JPS6156086B2 - - Google Patents

Info

Publication number
JPS6156086B2
JPS6156086B2 JP957378A JP957378A JPS6156086B2 JP S6156086 B2 JPS6156086 B2 JP S6156086B2 JP 957378 A JP957378 A JP 957378A JP 957378 A JP957378 A JP 957378A JP S6156086 B2 JPS6156086 B2 JP S6156086B2
Authority
JP
Japan
Prior art keywords
container
temperature
molded
mold
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP957378A
Other languages
Japanese (ja)
Other versions
JPS54102377A (en
Inventor
Kaneo Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP957378A priority Critical patent/JPS54102377A/en
Publication of JPS54102377A publication Critical patent/JPS54102377A/en
Publication of JPS6156086B2 publication Critical patent/JPS6156086B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C49/4823Moulds with incorporated heating or cooling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は結晶性プラスチツクをもちいて耐熱性
を付与した延伸中空成形容器を製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a heat-resistant stretch blow-molded container using crystalline plastic.

結晶性プラスチツクをもちいた延伸中空容器に
耐熱性を付与するため延伸中空成形容器に製品形
状を保存しつつ短時間で熱処理を施こすことは、
その形状が3次元的立体構造なるがゆえに、直線
形状(1次元的形状)の繊維、平面形状(2次元
的形状)のシートフイルム等にくらべきわめて困
難である。
In order to impart heat resistance to stretched hollow containers made of crystalline plastic, heat treatment can be applied to stretched hollow-formed containers in a short period of time while preserving the product shape.
Because its shape is a three-dimensional three-dimensional structure, it is extremely difficult to produce it compared to linear (one-dimensional) fibers, planar (two-dimensional) sheet films, and the like.

即ち、熱処理する場合、延伸された樹脂壁は熱
収縮応力を生ずるため、これに抗して形状を保つ
何らかの手段を必要とする。発明者は熱処理用型
内に於て、容器内に、気体を吹き込み容器内側壁
から加圧し型に賦型せしめ、型温度を上昇させ熱
処理し、処理後型温度を下降させ変形をきたさな
い温度まで冷却させた後、離型する方法を試みた
が型温度の上昇下降に長時間を必要とし、実質的
な生産性の点で欠け、実用化するに到らなかつ
た。又、容器内に加圧気体もしくは液体等の流体
を満たし、熱収縮による変形を防止し、保形した
状態で成形品に熱処理を施こすことを試みたが容
器内に満たした流体が流動することにより成形品
の変形が生じてしまい、正常な製品を得ることが
できなかつた。更に容器内側壁を固体の保形装置
で支持した状態で成形品に熱処理を施こすことを
試みたが、単純な形状の製品しか得ることができ
ず複難形状容器、例えば凹形状のリブ付きボト
ル、狭口容器等の製品を得ることは困難である。
That is, when heat-treated, the stretched resin wall generates heat shrinkage stress, so some means is required to resist this stress and maintain its shape. In the heat treatment mold, the inventor blows gas into the container and pressurizes it from the inner wall of the container to form the mold, raises the mold temperature and performs heat treatment, and after treatment lowers the mold temperature to a temperature that does not cause deformation. Attempts were made to cool the mold down to a temperature and then release it from the mold, but this required a long time to raise and lower the mold temperature, resulting in a lack of substantial productivity, and the method could not be put to practical use. In addition, attempts have been made to fill the container with a fluid such as pressurized gas or liquid to prevent deformation due to heat shrinkage, and to heat-treat the molded product while keeping its shape, but the fluid filled in the container flows. This resulted in deformation of the molded product, making it impossible to obtain a normal product. Furthermore, we attempted to heat-treat the molded product while supporting the inner wall of the container with a solid shape-retaining device, but we were only able to obtain a product with a simple shape, and it was difficult to obtain a container with a complex shape, such as a concave ribbed product. It is difficult to obtain products such as bottles and narrow-mouthed containers.

