JPH0813047A - Method for controlling input quantity of heat in sintering machine - Google Patents

Method for controlling input quantity of heat in sintering machine

Info

Publication number
JPH0813047A
JPH0813047A JP372095A JP372095A JPH0813047A JP H0813047 A JPH0813047 A JP H0813047A JP 372095 A JP372095 A JP 372095A JP 372095 A JP372095 A JP 372095A JP H0813047 A JPH0813047 A JP H0813047A
Authority
JP
Japan
Prior art keywords
amount
heat
sintering machine
value
feo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP372095A
Other languages
Japanese (ja)
Inventor
Koichi Matsuda
浩一 松田
Takashi Noda
俊 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP372095A priority Critical patent/JPH0813047A/en
Publication of JPH0813047A publication Critical patent/JPH0813047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To provide a control method for input heat quantity in a sintering machine, by which the stable control can always be executed by restraining the variation of FeO content and yield. CONSTITUTION:A first relation indicating the correlation between the output heat quantity of raw material charged to the sintering machine and the FeO content contained in the sintered product 3 and/or a second relation indicating the correlation between the above output heat quantity and the yield of the product 3 are obtd. beforehand. The actually measured value of the above output heat is applied to the above first relation and/or the second relation to calculate the predicting value of the above FeO content and/or yield. The input heat quantity supplied to the sintering machine is controlled based on the difference between the calculated prediction value of the FeO content and/or yield and the aimed value thereof. By this method, the stable control can always be executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,焼結機投入熱量制御方
法に係り,例えば製鉄業における焼結機の操業に用いら
れる焼結機投入熱量制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the amount of heat input to a sinter, and more particularly to a method for controlling the amount of heat input to a sinter used in the operation of a sinter in the steelmaking industry.

【0002】[0002]

【従来の技術】従来,焼結機における投入熱量を制御す
る方法としては,次の方法が公知である(特開昭60−
43441号公報及び特公平6−39672号公報)。
特開昭60−43441号公報に開示された方法では,
焼結鉱製造工程において,焼結機以後に設置された磁性
体含有量測定装置で測定した,焼結鉱FeOと,焼結原
料単位重量当りの投入熱量との関係を予め求め,所望水
準の焼結鉱強度が得られる臨界投入熱量に近づくように
連続測定された焼結鉱FeOにより,焼結反応熱量を調
整する。これにより,焼結機投入熱量の制御を行ってい
た。また,特公平6−39672号公報に開示された方
法では,焼結機に設置した計測端から得られる情報から
出熱量を検出し,検出した出熱量の移動平均値と直近値
の差を求め,この差に基づきコークス換算値を求め,こ
のコークス換算値の直近2点あるいは3点の値があらか
じめ設定した条件を満たせば,その条件に応じて設定し
たアクション量だけコークス配合比を変化させる(この
方法を適用可能と考えられる制御系を図10に示し
た)。これにより焼結機投入熱量制御を行っていた。
2. Description of the Related Art Conventionally, the following method has been known as a method for controlling the amount of heat input to a sintering machine (Japanese Patent Laid-Open No. 60-60).
No. 43441 and Japanese Patent Publication No. 6-39672).
In the method disclosed in JP-A-60-43441,
In the sinter production process, the relationship between the sinter FeO measured by the magnetic substance content measuring device installed after the sinter machine and the input heat amount per unit weight of the sintering raw material was obtained in advance, and the desired level was obtained. The calorific value of the sintering reaction is adjusted by the sinter ore FeO continuously measured so that the strength of the sintered ore approaches the critical heat input. This controls the heat input to the sintering machine. Further, in the method disclosed in Japanese Patent Publication No. 6-39672, the heat output amount is detected from the information obtained from the measurement end installed in the sintering machine, and the difference between the moving average value and the latest value of the detected heat output amount is obtained. , The coke conversion value is obtained based on this difference, and if the values of the closest two or three points of the coke conversion value satisfy the preset condition, the coke mixture ratio is changed by the action amount set according to the condition ( A control system in which this method is considered applicable is shown in FIG. 10). This controls the heat input to the sintering machine.

【0003】[0003]

【発明が解決しようとする課題】上記したような特開昭
60−43441号公報に開示された従来の焼結機投入
熱量制御方法では,以下のような問題点があった。 (1)磁性体含有量測定装置は,リアルタイムにFeO
を測定することができるが,FeO以外の磁性体(例え
ばメタリックFe,MgO,Fe2O3など)によって
測定精度が低下する。従って,これを用いて投入熱量を
制御した場合,FeOの変動が大きくなってしまう。 (2)FeOのみを制御目標にしているため,焼結機の
操業にとってもう1つの重要な指標である歩留の変動が
大きくなる。 また,特公平6−39672号公報に開示された従来の
焼結機投入熱量制御方法では,以下のような問題点があ
った。 (1)出熱量の移動平均値を基準値として,これに追従
するようにコークス配合比を調整するため,出熱量の変
動を小さくすることはできるが,ある一定の目標値に出
熱量を制御することはできない。 (2)出熱量を目標値に制御できないため,出熱量と相
関の強い焼結鉱FeOも一定の目標範囲内に管理できな
い。 本発明は,このような従来の技術における課題を解決す
るために,焼結機投入熱量制御方法を改良し,FeO及
び/又は歩留の変動を抑えて常に安定した制御を行うこ
とができる焼結機投入熱量制御方法を提供することを第
1の目的とするものである。また,出熱量の変動を抑え
て,その目標値に出熱量の制御を行い,かつ焼結製品に
関する情報を反映して常に安定した制御を行うことがで
きる焼結機投入熱量制御方法を提供することを第2の目
的とするものである。
The conventional method for controlling the heat input to the sintering machine, which is disclosed in Japanese Patent Laid-Open No. 60-43441, has the following problems. (1) The magnetic substance content measuring device uses FeO in real time.
Can be measured, but the measurement accuracy is reduced by magnetic substances other than FeO (for example, metallic Fe, MgO, Fe2O3, etc.). Therefore, when the input heat amount is controlled by using this, the fluctuation of FeO becomes large. (2) Since only FeO is set as the control target, the yield fluctuation, which is another important index for the operation of the sintering machine, becomes large. Further, the conventional sintering machine input heat amount control method disclosed in Japanese Patent Publication No. 6-39672 has the following problems. (1) Taking the moving average value of the heat output as a reference value and adjusting the coke mixing ratio to follow this, the fluctuation of the heat output can be reduced, but the heat output is controlled to a certain target value. You cannot do it. (2) Since the amount of heat output cannot be controlled to the target value, the sintered ore FeO, which has a strong correlation with the amount of heat output, cannot be managed within a certain target range. In order to solve the problems in the prior art, the present invention improves the sintering machine charging calorie control method and suppresses fluctuations in FeO and / or yield, and enables stable control at all times. A first object of the present invention is to provide a method for controlling the amount of heat input to a machine. Further, the present invention provides a method for controlling the amount of heat input to a sintering machine, which suppresses fluctuations in the amount of heat output, controls the amount of heat output to its target value, and can always perform stable control by reflecting information about the sintered product. This is the second purpose.

【0004】[0004]

【課題を解決するための手段】上記第1の目的を達成す
るために第1の発明は,焼結機に投入される原料の出熱
量と焼結製品に含まれるFeO量との相関関係を表す第
1の関係を予め求めておき,上記出熱量の実測値を上記
第1の関係に適用することにより上記FeO量の予測値
を演算し,上記演算されたFeO量の予測値と,その目
標値との偏差に基づいて上記焼結機への投入熱量を制御
する焼結機投入熱量制御方法として構成されている。ま
た第2の発明は,焼結機に投入される原料の出熱量と焼
結製品の歩留りとの相関関係を表す第2の関係を予め求
めておき,上記出熱量の実測値を上記第2の関係に適用
することにより上記歩留の予測値を演算し,上記演算さ
れた歩留の予測値とその目標値との偏差に基づいて上記
焼結機への投入熱量を制御する焼結機投入熱量制御方法
である。また第3の発明は,焼結機に投入される原料の
出熱量と焼結製品に含まれるFeO量との相関関係を表
す第1の関係及び上記出熱量と上記製品の歩留との相関
関係を表す第2の関係を予め求めておき,上記出熱量の
実測値を上記第1,第2の関係に適用することにより上
記FeO量及び歩留の各予測値を演算し,上記演算され
たFeO量及び歩留の各予測値とそれらの目標値との偏
差に基づいて各必要入熱量を演算し,上記演算された各
必要入熱量の重み和に基づいて上記焼結機への投入熱量
を制御する焼結機投入熱量制御方法である。さらには,
上記第1の関係を, FeO量=A1×出熱量+B1 (A1,B1:係数) で表すと共に,係数A1,B1を所定期間ごとに更新す
る焼結機投入熱量制御方法である。
In order to achieve the first object, the first aspect of the present invention provides a correlation between the heat output of the raw material charged to the sintering machine and the FeO amount contained in the sintered product. The first relationship is calculated in advance, and the predicted value of the FeO amount is calculated by applying the measured value of the heat output amount to the first relationship, and the calculated predicted value of the FeO amount and its It is configured as a sintering machine input heat amount control method for controlling the input heat amount to the sintering machine based on the deviation from the target value. In the second invention, a second relationship representing the correlation between the heat output of the raw material input to the sintering machine and the yield of the sintered product is obtained in advance, and the measured value of the heat output is the second value. The sintering machine for calculating the predicted value of the yield by applying the above-mentioned relationship to the sintering machine and controlling the amount of heat input to the sintering machine based on the deviation between the calculated predicted value of the yield and its target value. This is a method for controlling the amount of heat input. A third aspect of the present invention is the first relationship showing the correlation between the heat output of the raw material fed to the sintering machine and the amount of FeO contained in the sintered product, and the correlation between the heat output and the yield of the product. A second relationship representing the relationship is obtained in advance, and the predicted values of the FeO amount and the yield are calculated by applying the measured value of the heat output amount to the first and second relationships. Each required heat input amount is calculated based on the deviation between each predicted value of FeO amount and yield and the target value thereof, and is input to the sintering machine based on the weighted sum of each calculated required heat input amount. This is a method for controlling the amount of heat input to a sintering machine for controlling the amount of heat. Furthermore,
The first relationship is represented by the following formula: FeO amount = A1 × heat output + B1 (A1, B1: coefficient), and the coefficient A1, B1 is updated every predetermined period.

