全切出し
量と目標装入塩基度の条件を同時に満足するよう
に各貯鉱槽ごとの切出し量を決定する。万一、各
貯鉱槽ごとの塩基度をいかに決定しても、目標装
入塩基度を満足できなければ、その場合に限り過
不足分を補償するのに必要十分な量の石灰石な硅
石を副原料槽12から切り出す処置をとる。以上
によつて決定した各貯鉱槽及び各副原料槽からの
切出し量を運転制御装置8に対して切出し時刻に
間に合うように自動的に設定する。
The production plan gives in advance the total cutting amount from each ore storage tank (hereinafter referred to as the total cutting amount) according to the furnace conditions, and the target charging basicity is determined based on the target value of slag basicity. I will give it accordingly. On the other hand, the basicity information of the blast furnace raw material cut out from each ore storage tank is grasped by the tracking function in each ore storage tank as mentioned above, so the total cutout amount and target charging are determined based on this basicity information. The cutting amount for each ore storage tank is determined so that basicity conditions are satisfied at the same time. In the unlikely event that the target charging basicity cannot be satisfied no matter how basicity is determined for each ore storage tank, only in that case should a sufficient amount of limestone or silica be added to compensate for the excess or deficiency. Measures are taken to cut out the auxiliary raw material tank 12. The amount of cutting from each ore storage tank and each sub-material tank determined in the above manner is automatically set to the operation control device 8 in time for the cutting time.

本発明に係る切出し量設定装置9を用いた場合
の効果を以下に具体的に示す。
The effects of using the cutting amount setting device 9 according to the present invention will be specifically shown below.

第3図、第4図はオペレーターのみによる操業
と、切出し量設定装置9を用いた場合とを比較し
て示したものである。第5図、第6図も同様にオ
ペレーターのみによる操業と切出し量設定装置9
を用いた場合とを比較して示したものである。オ
ペレーターは各貯鉱槽内のトラツキング情報を把
握できないため、副原料の切出し量を適確に決定
することが容易ではなく、スラグ塩基度が目標値
からはずれることが多い。第3図a,bは、塩基
度を下げるための珪石の使用量13が不足したた
めスラグ塩基度実積値14が目標値15よりも高
すぎた場合の例である。この場合、切出し量設定
装置9は多量の珪石設定値16を計算しており、
計算どうりに設定していればスラグ塩基度実積値
14は目標値15にほぼ一致させることが可能だ
あつた。原料事情が同じ時期で切出し量設定値9
の計算値どおりに設定した時の操業結果は、第4
図a,bに示すようにスラグ塩基度実積値14は
目標値15の近辺で十分に安定させることができ
た。
FIGS. 3 and 4 compare operations performed by an operator alone and operations using the cutting amount setting device 9. Figures 5 and 6 also show operation and cutting amount setting device 9 by only the operator.
This is a comparison of the case using . Since the operator cannot grasp the tracking information in each ore storage tank, it is difficult to accurately determine the amount of auxiliary material to be cut out, and the slag basicity often deviates from the target value. FIGS. 3a and 3b show an example in which the actual slag basicity value 14 was higher than the target value 15 because the amount of silica stone used 13 for lowering the basicity was insufficient. In this case, the cutting amount setting device 9 calculates a large amount of silica stone setting value 16,
If the settings were made as calculated, the actual slag basicity value 14 could be made to almost match the target value 15. Cutting amount set value 9 when the raw material situation is the same
The operational results when set according to the calculated values are as follows.
As shown in Figures a and b, the actual slag basicity value 14 was able to be sufficiently stabilized around the target value 15.

さらにオペレーターは情報面での制約の他に操
作頻度に関しても制約をうけているため、きめ細
かなアクシヨンがとれず、結果として過剰に副原
料を使用する傾向にある。
Furthermore, operators are not only limited in terms of information but also in terms of frequency of operation, so they are unable to take detailed actions and as a result tend to use excessive amounts of auxiliary materials.

第5図a,bは、オペレーターの操作により硅
石の使用量13、石灰石の使用量17ともに大き
な値となつているが、過剰なアクシヨンであつた
ためスラグ塩基度14を大きく変動している。
In FIGS. 5a and 5b, both the amount of silica used 13 and the amount of limestone used 17 become large values due to the operator's operations, but the slag basicity 14 fluctuates greatly due to excessive action.