本発明は、この様な困難性をとりのぞいて迅速
な熱処理を特徴とする、結晶性プラスチツクによ
る製品の形状均一性にすぐれた耐熱プラスチツク
容器の製造を可能にするものである。
The present invention eliminates these difficulties and makes it possible to manufacture heat-resistant plastic containers made of crystalline plastic that are characterized by rapid heat treatment and have excellent product shape uniformity.

第1の発明の要旨は結晶性プラスチツクを延伸
中空成形し、延伸中空成形容器を得たのち、その
成形容器を成形用金型内より取り出し、この成形
容器の形状と同立体形状のキヤビテイを有し、且
つ、成形品の未延伸部分に対接する前記キヤビテ
イ側表面の領域の下部には冷却装置が設けられそ
れ以外のキヤビテイ側表面の領域の下部には温度
調節用流体が巡環する温度調節用流体通路が設け
られている熱処理用型内に前記成形容器を装着
し、前記成形容器の内部より加圧気体で容器内壁
面を押圧して容器壁面を前記キヤビテイ側表面に
密着させ、保形しながら、前記成形品の未延伸部
分に対接するキヤビテイ側表面の領域は樹脂の結
晶化温度以下に冷却し、一方、それ以外のキヤビ
テイ側表面の領域は、前記温度調節用流体通路内
に一定調節温度に調節した温度調節用流体を巡環
させることにより、前記結晶性プラスチツクの融
点温度以下の温度に保持しつつ、前記容器内部よ
り輻射エネルギーを容器内壁面に照射して前記調
節温度よりも高い前記結晶性プラスチツクのガラ
ス転移点以上、融点温度以下の温度で熱処理を行
なつたのち、前記輻射エネルギー源を容器内部よ
りとり出し、容器壁の温度を前記調節温度付近に
降下させたのち、前記加圧気体を抜気し、次いで
前記熱処理用型より熱処理された成形容器を離型
することを特徴とする耐熱性成形容器の製造方法
である。
The gist of the first invention is to carry out stretch hollow molding of crystalline plastic to obtain a stretch blow molded container, and then take out the molded container from the molding die and form a cavity having the same three-dimensional shape as the molded container. In addition, a cooling device is provided below the region of the cavity side surface that is in contact with the unstretched portion of the molded product, and a temperature regulating fluid circulates in the lower part of the other region of the cavity side surface. The molded container is placed in a heat treatment mold in which a fluid passage is provided, and the inner wall of the container is pressed with pressurized gas from inside the molded container to bring the container wall into close contact with the cavity side surface, thereby retaining the shape. Meanwhile, the region of the cavity side surface that is in contact with the unstretched portion of the molded product is cooled to below the crystallization temperature of the resin, while the other region of the cavity side surface is cooled to a constant temperature within the temperature regulating fluid passage. By circulating the temperature regulating fluid adjusted to the adjusted temperature, radiant energy is irradiated from inside the container to the inner wall surface of the container while maintaining the temperature below the melting point temperature of the crystalline plastic, and the temperature is lower than the adjusted temperature. After performing heat treatment at a temperature above the glass transition point and below the melting point of the high crystalline plastic, the radiant energy source is taken out from inside the container, and the temperature of the container wall is lowered to around the adjustment temperature, and then The method for manufacturing a heat-resistant molded container is characterized in that the pressurized gas is evacuated, and then the heat-treated molded container is released from the heat treatment mold.