【0005】さらには,上記第1の関係を, FeO量=A1×出熱量+B1+C1×熱源副原料量
(A1,B1,C1:係数) で表すと共に,係数A1,B1をFeO量の実測値とC
1×熱源副原料量との偏差,及び,出熱量の実測値に基
づいて演算する焼結機投入熱量制御方法である。さらに
は,上記第2の関係を, 歩留=A2×出熱量+B2 (A2,B2:係数) で表すと共に,係数A2,B2を所定期間ごとに更新す
る焼結機投入熱量制御方法である。さらには,上記投入
熱量の増減を, 投入熱量の増減=G×〔α×(歩留目標値−歩留予測
値)/A1+(1−α)×(FeO量目標値−FeO量
予測値)/A2〕 ただし,A1,A2:係数,G:定数,α:変数(0<
α<1)で表す焼結機投入熱量制御方法である。さらに
は,上記出熱量を,出熱量(kcal/t)=石灰石分
解熱量(kcal/t)+焼結顕熱量(kcal/t)
+排ガス顕熱量(kcal/t) 石灰石分解熱量(kcal/t)=石灰石量(kg)×
1000×石灰石分解比熱(kcal/kg)/(製品
量+返鉱量)(t) 焼結顕熱量(kcal/t)=焼結比熱(kcal/℃
・kg)×1000×製品の冷却器への入口温度(℃)
×温度補正係数 排ガス顕熱(kcal/t)=排ガス比熱(kcal/
℃・Nm3 )×排ガス吸引用ブロアの電流々量変換係数
(Nm3 /A・分)×1440(分)×排ガス吸引用ブ
ロアの電流値(A)×排ガス温度(℃)/(製品量+返
鉱量)(t)で表す焼結機投入熱量制御方法である。
Further, the above first relationship is expressed as follows: FeO amount = A1 × heat output + B1 + C1 × heat source auxiliary raw material amount
(A1, B1, C1: coefficient), and the coefficients A1 and B1 are expressed as C
This is a method for controlling the amount of heat input into the sintering machine, which is calculated based on the deviation from the 1 × heat source auxiliary material amount and the actually measured value of the heat output amount. Furthermore, it is a sintering machine input calorie control method in which the second relation is expressed by yield = A2 × heat output + B2 (A2, B2: coefficient), and the coefficients A2 and B2 are updated every predetermined period. Further, the increase / decrease in the input heat amount is calculated as follows: Increase / decrease in the input heat amount = G × [α × (yield target value-yield predicted value) / A1 + (1-α) × (FeO amount target value-FeO amount predicted value) / A2] where A1, A2: coefficient, G: constant, α: variable (0 <
This is a method for controlling the amount of heat input to the sintering machine represented by α <1). Further, the heat output amount is calculated as follows: Heat output amount (kcal / t) = Limestone decomposition heat amount (kcal / t) + Sintered sensible heat amount (kcal / t)
+ Exhaust gas sensible heat amount (kcal / t) Limestone decomposition heat amount (kcal / t) = Limestone amount (kg) x
1000 x limestone decomposition specific heat (kcal / kg) / (product amount + return ore amount) (t) Sintered sensible heat amount (kcal / t) = sintering specific heat (kcal / ° C)
・ Kg) × 1000 × product inlet temperature (° C)
× Temperature correction coefficient Exhaust gas sensible heat (kcal / t) = Exhaust gas specific heat (kcal / t)
℃ ・ Nm 3 ) × Exhaust gas suction blower current amount conversion coefficient (Nm 3 / A ・ min) × 1440 (min) × Exhaust gas suction blower current value (A) × Exhaust gas temperature (° C) / (Product amount This is a method for controlling the amount of heat input to the sintering machine, which is represented by + (return ore amount) (t).

【0006】一方,上記第2の目的を達成するために第
4の発明は,焼結機に投入される原料の出熱量を実測
し,該出熱量の実測値とその目標値との偏差に基づいて
上記原料中のコークス配分比の変更量を演算し,該コー
クス配分比の変更量を用いて上記焼結機の投入熱量を制
御する焼結機投入熱量制御方法として構成されている。
また,第5の発明は,焼結機に投入される原料の出熱量
を実測し,該出熱量の実測値とその目標値との偏差に基
づいて上記原料中のコークス配分比の変更量を演算し,
該コークス配分比の変更量を用いて上記焼結機の投入熱
量を制御すると共に,焼結製品に関する情報と上記出熱
量とに基づいて上記目標値を変更する焼結機投入熱量制
御方法である。さらには,上記目標値の変更において,
焼結製品に関する情報と上記出熱量との回帰式を用いる
焼結機投入熱量制御方法である。さらには,上記回帰式
に上記目標値を代入して得られた焼結製品に関する情報
がその許容範囲から外れたものである場合には,上記目
標値を所定量だけ変更する焼結機投入熱量制御方法であ
る。さらには,上記所定量を上記許容範囲からの外れ具
合に応じて変化させる焼結機投入熱量制御方法である。
さらには,上記焼結製品に関する情報がFeO量である
焼結機投入熱量制御方法である。さらには,上記焼結製
品に関する情報が歩留である焼結機投入熱量制御方法で
ある。
On the other hand, in order to achieve the above-mentioned second object, the fourth aspect of the present invention actually measures the heat output of the raw material fed into the sintering machine and determines the deviation between the measured value of the heat output and its target value. Based on this, the amount of change in the coke distribution ratio in the raw material is calculated, and the amount of heat input to the sintering machine is controlled using the amount of change in the coke distribution ratio.
A fifth aspect of the invention is to actually measure the heat output of the raw material that is put into the sintering machine, and to determine the change amount of the coke distribution ratio in the raw material based on the deviation between the measured value of the heat output and its target value. Calculate,
A sintering machine input heat quantity control method for controlling the input heat quantity of the sintering machine by using the change amount of the coke distribution ratio, and changing the target value based on the information on the sintered product and the heat output quantity. . Furthermore, in changing the above target value,
This is a method for controlling the heat input to the sintering machine, which uses a regression equation of information on the sintered product and the heat output. Further, when the information on the sintered product obtained by substituting the target value into the regression equation is out of the allowable range, the calorie input heat quantity for changing the target value by a predetermined amount It is a control method. Further, it is a method for controlling the amount of heat input to the sintering machine, which changes the predetermined amount according to the degree of deviation from the allowable range.
Furthermore, it is a method for controlling the amount of heat input to the sintering machine in which the information on the sintered product is the amount of FeO. Furthermore, it is a method for controlling the amount of heat input to the sintering machine, in which the information on the sintered product is the yield.

【0007】[0007]

【作用】第1〜第3の発明によれば,焼結機に投入され
る原料の出熱量と焼結製品に含まれるFeO量との相関
関係を表す第1の関係及び/又は上記出熱量と上記製品
の歩留との相関関係を表す第2の関係が予め求められ,
上記出熱量の実測値を上記第1の関係及び/又は第2の
関係に適用することにより上記FeO量及び/又は歩留
の予測値が演算される。上記演算されたFeO量及び/
又は歩留の予測値とその目標値との偏差に基づいて上記
焼結機への投入熱量が制御される。ここで,FeO量及
び歩留の両方の予測値を用いる場合は,上記偏差に基づ
いて各必要入熱量が演算され,上記演算された各必要入
熱量の重み和に基づいて上記焼結機への投入熱量が制御
される。従って,従来例のごとく磁性体含有量測定装置
を用いず,分析FeO量と相関の強い出熱量の関係式か
らFeO量を求めるため,FeO量の演算精度がよく,
かつ,出熱量は実時間で求められるため,実時間でのF
eO量が演算できる。
According to the first to third inventions, the first relationship and / or the above-mentioned heat output amount showing the correlation between the heat output amount of the raw material charged to the sintering machine and the FeO amount contained in the sintered product. And a second relationship representing the correlation between the product yield and
The predicted value of the FeO amount and / or the yield is calculated by applying the measured value of the heat output amount to the first relationship and / or the second relationship. FeO amount calculated above and /
Alternatively, the amount of heat input to the sintering machine is controlled based on the deviation between the predicted yield value and its target value. Here, when both predicted values of the FeO amount and the yield are used, each required heat input amount is calculated on the basis of the deviation, and the sintering machine is fed to the sintering machine based on the weighted sum of the calculated required heat input amounts. The amount of heat input is controlled. Therefore, unlike the conventional example, the magnetic substance content measuring device is not used, and the FeO amount is obtained from the relational expression of the heat output amount which has a strong correlation with the analyzed FeO amount.
Moreover, since the heat output is obtained in real time, F in real time
The eO amount can be calculated.