一方、同じ原料事情の時期に切出し量設定装置
9の計算値どおりに設定した時の操業では第6図
a,bに示すようにきめ細かく石灰石設定値18
を出しているため副原料の使用量は大幅に少な
く、しかもスラグ塩基度14を安定させることが
できた。
On the other hand, in the operation when the cutting amount setting device 9 is set according to the calculated value at the same raw material situation, the limestone setting value 18 is finely tuned as shown in Fig. 6 a and b.
Because of this, the amount of auxiliary raw materials used was significantly reduced, and the slag basicity was stabilized at 14.

以上に述べたように本発明に係る切出し量設定
装置9によれば適確なトラツキング情報に基いて
原料を切出す都度合理的な切出し量の設定を行な
うことが可能であるため、目標値どうりのスラグ
塩基度を必要最小限の副原料で実現できる。尚、
本発明に係る切出し量設定装置9は、単にスラグ
塩基度を一定とするために適用できるのみならず
トータルFe等の化学成分や近年技術的に注目さ
れている原料粒度等に対しても全く同様のロジツ
クで適用できるため利用価値は極めて大きい。
As described above, according to the cutting amount setting device 9 according to the present invention, it is possible to set a reasonable cutting amount each time raw material is cut out based on accurate tracking information, so it is possible to set a reasonable cutting amount each time the raw material is cut out. The basicity of slag can be achieved with the minimum necessary auxiliary raw materials. still,
The cutting amount setting device 9 according to the present invention can be applied not only to simply keeping the slag basicity constant, but also to chemical components such as total Fe, raw material particle size, etc. that have received technical attention in recent years. It has extremely high utility value as it can be applied to various logics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、高炉原料装入設備の全体説明図、第
2図は各貯鉱槽内トラツキング情報を例示する
図、第3図、第5図はオペレーターによる操業時
の副原料使用量a及びスラグ塩基度bの推移を示
す図、第4図、第6図は本発明の実施例で副原料
使用量a及びスラグ塩基度bの推移を示す図。 1……原料工場、2……原料コンベア、3……
貯鉱槽、4……秤量ホツパー、5……サージホツ
パー、6……炉頂ホツパー、7……高炉、8……
運転制御装置、9……切出し量設定装置、10…
…サンプリング点、11……コンベアスケール、
12……副原料槽、13……珪石の使用量、14
……スラグ塩基度実積値、15……スラグ塩基度
目標値、16……珪石設定値、17……石灰石の
使用量、18……石灰石設定値。
Figure 1 is an overall explanatory diagram of the blast furnace raw material charging equipment, Figure 2 is a diagram illustrating the tracking information in each ore storage tank, and Figures 3 and 5 are the amounts of auxiliary raw materials used during operation by the operator, and Figures 4 and 6 are diagrams showing changes in slag basicity b, and Figures 4 and 6 are diagrams showing changes in auxiliary raw material usage a and slag basicity b in Examples of the present invention. 1...Raw material factory, 2...Raw material conveyor, 3...
Ore storage tank, 4...Weighing hopper, 5...Surge hopper, 6...Furnace top hopper, 7...Blast furnace, 8...
Operation control device, 9... Cutting amount setting device, 10...
...Sampling point, 11...Conveyor scale,
12...Auxiliary raw material tank, 13...Amount of silica stone used, 14
... Slag basicity actual value, 15 ... Slag basicity target value, 16 ... Silica stone setting value, 17 ... Limestone usage amount, 18 ... Limestone setting value.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の貯鉱槽から高炉原料を切り出してサー
ジホツパーへ装入するに際し、各貯鉱槽からの高
炉原料切出し量の合計が目標値を満足すると共
に、各貯鉱槽中原料の高さ方向塩基度分布情報を
把握しておき、それを基に切り出される高炉原料
全体の塩基度が目標値に最も近い値となるよう
に、各貯鉱槽内に貯えられている高炉原料の高さ
方向の塩基度及び貯鉱量に基いて各貯鉱槽から高
炉原料を切り出すことを特徴とする高炉貯鉱槽か
らの原料切出し方法。
1. When blast furnace raw material is cut out from multiple ore storage tanks and charged to the surge hopper, the total amount of blast furnace raw material cut out from each ore storage tank satisfies the target value, and the height direction base of the raw material in each ore storage tank is Based on this information, the basicity of the blast furnace raw material stored in each ore storage tank is adjusted in the height direction so that the basicity of the entire blast furnace raw material to be cut out is the closest to the target value. A method for cutting out raw material from a blast furnace ore storage tank, characterized in that the blast furnace raw material is cut out from each ore storage tank based on basicity and ore storage amount.
JP10942383A 1983-06-20 1983-06-20 Method for feeding out raw material from ore storage tank of blast furnace Granted JPS602606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10942383A JPS602606A (en) 1983-06-20 1983-06-20 Method for feeding out raw material from ore storage tank of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10942383A JPS602606A (en) 1983-06-20 1983-06-20 Method for feeding out raw material from ore storage tank of blast furnace