次に第2の発明の要旨は、延伸中空成形用金型
のキヤビテイ側表面の成形品の未延伸樹脂壁と対
接する領域の下部に冷却装置を設け、それ以外の
キヤビテイ側表面の領域の下部に温度調節用流体
が巡環する温度調節用流体通路を設けてなる成形
熱処理両用型を用いて結晶性プラスチツクを延伸
中空成形し、延伸中空成形容器を得たのち、ひき
つづいて前記型内にこの延伸中空成形容器をとど
め、この成形容器の内部より加圧気体で容器内壁
面を押圧して容器壁面を前記キヤビテイ側表面に
密着させ、保形しながら、前記キヤビテイ側表面
の成形品の未延伸部分に対接する領域は前記冷却
装置により樹脂の結晶化温度以下に冷却し、一
方、それ以外のキヤビテイ側表面の領域は前記温
度調節用流体通路内に一定調節温度に調節した温
度調節用流体を巡環させることにより、前記結晶
性プラスチツクの融点温度以下の温度に保持しつ
つ、前記容器内部より輻射エネルギーを容器内壁
面に照射して前記調節温度よりも高い前記結晶性
プラスチツクのガラス転移点以上融点温度以下の
温度で熱処理を行なつたのち、前記輻射エネルギ
ー源を容器内部よりとり出し、容器壁の温度を前
記調節温度付近に降下させたのち、前記加圧気体
を抜気し、次いで、前記成形熱処理両用型より熱
処理された成形容器を離型することを特徴とする
耐熱性成形容器の製造方法である。
Next, the gist of the second invention is that a cooling device is provided at the lower part of the region of the cavity side surface of the stretch blow molding mold that is in contact with the unstretched resin wall of the molded product, and the lower part of the other region of the cavity side surface is After a stretch blow-molded container is obtained by stretch blow-molding the crystalline plastic using a dual-purpose forming and heat-treating mold provided with a temperature-regulating fluid passage through which a temperature-regulating fluid circulates, Hold the stretched hollow-molded container, and press the inner wall surface of the container with pressurized gas from inside the molded container to bring the container wall surface into close contact with the cavity side surface, and while maintaining the shape, unstretch the molded product on the cavity side surface. The area facing the part is cooled to below the crystallization temperature of the resin by the cooling device, while the other area on the cavity side surface is provided with a temperature adjusting fluid adjusted to a constant temperature in the temperature adjusting fluid passage. By ring-cycling, while maintaining the temperature at the melting point of the crystalline plastic or lower, radiant energy is irradiated from the inside of the container onto the inner wall surface of the container to raise the temperature at or above the glass transition point of the crystalline plastic, which is higher than the adjustment temperature. After heat treatment at a temperature below the melting point temperature, the radiant energy source is taken out from inside the container, the temperature of the container wall is lowered to around the adjustment temperature, the pressurized gas is evacuated, and then, The method for manufacturing a heat-resistant molded container is characterized in that the heat-treated molded container is released from the mold for molding and heat treatment.

以下、本発明につき、図面を参照しながら詳細
に説明する。
Hereinafter, the present invention will be explained in detail with reference to the drawings.

先ず、結晶性プラスチツクを延伸中空成形し、
第1図示のような延伸中空成形容器1を得る。
First, crystalline plastic is stretch-hollow-molded,
A stretch blow-molded container 1 as shown in the first figure is obtained.

そして、その成形容器1を成形用金型内より取
り出し、第2図示の如く、成形容器1を熱処理用
型2の支持型3a,3b、口部入子型4,4′、
底部入子型5及びマンドレル6が閉じて形成され
る。成形容器の形状と同立体形状のキヤビテイ7
内に装着し、マンドレル6とヒーター8の間隙よ
り加圧気体を容器内に吹き込み、容器内部より加
圧気体で容器内壁面を押圧して容器壁面を熱処理
用型2のキヤビテイ7側表面に密着する。
Then, the molded container 1 is taken out from inside the molding die, and as shown in the second figure, the molded container 1 is placed between the support molds 3a, 3b of the heat treatment mold 2, the mouth insert molds 4, 4',
The bottom nesting mold 5 and the mandrel 6 are closed and formed. Cavity 7 with the same three-dimensional shape as the molded container
Pressurized gas is blown into the container through the gap between the mandrel 6 and the heater 8, and the pressurized gas presses the inner wall of the container from inside the container to bring the container wall into close contact with the surface of the cavity 7 of the heat treatment mold 2. do.