【0008】また,FeO量及び歩留の両方の予測値を
用いる場合には,各目標値と演算値との偏差の重み和に
より投入熱量を決定するため,FeO量優先又は歩留優
先といったような操業方針が熱量制御に反映できる。さ
らに,随時,FeO量と出熱量との関係式及び/又は歩
留と出熱量との関係式を求めるため,FeO量及び/又
は歩留の演算精度がよく,このため,常時安定した制御
が行える。さらに,熱源副原料によるFeO量の変化を
考慮することにより,投入熱量中の副原料配合比が変化
しても,直ちに精度良くFeO量を予測することができ
る。従って,この場合,さらに安定した制御が行える。
その結果,FeO量の変動及び/又は歩留の変動を抑え
て常に安定した制御を行うことのできる焼結機投入熱量
制御方法を得ることができる。一方,第4の発明によれ
ば,焼結機に投入される原料の出熱量が実測され,該出
熱量の実測値とその目標値との偏差に基づいて上記原料
中のコークス配分比の変更量が演算され,該コークス配
分比の変更量を用いて上記焼結機の投入熱量が制御され
る。従って,出熱量の変動を抑えてその目標値に出熱量
を制御できる。
When the predicted values of both the FeO amount and the yield are used, the input heat amount is determined by the weighted sum of the deviations between the target values and the calculated values. Different operational policies can be reflected in heat control. Further, since the relational expression between the FeO amount and the heat output amount and / or the relational expression between the yield and the heat output amount is obtained at any time, the calculation accuracy of the FeO amount and / or the yield is good, and therefore stable control is always performed. You can do it. Furthermore, by considering the change in the FeO amount due to the heat source auxiliary raw material, the FeO amount can be immediately and accurately predicted even if the auxiliary raw material mixing ratio in the input heat amount changes. Therefore, in this case, more stable control can be performed.
As a result, it is possible to obtain a method for controlling the heat input to the sintering machine, which can suppress the fluctuation of the FeO amount and / or the fluctuation of the yield and can always perform stable control. On the other hand, according to the fourth aspect of the invention, the heat output of the raw material to be fed into the sintering machine is measured, and the coke distribution ratio in the raw material is changed based on the deviation between the measured value of the heat output and its target value. The amount of heat is calculated, and the amount of heat input to the sintering machine is controlled using the amount of change in the coke distribution ratio. Therefore, the amount of heat output can be controlled to the target value while suppressing the variation in the amount of heat output.

【0009】また,第5の発明によれば,上記第4の発
明による制御が行われると共に,焼結製品に関する情報
と上記出熱量とに基づいて上記目標値が変更される。従
って,この場合は焼結製品に関する情報をも出熱量の制
御に反映できる。さらに,上記目標値の変更において,
焼結製品に関する情報と上記出熱量との回帰式を用いれ
ば,焼結製品に関する情報を出熱量の制御に,より確実
に反映できる。さらに,上記回帰式に上記目標値を代入
して得られた焼結製品に関する情報がその許容範囲から
外れたものである場合には,上記目標値が所定量だけ変
更される。これにより,焼結製品に関する情報が常に許
容範囲内に収まるように出熱量を制御できる。さらに,
上記所定量を上記許容範囲からの外れ具合に応じて変化
させれば,制御動作の収束を早めることができる。さら
に,上記焼結製品に関する情報がFeO量又は歩留であ
る場合には,FeO量又は歩留を出熱量の制御に反映で
きる。その結果,出熱量の変動を抑えてその目標値に出
熱量の制御を行い,かつ焼結製品に関する情報を反映し
て常に安定した制御を行うことができる。
According to the fifth invention, the control according to the fourth invention is performed, and the target value is changed based on the information on the sintered product and the heat output. Therefore, in this case, information about the sintered product can be reflected in the control of the heat output. Furthermore, in changing the above target value,
If the regression equation of the information on the sintered product and the heat output is used, the information on the sintered product can be more reliably reflected in the control of the heat output. Further, when the information about the sintered product obtained by substituting the target value into the regression equation is out of the allowable range, the target value is changed by a predetermined amount. As a result, the heat output can be controlled so that the information on the sintered product is always within the allowable range. further,
If the predetermined amount is changed according to the degree of deviation from the permissible range, the control operation can be quickly converged. Further, when the information about the sintered product is the FeO amount or the yield, the FeO amount or the yield can be reflected in the control of the heat output. As a result, it is possible to suppress the fluctuation of the heat output amount and control the heat output amount to the target value, and to always perform stable control by reflecting the information about the sintered product.

【0010】[0010]

【実施例】以下添付図面を参照して,本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は第1〜第3の発明の一実施例(第1の実施
例)に係る焼結機投入熱量制御方法による概略フローを
示す図,図2は焼結工場の工程フローを示す模式図,図
3は出熱量とFeO量との関係を示す説明図,図4は副
原料変化に伴うFeO量の変化を示す説明図,図5はス
ケール補正項の決定方法を示す説明図,図6は第4,第
5の発明の一実施例(第2の実施例)に係る焼結機投入
熱量制御方法による概略フローを示す図,図7は第2の
実施例方法を適用可能な制御系のブロック線図,図8は
上記制御系の動作を示すフロー図,図9は上記制御系に
よる制御状態を示す説明図である。図1,図2に示すご
とく,第1〜第3の発明の一実施例(第1の実施例)に
係る焼結機投入熱量制御方法は,焼結機1に投入される
原料2の出熱量と焼結製品3に含まれるFeO量との相
関関係を表す第1の関係及び/又は上記出熱量と製品3
の歩留との相関関係を表す第2の関係を予め求めておき
(S1),上記出熱量の実測値を上記第1の関係及び/
又は第2の関係に適用することにより,上記FeO量及
び/又は歩留の予測値を演算し(S2),上記演算され
たFeO量及び/又は歩留の予測値とその目標値との偏
差に基づいて焼結機1への投入熱量を制御する(S3)
ように構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and are not intended to limit the technical scope of the present invention. Here, FIG. 1 is a diagram showing a schematic flow of a method for controlling heat input to a sintering machine according to an embodiment (first embodiment) of the first to third inventions, and FIG. 2 is a process flow of a sintering factory. The schematic diagram shown in FIG. 3, FIG. 3 is an explanatory diagram showing the relationship between the heat output amount and the FeO amount, FIG. 4 is an explanatory diagram showing the change in the FeO amount due to changes in the auxiliary materials, and FIG. 5 is an explanatory diagram showing the method for determining the scale correction term. FIG. 6 is a diagram showing a schematic flow of a calorie input heat amount control method according to one embodiment (second embodiment) of the fourth and fifth inventions, and FIG. 7 is applicable to the second embodiment method. 8 is a block diagram of the control system, FIG. 8 is a flow chart showing the operation of the control system, and FIG. 9 is an explanatory diagram showing the control state of the control system. As shown in FIG. 1 and FIG. 2, the sintering machine input heat quantity control method according to one embodiment (first embodiment) of the first to third inventions is a method for supplying the raw material 2 to the sintering machine 1. The first relationship showing the correlation between the amount of heat and the amount of FeO contained in the sintered product 3 and / or the amount of heat output and the product 3
The second relationship representing the correlation with the yield of the above is obtained in advance (S1), and the measured value of the heat output amount is set to the first relationship and / or
Alternatively, by applying the second relation, the predicted value of the FeO amount and / or the yield is calculated (S2), and the deviation between the calculated FeO amount and / or the predicted value of the yield and its target value is calculated. The amount of heat input to the sintering machine 1 is controlled based on (S3)
It is configured as follows.