Publications (2)

Publication Number Publication Date
JPS602606A JPS602606A (en) 1985-01-08
JPS6156285B2 true JPS6156285B2 (en) 1986-12-02

Family

ID=14509860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10942383A Granted JPS602606A (en) 1983-06-20 1983-06-20 Method for feeding out raw material from ore storage tank of blast furnace

Country Status (1)

Country Link
JP (1) JPS602606A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188112A (en) * 1989-01-17 1990-07-24 Toppan Printing Co Ltd Cable reinforcing board
US5043925A (en) * 1989-08-14 1991-08-27 Westinghouse Electric Corp. Method and apparatus for modeling bunker flow

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751206A (en) * 1980-09-12 1982-03-26 Sumitomo Metal Ind Ltd Operating method for blast furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751206A (en) * 1980-09-12 1982-03-26 Sumitomo Metal Ind Ltd Operating method for blast furnace

Also Published As

Publication number Publication date
JPS602606A (en) 1985-01-08

Similar Documents

Publication Publication Date Title
KR19990037272A (en) Mixing Control Method and System of Cement Raw Material and Renewing Method
JPS6156285B2 (en)
Vasilyeva et al. Development of a control subsystem to stabilize burden materials charging into a furnace
US3719811A (en) Blast furnace computer control utilizing feedback corrective signals
JP3981560B2 (en) Production / distribution plan creation method, production / distribution plan creation apparatus, distribution control method and distribution control apparatus, computer-readable storage medium, and computer program
CN110502781A (en) A kind of ferroalloy production blending optimization method based on priori knowledge
JPH02293515A (en) Dust supplying crane control device
CN112986491A (en) Mixture water detection value correction method based on feedback adaptive prediction model
KR101858871B1 (en) Charging material profileing apparatus
CN103374638A (en) Closed-loop control method for burdening of blast furnace
JP4612409B2 (en) Production and / or distribution plan creation device and method, process control device and method, and computer program
Hewins et al. Metal-olivine associations and NiCo contents in two Apollo 12 mare basalts
CN102855416B (en) Digital management system for non-ferrous metal metallurgy
KR102305731B1 (en) Apparatus for tracking raw materials in real time
JP2021167447A (en) Simulation method using blast furnace mathematical model and blast furnace operation method using the same
JPH06158125A (en) Method for controlling weighing of discharged raw material
JPS5751206A (en) Operating method for blast furnace
JPH09256021A (en) Device for calculating charging quantity of auxiliary raw material into converter
JPH093555A (en) Blending method for material to be sintered
JP2000017310A (en) Operation of blast furnace
KR20240013811A (en) Sintering process state estimation method, operation guidance method, sintering ore manufacturing method, sintering process state estimation device, operation guidance device, sintering operation guidance system, sintering operation guidance server and terminal device
JPH0813047A (en) Method for controlling input quantity of heat in sintering machine
RU1792438C (en) Method of controlling slag metering process for iron ore agglomeration
CN115433792A (en) Blast furnace damping down method and system
Everett Decision making in mining operations-inaccurate timely data, accurate tardy data