【0011】ここで,上記ステップS3において,Fe
O量及び歩留の両方の予測値を用いる場合には,上記偏
差に基づいて各必要入熱量を演算し(S3a),上記演
算された各必要入熱量の重み和に基づいて焼結機1への
投入熱量を制御する(S3b)。図2は焼結工程10の
フローを示す。図中,原料2は原料槽11に適宜配合さ
れ貯留された後,定量切出装置12により切出される。
切出された原料2は1次,2次ドラムミキサ13により
造粒され,焼結機1に給鉱される。給鉱された原料2は
ここで点火され焼成されて製品3とされる。焼成時の排
気ガスは電気集じん機(EP)13を介して吸引用ブロ
ワ14により吸引された後,排煙脱硫設備15を通して
大気中へ排出される。焼成された製品3は1次クラッシ
ャ16を介して,クーラ17に送り込まれここで冷却さ
れる。クーラ17からの排熱は排熱回収ボイラ18によ
り回収され有効利用される。冷却された製品3は2次ク
ラッシャ19により整粒された後スクリーン20により
スクリーニングされ,返鉱21は原料槽11へ戻され再
利用される。スクリーニングされた製品3は自動サンプ
リング設備22によりサンプリング検査後,最終製品と
して高炉へ送られる。この焼結工程10は制御装置23
により制御される。即ち,上記第1の実施例方法は制御
装置23により具現化される。
Here, in the above step S3, Fe
When both the predicted values of the O amount and the yield are used, the required heat input amount is calculated based on the deviation (S3a), and the sintering machine 1 is calculated based on the weighted sum of the calculated required heat input amount. The amount of heat input to the device is controlled (S3b). FIG. 2 shows a flow of the sintering process 10. In the figure, the raw material 2 is appropriately mixed and stored in the raw material tank 11 and then cut out by the quantitative cutout device 12.
The raw material 2 cut out is granulated by the primary and secondary drum mixers 13 and fed to the sintering machine 1. The supplied raw material 2 is ignited and fired here to obtain a product 3. The exhaust gas at the time of firing is sucked by the suction blower 14 through the electric dust collector (EP) 13, and then discharged into the atmosphere through the flue gas desulfurization facility 15. The baked product 3 is sent to the cooler 17 via the primary crusher 16 and cooled there. Exhaust heat from the cooler 17 is recovered and effectively utilized by the exhaust heat recovery boiler 18. The cooled product 3 is sized by the secondary crusher 19 and then screened by the screen 20, and the returned ore 21 is returned to the raw material tank 11 for reuse. The screened product 3 is sent to the blast furnace as the final product after sampling inspection by the automatic sampling equipment 22. This sintering process 10 is controlled by the control device 23.
Controlled by. That is, the method of the first embodiment is implemented by the controller 23.

【0012】以下,この制御装置23により,焼結機投
入熱量を制御する手順について述べる。ただし,ここで
は上記第1の実施例方法においてFeO量と歩留との両
方の予測値を用いる場合について述べる。両者の何れか
を用いる場合は当該処理のみを行えばよいので,ここで
はその説明を割愛する。まず,分析FeO量,歩留及び
出熱量を算出するためのデータとして石灰石(原料に相
当)量,生産量(製品量に相当),返鉱量,クーラ(冷
却器に相当)入口温度,ブロア電流値,EP温度(排ガ
ス温度に相当)を時間データとともに制御装置23のメ
モリ24に蓄積する。次に各時刻での出熱量を次の式に
より計算し,同様にメモリ24に蓄積する。尚,以下の
一連の演算は制御装置23の演算部25により実行す
る。 出熱量(kcal/t)=石灰石分解熱量(kcal/t)+焼結顕熱量(k cal/t)+排ガス顕熱量(kcal/t) 石灰石分解熱量(kcal/t)=石灰石量(kg)×1000×石灰石分解 比熱(kcal/kg)/(生産量+返鉱量)(t) 焼結顕熱量(kcal/t)=焼結比熱(kcal/℃・kg)×1000× クーラ入り口温度(℃)×クーラ温度補正係数 排ガス顕熱(kcal/t)=排ガス比熱(kcal/℃・Nm3 )×ブロア 電流流量変換係数(Nm3 /A・分)×1440(分)×ブロア電流値(A)× EP温度(℃)/(生産量+返鉱量)(t) …(1)
The procedure of controlling the heat input to the sintering machine by the control device 23 will be described below. However, here, a case will be described in which the predicted values of both the FeO amount and the yield are used in the method of the first embodiment. When either of the two is used, only the relevant process needs to be performed, and therefore the description thereof is omitted here. First, limestone (corresponding to the raw material) amount, production amount (corresponding to the product amount), return ore amount, cooler (corresponding to the cooler) inlet temperature, blower as data for calculating the amount of analyzed FeO, yield and heat output. The current value and the EP temperature (corresponding to the exhaust gas temperature) are stored in the memory 24 of the control device 23 together with the time data. Next, the heat output amount at each time is calculated by the following formula, and is similarly stored in the memory 24. The following series of calculations are executed by the calculator 25 of the controller 23. Heat output (kcal / t) = Limestone decomposition heat quantity (kcal / t) + Sintered sensible heat quantity (kcal / t) + Exhaust gas sensible heat quantity (kcal / t) Limestone decomposition heat quantity (kcal / t) = Limestone quantity (kg) × 1000 × Decomposition of limestone Specific heat (kcal / kg) / (Production amount + Returned mineral amount) (t) Sintered sensible heat amount (kcal / t) = Sintering specific heat (kcal / ° C. kg) × 1000 × Cooler inlet temperature ( ℃) × cooler temperature correction coefficient Exhaust gas sensible heat (kcal / t) = Exhaust gas specific heat (kcal / ℃ · Nm 3 ) × blower current flow rate conversion coefficient (Nm 3 / A · min) × 1440 (min) × blower current value ( A) x EP temperature (° C) / (production + return ore) (t) (1)

【0013】次に,蓄積したデータをある時間(例えば
1〜24時間程度)の平均値処理を行う。平均値化した
データにより最小2乗法を用い,予めメモリ24に記憶
しておいた次の第1,第2の関係を示す各式における各
係数A1,A2,B1,B2を求める。 第1の関係:FeO量=A1×出熱量+B1 第2の関係:歩留=A2×出熱量+B2 …(2) このとき,FeO量と出熱量と,あるいは歩留と出熱量
とは,ある時間例えば0〜6時間程度ずらして計算す
る。図3にはこのように求められた係数A1,B1によ
るFeO量と出熱量との関係を示す。また,係数A2,
B2による歩留と出熱量との関係も同様である(ここま
でが上記方法におけるステップS1に相当する)。次に
出熱量を計算するためのデータをある周期で採取する。
そして上記平均化処理での時間と同じ時間でこのデータ
をも平均値化処理を行う。そして出熱量を計算しメモリ
24に蓄積する。上記(2)式により求めたFeO量及
び歩留を予測する(上記方法におけるステップS2に相
当)。
Next, the accumulated data is averaged for a certain time (for example, about 1 to 24 hours). Based on the averaged data, the least squares method is used to obtain the coefficients A1, A2, B1, B2 in the respective equations indicating the following first and second relationships stored in advance in the memory 24. First relation: FeO amount = A1 × heat output + B1 Second relation: Yield = A2 × heat output + B2 (2) At this time, the FeO amount and the heat output, or the yield and the heat output are The calculation is performed by shifting the time, for example, 0 to 6 hours. FIG. 3 shows the relationship between the amount of FeO and the amount of heat output by the coefficients A1 and B1 thus obtained. Also, the coefficient A2
The same holds true for the relationship between the yield and the amount of heat output according to B2 (up to this point corresponds to step S1 in the above method). Next, data for calculating the heat output is collected at a certain cycle.
Then, this data is also subjected to the averaging process at the same time as the above averaging process. Then, the amount of heat output is calculated and stored in the memory 24. The FeO amount and the yield determined by the above equation (2) are predicted (corresponding to step S2 in the above method).

【0014】これらの予測値を用い,次式により投入熱
量増減量を決定し,制御装置23の制御部26により定
量切出装置12等へ指令信号を発することによって焼結
機1への投入熱量を制御する(上記方法におけるステッ
プS3a,S3bに相当)。 投入熱量増減量=G×〔α×(歩留目標値−歩留予測値)/A1 +(1−α)×(FeO目標値−FeO予測値)/A2〕 …(3) ここで,αは0〜1の変数,Gは係数である。一定期間
経過後,あるいはFeO量,歩留の予測精度が悪くなっ
た場合は,上記(2)式における係数A1,A2,B
1,B2の更新を行う。それ以外には更新を行わない
で,出熱量を計算するためのデータ採取を行い順次上記
処理を繰り返す。以上により,次のことがいえる。 (1)本第1の実施例では,従来例のごとく磁性体含有
量測定装置を用いず,分析FeO量と相関の強い出熱量
の関係式からFeO量を求めるため,FeO量演算精度
がよく,かつ,出熱量は実時間で求められるため,実時
間でのFeO量が演算できる。
Using these predicted values, the increase / decrease amount of the amount of heat input is determined by the following equation, and the control unit 26 of the controller 23 issues a command signal to the quantitative cutting device 12 and the like to input the amount of heat input to the sintering machine 1. (Corresponding to steps S3a and S3b in the above method). Increase / decrease in input heat amount = G × [α × (yield target value−yield predicted value) / A1 + (1-α) × (FeO target value−FeO predicted value) / A2] (3) where α Is a variable of 0 to 1, and G is a coefficient. After a certain period of time, or when the prediction accuracy of the FeO amount and the yield deteriorates, the coefficients A1, A2, B in the above equation (2)
1 and B2 are updated. Otherwise, the data is collected for calculating the heat output, and the above processing is repeated in sequence. From the above, the following can be said. (1) In the first embodiment, unlike the conventional example, the magnetic substance content measuring device is not used, and the FeO amount is obtained from the relational expression of the heat output amount having a strong correlation with the analyzed FeO amount. Moreover, since the heat output is obtained in real time, the FeO amount in real time can be calculated.

【0015】(2)FeO量及び歩留の両方の予測値を
用いる場合には,各目標値と演算値との偏差の重み和に
より投入熱量を決定するため,FeO量優先,歩留優先
といった操業方針が熱量制御に反映できる。 (3)随時,FeO量と出熱量との関係式及び/又は歩
留と出熱量との関係式を求めるため,FeO量及び/又
は歩留の演算精度が良く,このため常時安定した制御が
行える。また,上記関係式はいずれも1次式であるた
め,高速に関係式を求めることができる。さらに,出熱
量とFeO量及び/又は歩留との関係に無駄時間があっ
ても精度よく制御できる。その結果,FeO量の変動及
び/又は歩留の変動を抑えて常に安定した制御を行うこ
とができる。ところで,上記第1の実施例では,投入熱
源中の原料配合比が変化した場合,図4に示すように係
数A1及びB1の更新(学習)タイミングがくるまで
は,計測値と実績値とでレベル差が生じることがある。
これは熱源副原料中のFeO量と熱源主原料中のFeO
量との差があるためである。したがって,上記(2)式
中のFeO量の予測式(第1の関係)を次式に変えるこ
とを考える。 FeO量=A1×出熱量+B1+C1×熱源副原料量 …(2′) ただし,C1は熱源副原料量によるFeO量の変化係数
である。
(2) When the predicted values of both the FeO amount and the yield are used, the input heat amount is determined by the weighted sum of the deviations between the target values and the calculated values. Operation policy can be reflected in heat quantity control. (3) Since the relational expression between the FeO amount and the heat output amount and / or the relational expression between the yield and the heat output amount is obtained at any time, the calculation accuracy of the FeO amount and / or the yield is good, and therefore stable control is always possible. You can do it. Further, since all the above relational expressions are linear expressions, the relational expressions can be obtained at high speed. Furthermore, even if there is a dead time in the relationship between the amount of heat output and the amount of FeO and / or the yield, it can be controlled accurately. As a result, it is possible to suppress the fluctuation of the FeO amount and / or the fluctuation of the yield and always perform stable control. By the way, in the above-mentioned first embodiment, when the raw material mixture ratio in the input heat source changes, as shown in FIG. Differences may occur.
This is the amount of FeO in the heat source auxiliary raw material and FeO in the heat source main raw material.
This is because there is a difference from the quantity. Therefore, it is considered that the prediction formula (first relationship) of the FeO amount in the above formula (2) is changed to the following formula. FeO amount = A1 × heat output + B1 + C1 × heat source auxiliary raw material amount (2 ′) where C1 is a change coefficient of the FeO amount depending on the heat source auxiliary raw material amount.

【0016】ここで,熱源副原料量であるスケールを0
〜4%まで変化させたときのFeO量と出熱量との関係
を図5に示している。この場合,スケールが2%変化す
るとFeO量が0.25%変化しており,熱源副原料量
によるFeO量の変化係数C1を0.125とし,上記
(2′)式に導入することにより,係数A1,B1の学
習をする前に予測値と実績値とのレベル差を先に示した
図4のように解消することができる。ただし,FeO量
の実績値には,投入熱源中の副原料配合比の影響を含ん
でいるので,係数A1,B1は(FeO量実績値−C1
×熱源副原料量と出熱量の実績値)の値から求める。こ
のように,上記第1の関係であるFeO量の予測式に熱
源副原料によるFeO量の変化係数を導入することによ
り,投入熱量中の副原料の配合比が変化してもただちに
精度よくFeO量が予測できる。その結果,上記第1の
実施例よりもさらに安定した制御を行うことができる。
上記第1の実施例では出熱量の変動については特に言及
していない。
Here, the scale which is the heat source auxiliary material amount is 0.
FIG. 5 shows the relationship between the amount of FeO and the amount of heat output when the content is changed up to 4%. In this case, the FeO amount changes by 0.25% when the scale changes by 2%, and the coefficient of change C1 of the FeO amount due to the heat source auxiliary raw material amount is set to 0.125, and by introducing it into the above equation (2 '), Before learning the coefficients A1 and B1, the level difference between the predicted value and the actual value can be eliminated as shown in FIG. However, since the actual value of the FeO amount includes the influence of the auxiliary raw material mixture ratio in the input heat source, the coefficients A1 and B1 are (FeO amount actual value-C1
X Heat source auxiliary material amount and heat output amount actual value). In this way, by introducing the coefficient of change of the FeO amount due to the heat source auxiliary raw material into the FeO amount prediction equation having the above-mentioned first relation, even if the mixing ratio of the auxiliary raw material in the input heat amount changes, the FeO amount can be accurately measured immediately. The quantity can be predicted. As a result, more stable control can be performed as compared with the first embodiment.
The first embodiment does not particularly mention the fluctuation of the heat output.

【0017】しかし,出熱量は製品に品質等に密接な関
係があることから,これに目標値を与えて制御すること
により上記出熱量の変動を極力抑えることが望ましい。
第4,第5の発明はこの点に着目してなされたものであ
り以下述べる。図2,図6に示すごとく,第4,第5の
発明の一実施例(第2の実施例)に係る焼結機投入熱量
制御方法は,焼結機1に投入される原料2の出熱量を実
測し(S11),該出熱量の実測値とその目標値との偏
差に基づいて上記原料2中のコークス配合比の変更量を
演算し(S12),該コークスの変更量を用いて上記焼
結機1の投入熱量を制御する(S13)(ここまでが第
4の発明)と共に,焼結製品3に関する情報と上記出熱
量とに基づいて上記目標値を変更する(S14)(第5
の発明)ように構成されている。上記第2の実施例方法
は図2中の制御装置23′によって具現化される(図7
はこの制御装置23′を含む制御系をブロック線図にて
表現したものである)。
However, since the amount of heat output is closely related to the quality of the product, it is desirable to suppress the fluctuation of the amount of heat output by giving a target value to the product for control.
The fourth and fifth inventions have been made in view of this point and will be described below. As shown in FIGS. 2 and 6, the sintering machine charging heat quantity control method according to one embodiment (second embodiment) of the fourth and fifth inventions is such that the raw material 2 supplied to the sintering machine 1 is discharged. The amount of heat is measured (S11), the amount of change in the coke mixing ratio in the raw material 2 is calculated based on the deviation between the measured value of the amount of heat output and its target value (S12), and the amount of change in the coke is used. The amount of heat input to the sintering machine 1 is controlled (S13) (up to this point is the fourth invention), and the target value is changed based on the information regarding the sintered product 3 and the amount of heat output (S14) (first). 5
Invention)). The second embodiment method is embodied by the controller 23 'in FIG. 2 (FIG. 7).
Is a block diagram showing a control system including the control device 23 ').

【0018】以下,この制御装置23′により焼結機投
入熱量を制御する手順について図8を参照しつつ述べ
る。図8において,まず,出熱量の目標値の初期値およ
び出熱量の目標値変更用の上下限値(この間が許容範囲
に相当)をFeOあるいは製品歩留(いずれも焼結製品
に関する情報に相当)の目標管理範囲の内側に設定し,
制御装置23′のメモリ24′に記憶する(S21)。
次に,分析FeO値,歩留および出熱量を算出するため
のデータとして,石灰石量,生産量,返鉱量,クーラ入
口温度,ブロア電流,EP温度を時間データとともにメ
モリ24′に蓄積する(S22)。次に,各時刻での出
熱量を前記(1)式を用いて計算し,同様にメモリ2
4′に蓄積する(S23)(ここまでが図6のステップ
S11に相当)。尚,以下の一連の演算は制御装置2
3′の演算部25′により実行する。次に,蓄積したデ
ータについてある時間(例えば1〜6時間程度)ごとに
平均値処理を行う(S24)。次に,平均値化したデー
タをn個用い(例えば12〜24時間分程度),最小2
乗法により,回帰式でもある前記(2)式の係数A1,
B1又はA2,B2を求める(S25)。このとき,F
eOと出熱量,あるいは歩留と出熱量はある時間(例え
ば0〜6時間程度)ずらせて計算する。
The procedure for controlling the heat input to the sintering machine by the control device 23 'will be described below with reference to FIG. In FIG. 8, first, the initial value of the target value of the heat output amount and the upper and lower limit values for changing the target value of the heat output amount (corresponding to the permissible range) are set to FeO or the product yield (both correspond to information on the sintered product). ) Inside the target management range of
It is stored in the memory 24 'of the controller 23' (S21).
Next, as data for calculating the analytical FeO value, yield and heat output, the amount of limestone, the amount of production, the amount of returned ore, the cooler inlet temperature, the blower current, and the EP temperature are stored in the memory 24 'together with the time data ( S22). Next, the heat output at each time is calculated using the above equation (1), and the memory 2
The data is stored in 4 '(S23) (this corresponds to step S11 in FIG. 6). In addition, the following series of calculation is performed by the controller 2
This is executed by the operation unit 25 'of 3'. Next, the average value process is performed on the accumulated data every certain time (for example, about 1 to 6 hours) (S24). Next, using n averaged data (for example, for about 12 to 24 hours), a minimum of 2
By the multiplication method, the coefficient A1, of the equation (2) which is also a regression equation,
B1 or A2 and B2 are obtained (S25). At this time, F
The eO and the heat output, or the yield and the heat output are calculated by shifting for a certain time (for example, about 0 to 6 hours).

【0019】次に,出熱量の目標値を上記(2)式に代
入し,FeOあるいは歩留の計算目標値を算出する(S
26)。次に,出熱量目標変更タイミングであるか否か
を判定する(S27)。出熱量目標変更タイミングと
は,前回の出熱量目標変更から一定時間経過しているか
などをいう。出熱量目標変更タイミングであれば,次の
ステップ以下を順次実行し,そうでない場合はステップ
S31にとぶ。次に,FeOあるいは歩留の計算目標値
とあらかじめ設定した出熱量目標値変更用の上下限値と
を比較し(S28),上限値を計算目標値が超えていれ
ば,出熱量目標値をあらかじめ設定した量(所定量に相
当)だけ減少させる(S29)。下限値を計算目標値が
下回っていれば,出熱量の目標値をあらかじめ設定した
量だけ増加させる(S30)(ステップS24〜S30
が図6のステップS14に相当)。上記あらかじめ設定
した量は固定値であってもよいが,上記上限値からの計
算目標値の外れ具合に応じて変更させてもよい。次に,
出熱量の目標値と直近の実出熱量とを比較し,この差に
応じて次式により投入熱量増減量(コークス配分比の変
更量に相当)を決定する(S31)(図6のステップS
12に相当)。 投入熱量増減量=G′×(出熱量の目標値−出熱量の実
績値) ここで,G′は係数である。
Next, the target value of the heat output is substituted into the above equation (2) to calculate the calculated target value of FeO or yield (S).
26). Next, it is determined whether or not it is the heat output target change timing (S27). The heat output target change timing refers to whether or not a certain time has passed since the previous heat output target change. If it is the heat output target change timing, the following steps are sequentially executed, and if not, skip to step S31. Next, the calculation target value of FeO or yield is compared with the preset upper and lower limit values for changing the heat output amount target value (S28). If the calculation target value exceeds the upper limit value, the heat output amount target value is set. The amount is decreased by a preset amount (corresponding to a predetermined amount) (S29). If the calculated target value is below the lower limit, the target value of the heat output is increased by a preset amount (S30) (steps S24 to S30).
Corresponds to step S14 in FIG. 6). The preset amount may be a fixed value, or may be changed according to the degree of deviation of the calculation target value from the upper limit value. next,
The target value of the heat output and the latest actual heat output are compared, and the input / output heat increase / decrease amount (corresponding to the change amount of the coke distribution ratio) is determined according to the difference (S31) (step S in FIG. 6).
12). Increase / decrease amount of input heat amount = G ′ × (target value of heat output amount−actual value of heat output amount) Here, G ′ is a coefficient.

【0020】次に,アクションタイミングか否かを判定
する(S32)。アクションタイミングとは,前回アク
ションしてから一定時間経過しているかなどをいう。ア
クションタイミングであれば,次のステップを実行し,
そうでない場合アクションは行わない。上記ステップS
31で決定した投入熱量増減量だけ変更するか,あるい
は投入熱量増減量に閾値を設定しておき,閾値を超えた
場合にあらかじめ設定した量だけ投入熱量を増減させる
(S33)。閾値は多段階設定しておき,閾値に応じた
量だけ投入熱量を増減させてもよい。具体的には,制御
装置23′の制御部26′により定量切出装置12等へ
指令信号を発することによって焼結機1への投入熱量を
制御する(ステップS32,S33が図6のステップS
13に相当)。以上のステップS22〜S33をある制
御周期でくりかえす。
Next, it is determined whether it is the action timing (S32). Action timing refers to whether or not a certain amount of time has passed since the last action. If it is action timing, execute the next step,
Otherwise, take no action. Step S above
The input heat amount increase / decrease amount determined at 31 is changed, or a threshold value is set for the input heat amount increase / decrease amount, and when the threshold value is exceeded, the input heat amount is increased / decreased by a preset amount (S33). The threshold value may be set in multiple stages, and the amount of heat input may be increased or decreased by an amount corresponding to the threshold value. Specifically, the control unit 26 'of the control device 23' controls the amount of heat input to the sintering machine 1 by issuing a command signal to the quantitative cutout device 12 or the like (steps S32 and S33 correspond to step S in FIG. 6).
13). The above steps S22 to S33 are repeated at a certain control cycle.

【0021】図9には上記第2の実施例方法で投入熱量
の制御を行った例を示す。図9中,時刻AでFeO計算
目標値が目標変更上限を上回ることにより,出熱量目標
値が減少している。また,時刻BではFeO計算目標値
が目標変更下限を下回ることにより,出熱量目標値が増
加している。このFeO計算目標値と出熱量実績値との
差に比例して投入熱量を増減することにより,FeO実
績値を管理上下値内に制御している。また,出熱量目標
値と出熱量実績値との差により投入熱量を増減すること
によって,出熱量実績値は目標値に追従している。尚,
製品の歩留についても同様の制御を行うことができる。
以上より,次のことがいえる。 (1)出熱量の目標値と実績値との偏差に基づきコーク
ス配合比を調整するため,出熱量の変動を抑えて,その
目標値に出熱量を制御できる。 (2)FeO量あるいは歩留が目標範囲内になるよう出
熱量の目標値を変更するので,FeO量あるいは歩留
(製品に関する情報)を目標範囲内に管理できる。つま
り,焼結製品に関する情報をも出熱量の制御に反映でき
る。
FIG. 9 shows an example in which the amount of heat input is controlled by the method of the second embodiment. In FIG. 9, since the FeO calculation target value exceeds the target change upper limit at time A, the heat output target value decreases. Further, at time B, the FeO calculation target value falls below the target change lower limit, so the heat output target value increases. The actual FeO value is controlled within the control upper and lower values by increasing or decreasing the input heat amount in proportion to the difference between the FeO calculation target value and the actual heat output amount value. Further, the actual heat output amount follows the target value by increasing or decreasing the input heat amount according to the difference between the target heat output amount value and the actual heat output amount value. still,
Similar control can be performed on the product yield.
From the above, the following can be said. (1) Since the coke mixing ratio is adjusted based on the deviation between the target value and the actual value of the heat output amount, it is possible to suppress the fluctuation of the heat output amount and control the heat output amount to the target value. (2) Since the target value of the heat output amount is changed so that the FeO amount or the yield is within the target range, the FeO amount or the yield (information about the product) can be managed within the target range. In other words, information about sintered products can be reflected in the control of heat output.

【0022】さらに,上記目標値の変更において,焼結
製品に関する情報と上記出熱量との回帰式を用いれば,
焼結製品に関する情報を出熱量の制御に,より確実に反
映できる。さらに,上記回帰式に上記目標値を代入して
得られた焼結製品に関する情報がその許容範囲から外れ
たものである場合には,上記目標値が所定量だけ変更さ
れる。これにより,焼結製品に関する情報が常に許容範
囲内に収まるように出熱量を制御できる。さらに,上記
所定量を上記許容範囲からの外れ具合に応じて変化させ
れば,制御動作の収束を早めることができる。その結
果,出熱量の変動を抑えてその目標値に出熱量の制御を
行い,かつ焼結製品に関する情報を反映して常に安定し
た制御を行うことができる。
Further, in the change of the above target value, if the regression equation of the information on the sintered product and the heat output is used,
Information about sintered products can be reflected more reliably in the control of heat output. Further, when the information about the sintered product obtained by substituting the target value into the regression equation is out of the allowable range, the target value is changed by a predetermined amount. As a result, the heat output can be controlled so that the information on the sintered product is always within the allowable range. Further, if the predetermined amount is changed according to the degree of deviation from the permissible range, the control operation can be quickly converged. As a result, it is possible to suppress the fluctuation of the heat output amount and control the heat output amount to the target value, and to always perform stable control by reflecting the information about the sintered product.

【0023】[0023]

【発明の効果】第1〜第3の本発明に係る焼結機投入熱
量制御方法は,上記したように構成されているため,従
来例のごとく磁性体含有量測定装置を用いず,分析Fe
O量と相関の強い出熱量の関係式からFeO量を求める
ため,FeO量の演算精度がよく,かつ,出熱量は実時
間で求められるため,実時間でのFeO量が演算でき
る。また,FeO量及び歩留の両方の予測値を用いる場
合には,各目標値と演算値との偏差の重み和により投入
熱量を決定するため,FeO量優先又は歩留優先といっ
たような操業方針が熱量制御に反映できる。さらに,随
時,FeO量と出熱量との関係式及び/又は歩留と出熱
量との関係式を求めるため,FeO量及び/又は歩留の
演算精度がよく,このため,常時安定した制御が行え
る。さらに,熱源副原料によるFeO量の変化を考慮す
ることにより,投入熱量中の副原料配合比が変化して
も,直ちに精度良くFeO量を予測することができる。
従って,この場合,さらに安定した制御が行える。その
結果,FeO量の変動及び/又は歩留の変動を抑えて常
に安定した制御を行うことのできる焼結機投入熱量制御
方法を得ることができる。
Since the method for controlling the calorific value of the sintering machine according to the first to third aspects of the present invention is configured as described above, it is not necessary to use the magnetic substance content measuring device as in the conventional example, and the analytical Fe is analyzed.
Since the FeO amount is obtained from the relational expression of the heat output amount having a strong correlation with the O amount, the calculation accuracy of the FeO amount is good, and the heat output amount is obtained in real time, so the FeO amount can be calculated in real time. Further, when using the predicted values of both the FeO amount and the yield, the input heat amount is determined by the weighted sum of the deviations between the target values and the calculated values, so the operation policy such as FeO amount priority or yield priority Can be reflected in heat quantity control. Further, since the relational expression between the FeO amount and the heat output amount and / or the relational expression between the yield and the heat output amount is obtained at any time, the calculation accuracy of the FeO amount and / or the yield is good, and therefore stable control is always performed. You can do it. Furthermore, by considering the change in the FeO amount due to the heat source auxiliary raw material, the FeO amount can be immediately and accurately predicted even if the auxiliary raw material mixing ratio in the input heat amount changes.
Therefore, in this case, more stable control can be performed. As a result, it is possible to obtain a method for controlling the heat input to the sintering machine, which can suppress the fluctuation of the FeO amount and / or the fluctuation of the yield and can always perform stable control.

【0024】一方,第4の発明に係る焼結機投入熱量制
御方法では,出熱量の目標値と実績値との偏差に基づき
コークス配合比を調整するため,出熱量の変動を抑え
て,その目標値に出熱量を制御できる。また,第5の発
明に係る焼結機投入熱量制御方法では,FeO量あるい
は歩留と出熱量との関係を常に同定し,FeO量あるい
は歩留が目標範囲内になるように出熱量の目標値を変更
するので,FeO量あるいは歩留(製品に関する情報)
を目標範囲内に管理できる。つまり,焼結製品に関する
情報をも出熱量の制御に反映できる。さらに,上記目標
値の変更において,焼結製品に関する情報と上記出熱量
との回帰式を用いれば,焼結製品に関する情報を出熱量
の制御に,より確実に反映できる。さらに,上記回帰式
に上記目標値を代入して得られた焼結製品に関する情報
がその許容範囲から外れたものである場合には,上記目
標値が所定量だけ変更される。これにより,焼結製品に
関する情報が常に許容範囲内に収まるように出熱量を制
御できる。さらに,上記所定量を上記許容範囲からの外
れ具合に応じて変化させれば,制御動作の収束を早める
ことができる。その結果,出熱量の変動を抑えてその目
標値に出熱量の制御を行い,かつ焼結製品に関する情報
を反映して常に安定した制御を行うことができる。
On the other hand, in the sintering machine input heat quantity control method according to the fourth aspect of the invention, since the coke mixing ratio is adjusted based on the deviation between the target value and the actual value of the heat output quantity, the fluctuation of the heat output quantity is suppressed, The amount of heat output can be controlled to the target value. In the sintering machine input heat quantity control method according to the fifth aspect of the invention, the relationship between the FeO quantity or the yield and the heat output quantity is always identified, and the target of the heat output quantity is controlled so that the FeO quantity or the yield quantity is within the target range. Since the value is changed, the FeO amount or yield (information about products)
Can be managed within the target range. In other words, information about sintered products can be reflected in the control of heat output. Further, when the target value is changed, if the regression equation of the information on the sintered product and the heat output is used, the information on the sintered product can be more reliably reflected in the control of the heat output. Further, when the information about the sintered product obtained by substituting the target value into the regression equation is out of the allowable range, the target value is changed by a predetermined amount. As a result, the heat output can be controlled so that the information on the sintered product is always within the allowable range. Further, if the predetermined amount is changed according to the degree of deviation from the permissible range, the control operation can be quickly converged. As a result, it is possible to suppress the fluctuation of the heat output amount and control the heat output amount to the target value, and to always perform stable control by reflecting the information about the sintered product.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1〜第3の発明の一実施例(第1の実施
例)に係る焼結機投入熱量制御方法による概略フローを
示す図。
FIG. 1 is a diagram showing a schematic flow of a method for controlling heat input into a sintering machine according to an embodiment (first embodiment) of first to third inventions.

【図2】 焼結工場の工程フローを示す模式図。FIG. 2 is a schematic diagram showing a process flow of a sintering factory.

【図3】 出熱量とFeO量との関係を示す説明図。FIG. 3 is an explanatory diagram showing the relationship between the amount of heat output and the amount of FeO.

【図4】 副原料変化に伴うFeO量の変化を示す説明
図。
FIG. 4 is an explanatory diagram showing changes in the amount of FeO with changes in auxiliary raw materials.

【図5】 スケール補正項の決定方法を示す説明図。FIG. 5 is an explanatory diagram showing a method of determining a scale correction term.

【図6】 第4,第5の発明の一実施例(第2の実施
例)に係る焼結機投入熱量制御方法による概略フローを
示す図。
FIG. 6 is a diagram showing a schematic flow of a method for controlling a calorific value of a sintering machine according to an embodiment (second embodiment) of fourth and fifth inventions.

【図7】 第2の実施例方法を適用可能な制御系のブロ
ック線図。
FIG. 7 is a block diagram of a control system to which the method of the second embodiment can be applied.

【図8】 上記制御系の動作を示すフロー図。FIG. 8 is a flowchart showing the operation of the control system.

【図9】 上記制御系による制御状態を示す説明図。FIG. 9 is an explanatory diagram showing a control state by the control system.

【図10】 特公平6−39672号公報に開示された
従来の焼結機投入熱量制御方法を適用可能と考えられる
制御系のブロック線図。
FIG. 10 is a block diagram of a control system which is considered to be applicable to the conventional sintering machine input heat amount control method disclosed in Japanese Patent Publication No. 6-39672.

【符号の説明】[Explanation of symbols]

1…焼結機 2…原料 3…製品 1 ... Sintering machine 2 ... Raw material 3 ... Product

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 焼結機に投入される原料の出熱量と焼結
製品に含まれるFeO量との相関関係を表す第1の関係
を予め求めておき,上記出熱量の実測値を上記第1の関
係に適用することにより上記FeO量の予測値を演算
し,上記演算されたFeO量の予測値と,その目標値と
の偏差に基づいて上記焼結機への投入熱量を制御する焼
結機投入熱量制御方法。
1. A first relationship representing the correlation between the heat output of the raw material fed to the sintering machine and the FeO content of the sintered product is obtained in advance, and the measured value of the heat output is calculated as The calculated value of the FeO amount is calculated by applying the relationship of No. 1 and the calcining for controlling the amount of heat input to the sintering machine based on the deviation between the calculated predicted value of the FeO amount and its target value. How to control the amount of heat input to the machine.
【請求項2】 焼結機に投入される原料の出熱量と焼結
製品の歩留りとの相関関係を表す第2の関係を予め求め
ておき,上記出熱量の実測値を上記第2の関係に適用す
ることにより上記歩留の予測値を演算し,上記演算され
た歩留の予測値とその目標値との偏差に基づいて上記焼
結機への投入熱量を制御する焼結機投入熱量制御方法。
2. A second relationship representing the correlation between the heat output of the raw material input to the sintering machine and the yield of the sintered product is obtained in advance, and the measured value of the heat output is the second relationship. The amount of heat input to the sintering machine is calculated based on the deviation between the calculated predicted value of the yield and the target value. Control method.
【請求項3】 焼結機に投入される原料の出熱量と焼結
製品に含まれるFeO量との相関関係を表す第1の関係
及び上記出熱量と上記製品の歩留との相関関係を表す第
2の関係を予め求めておき,上記出熱量の実測値を上記
第1,第2の関係に適用することにより上記FeO量及
び歩留の各予測値を演算し,上記演算されたFeO量及
び歩留の各予測値とそれらの目標値との偏差に基づいて
各必要入熱量を演算し,上記演算された各必要入熱量の
重み和に基づいて上記焼結機への投入熱量を制御する焼
結機投入熱量制御方法。
3. A first relationship showing the correlation between the heat output of the raw material fed into the sintering machine and the FeO amount contained in the sintered product and the correlation between the heat output and the yield of the product. The second relationship represented is obtained in advance, and the predicted values of the FeO amount and the yield are calculated by applying the measured value of the heat output amount to the first and second relationships, and the calculated FeO value is calculated. The required heat input is calculated based on the deviation between each predicted value of the amount and yield and their target values, and the heat input to the sintering machine is calculated based on the weighted sum of the calculated required heat input. Controlling the amount of heat input to the sintering machine.
【請求項4】 上記第1の関係を, FeO量=A1×出熱量+B1 (A1,B1:係数) で表すと共に,係数A1,B1を所定期間ごとに更新す
る請求項1又は3記載の焼結機投入熱量制御方法。
4. The calcination according to claim 1 or 3, wherein the first relationship is expressed as FeO amount = A1 × heat output + B1 (A1, B1: coefficient), and the coefficients A1, B1 are updated every predetermined period. How to control the amount of heat input to the machine.
【請求項5】 上記第1の関係を, FeO量=A1×出熱量+B1+C1×熱源副原料量
(A1,B1,C1:係数) で表すと共に,係数A1,B1をFeO量の実測値とC
1×熱源副原料量との偏差,及び,出熱量の実測値に基
づいて演算する請求項1又は3記載の焼結機投入熱量制
御方法。
5. The amount of FeO = A1 × heat output + B1 + C1 × heat source auxiliary raw material amount
(A1, B1, C1: coefficient), and the coefficients A1 and B1 are expressed as C
4. The method for controlling the calorific value of the sintering machine input according to claim 1, wherein the calorific value is calculated based on a deviation from 1 * heat source auxiliary material amount and an actually measured value of the heat output amount.
【請求項6】 上記第2の関係を, 歩留=A2×出熱量+B2 (A2,B2:係数) で表すと共に,係数A2,B2を所定期間ごとに更新す
る請求項2又は3記載の焼結機投入熱量制御方法。
6. The firing according to claim 2, wherein the second relationship is expressed by yield = A2 × heat output + B2 (A2, B2: coefficient), and the coefficients A2, B2 are updated at predetermined intervals. How to control the amount of heat input to the machine.
【請求項7】 上記投入熱量の増減を, 投入熱量の増減=G×〔α×(歩留目標値−歩留予測
値)/A1+(1−α)×(FeO量目標値−FeO量
予測値)/A2〕 ただし,A1,A2:係数,G:定数,α:変数(0<
α<1) で表す請求項3記載の焼結機投入熱量制御方法。
7. The increase / decrease in the input heat amount is the increase / decrease in the input heat amount = G × [α × (target yield value-predicted yield value) / A1 + (1-α) × (FeO amount target value-FeO amount prediction Value) / A2] where A1, A2: coefficient, G: constant, α: variable (0 <
The method for controlling calorific value input to the sintering machine according to claim 3, wherein α <1).
【請求項8】 上記出熱量を, 出熱量(kcal/t)=石灰石分解熱量(kcal/
t)+焼結顕熱量(kcal/t)+排ガス顕熱量(k
cal/t) 石灰石分解熱量(kcal/t)=石灰石量(kg)×
1000×石灰石分解比熱(kcal/kg)/(製品
量+返鉱量)(t) 焼結顕熱量(kcal/t)=焼結比熱(kcal/℃
・kg)×1000×製品の冷却器への入口温度(℃)
×温度補正係数 排ガス顕熱(kcal/t)=排ガス比熱(kcal/
℃・Nm3 )×排ガス吸引用ブロアの電流々量変換係数
(Nm3 /A・分)×1440(分)×排ガス吸引用ブ
ロアの電流値(A)×排ガス温度(℃)/(製品量+返
鉱量)(t) で表す請求項1〜6のいずれかに記載の焼結機投入熱量
制御方法。
8. The heat output amount is calculated as follows: heat output amount (kcal / t) = limestone decomposition heat amount (kcal / t)
t) + amount of sensible heat of sintering (kcal / t) + amount of sensible heat of exhaust gas (k
cal / t) Calorific value of limestone decomposition (kcal / t) = Limestone amount (kg) x
1000 x limestone decomposition specific heat (kcal / kg) / (product amount + return ore amount) (t) Sintered sensible heat amount (kcal / t) = sintering specific heat (kcal / ° C)
・ Kg) × 1000 × product inlet temperature (° C)
× Temperature correction coefficient Exhaust gas sensible heat (kcal / t) = Exhaust gas specific heat (kcal / t)
℃ ・ Nm 3 ) × Exhaust gas suction blower current amount conversion coefficient (Nm 3 / A ・ min) × 1440 (min) × Exhaust gas suction blower current value (A) × Exhaust gas temperature (° C) / (Product amount + Amount of returned ore) (t) The method for controlling the calorific value of the sintering machine according to any one of claims 1 to 6.
【請求項9】 焼結機に投入される原料の出熱量を実測
し,該出熱量の実測値とその目標値との偏差に基づいて
上記原料中のコークス配分比の変更量を演算し,該コー
クス配分比の変更量を用いて上記焼結機の投入熱量を制
御する焼結機投入熱量制御方法。
9. The amount of heat output of the raw material fed into the sintering machine is measured, and the change amount of the coke distribution ratio in the raw material is calculated based on the deviation between the measured value of the amount of heat output and its target value. A method for controlling the amount of heat input to a sintering machine, wherein the amount of heat input to the sintering machine is controlled using the amount of change in the coke distribution ratio.
【請求項10】 焼結機に投入される原料の出熱量を実
測し,該出熱量の実測値とその目標値との偏差に基づい
て上記原料中のコークス配分比の変更量を演算し,該コ
ークス配分比の変更量を用いて上記焼結機の投入熱量を
制御すると共に,焼結製品に関する情報と上記出熱量と
に基づいて上記目標値を変更する焼結機投入熱量制御方
法。
10. The amount of heat output of the raw material fed into the sintering machine is measured, and the change amount of the coke distribution ratio in the raw material is calculated based on the deviation between the measured value of the amount of heat output and its target value. A method for controlling the amount of heat input to a sintering machine, which controls the amount of heat input to the sintering machine by using the amount of change in the coke distribution ratio, and changes the target value based on the information about the sintered product and the amount of heat output.
【請求項11】 上記目標値の変更において,焼結製品
に関する情報と上記出熱量との回帰式を用いる請求項1
0記載の焼結機投入熱量制御方法。
11. A regression equation of information about a sintered product and the amount of heat output is used to change the target value.
The method for controlling the amount of heat input to the sintering machine according to 0.
【請求項12】 上記回帰式に上記目標値を代入して得
られた焼結製品に関する情報がその許容範囲から外れた
ものである場合には,上記目標値を所定量だけ変更する
請求項11記載の焼結機投入熱量制御方法。
12. The target value is changed by a predetermined amount when the information about the sintered product obtained by substituting the target value into the regression equation is out of the allowable range. The method for controlling heat input into a sintering machine as described.
【請求項13】 上記所定量を上記許容範囲からの外れ
具合に応じて変化させる請求項12記載の焼結機投入熱
量制御方法。
13. The method for controlling the amount of heat input to a sintering machine according to claim 12, wherein the predetermined amount is changed according to the degree of deviation from the allowable range.
【請求項14】 上記焼結製品に関する情報がFeO量
である請求項10〜13のいずれかに記載の焼結機投入
熱量制御方法。
14. The method for controlling the amount of heat input to a sintering machine according to claim 10, wherein the information on the sintered product is the amount of FeO.
【請求項15】 上記焼結製品に関する情報が歩留であ
る請求項10〜13のいずれかに記載の焼結機投入熱量
制御方法。
15. The method for controlling the calorific value of a sintering machine according to claim 10, wherein the information on the sintered product is a yield.
JP372095A 1994-04-26 1995-01-13 Method for controlling input quantity of heat in sintering machine Pending JPH0813047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP372095A JPH0813047A (en) 1994-04-26 1995-01-13 Method for controlling input quantity of heat in sintering machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8829194 1994-04-26
JP6-88291 1994-04-26
JP372095A JPH0813047A (en) 1994-04-26 1995-01-13 Method for controlling input quantity of heat in sintering machine

Publications (1)

Publication Number Publication Date
JPH0813047A true JPH0813047A (en) 1996-01-16

Family

ID=26337356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP372095A Pending JPH0813047A (en) 1994-04-26 1995-01-13 Method for controlling input quantity of heat in sintering machine

Country Status (1)

Country Link
JP (1) JPH0813047A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038735A (en) * 2009-08-17 2011-02-24 Jfe Steel Corp Sintering machine
CN104328276A (en) * 2014-10-15 2015-02-04 中冶长天国际工程有限责任公司 Method of controlling solid fuel in sintering process, device and system
JP2017045143A (en) * 2015-08-24 2017-03-02 株式会社Sumco Process planning system, apparatus, method, and program for silicon wafers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038735A (en) * 2009-08-17 2011-02-24 Jfe Steel Corp Sintering machine
CN104328276A (en) * 2014-10-15 2015-02-04 中冶长天国际工程有限责任公司 Method of controlling solid fuel in sintering process, device and system
JP2017045143A (en) * 2015-08-24 2017-03-02 株式会社Sumco Process planning system, apparatus, method, and program for silicon wafers

Similar Documents

Publication Publication Date Title
US4077763A (en) Method for regulating combustion processes, particularly for the production of cement in a rotary kiln
KR102348892B1 (en) Molten metal component estimation apparatus, molten metal component estimation method, and molten metal manufacturing method
CN103017530A (en) Method and system for predicting sintering burn-through point
JPH0813047A (en) Method for controlling input quantity of heat in sintering machine
WO2014167982A1 (en) Correction device, correction method and steel refining method
JP2773610B2 (en) Automatic control method of cutout amount of coke dry fire extinguishing equipment
Bay et al. Dynamic control of the cement process with a digital computer system
RU2180923C1 (en) Method of control of melting process in electric furnace
JP3209029B2 (en) Granulation method of sintering raw material
WO2024202882A1 (en) Return ore control device, return ore control method, and method for manufacturing sintered ore
RU2825340C1 (en) Method of determining amount of supplied heat, device for determining amount of supplied heat and method of operating blast furnace
Kronberger et al. Latest generation sinter process optimization systems
JPH1072626A (en) Method for controlling basicity of sintered ore
WO2024204465A1 (en) Molten iron temperature control method, molten iron temperature control device, molten iron temperature control system, and terminal device
JPH08127822A (en) Operation of sintering
CN116536510A (en) Intelligent control system and method for FeO content of sinter
JP2621613B2 (en) Control method of end-point carbon concentration in upper-bottom blowing converter
JPH09125164A (en) Method for blending sintered returned ore in optimum
SU980807A2 (en) Apparatus for automatic control of reciprocation production process
JPH0286697A (en) Operation of coke oven
CN112941307A (en) Control method for stabilizing sintering process
SU1470774A1 (en) Method of controlling converter process
JPS6055561B2 (en) How to operate a blast furnace
CN118034214A (en) LIBS-based sintering ore binary alkalinity stable control method
CN115185250A (en) Method for controlling fuel ratio in production process of ferrous metallurgy blast furnace