ここにおいて、上記熱処理用型2の成形品の未
延伸部分に対接する、口部入子型4,4′及び底
部入子型5の内部に冷却パイプ9が設けられてお
り、この冷却パイプ9を通る冷却水の作用により
口部入子型4,4′及び底部入子型5が冷却さ
れ、それらに対接する成形容器1の容器壁を樹脂
の結晶化温度以下に冷却し、引続いて行なわれる
熱処理の際に未延伸樹脂の部分で晶球結晶化が生
ずることを防止する。
Here, a cooling pipe 9 is provided inside the mouth part nesting mold 4, 4' and the bottom part nesting mold 5, which are in contact with the unstretched part of the molded product of the heat treatment mold 2. The mouth insert molds 4, 4' and the bottom insert mold 5 are cooled by the action of the cooling water passing through the cooling water, and the container wall of the molded container 1 that is in contact with them is cooled to below the crystallization temperature of the resin. This prevents spherical crystallization from occurring in the unstretched resin portion during the heat treatment performed.

一方、上記熱処理用型2の支持型3a,3bの
キヤビテイ側表面からできるだけ近い深さの所に
温度調節用流体が巡環する温度調節用流体通路1
0が設けられており、温度調節用流体通路10内
に一定調節温度に調節した温度調節用流体を巡環
させることにより、支持型3a,3bのキヤビテ
イ側表面を熱処理に最適な温度(以下ベース温度
に称する)に常時保つ。
On the other hand, a temperature regulating fluid passage 1 in which a temperature regulating fluid circulates at a depth as close as possible to the cavity side surfaces of the support molds 3a and 3b of the heat treatment mold 2.
0 is provided, and by circulating the temperature regulating fluid adjusted to a constant temperature in the temperature regulating fluid passage 10, the cavity side surfaces of the support molds 3a and 3b are brought to the optimum temperature for heat treatment (hereinafter referred to as base). (referred to as temperature) at all times.

第3図は支持型表面部を拡大図示しており、図
において11は樹脂層、12は、支持型表面層、
13は輻射エネルギーである。この段階で第4図
示のグラフのカーブ()で示すような温度分布
が得られる。
FIG. 3 shows an enlarged view of the supporting mold surface part, and in the figure, 11 is a resin layer, 12 is a supporting mold surface layer,
13 is radiant energy. At this stage, a temperature distribution as shown by the curve ( ) in the graph shown in FIG. 4 is obtained.

ここにおいてベース温度は固定する必要はなく
後述する、容器内部からの輻射による加熱の強
度、熱処理時間等の処理条件によつて設定され、
樹脂の融点温度以下であればよい。
Here, the base temperature does not need to be fixed, and is set depending on processing conditions such as the intensity of heating by radiation from inside the container and heat treatment time, which will be described later.
It may be lower than the melting point temperature of the resin.

次に、その状態で、容器内部にヒーター8を挿
入する。
Next, in this state, the heater 8 is inserted into the container.

ここにおいてヒーター8とは、容器1を構成す
る樹脂がもつ吸収帯域の電磁波を輻射する機能を
果すものである。
Here, the heater 8 has the function of radiating electromagnetic waves in the absorption band of the resin forming the container 1.

ヒーター8の挿入に伴ない、容器1の器壁は内
壁面より輻射エネルギーを吸収し加熱され急激に
容器壁の温度が上昇する。
As the heater 8 is inserted, the wall of the container 1 absorbs radiant energy from the inner wall surface and is heated, causing the temperature of the container wall to rise rapidly.

一方、支持型3a,3bのキヤビテイ側表面は
ヒーター8と支持型3a,3bのキヤビテイ側表
面の間に介在する樹脂部が輻射エネルギーを遮蔽
することにより直接加熱されることはないので、
樹脂部の温度上昇の結果生ずる温度勾配と支持型
3a,3bの樹脂部との接触面における熱伝導と
により容器内側よりは遅延して上昇する。その結
果、第4図示のグラフのカープ()で示すよう
な温度分布が得られ、この状態を適当な時間にわ
たり、持続することによつて樹脂部11は容器壁
内側より吸収される輻射エネルギー13と容器壁
外側に対接する支持型表面層12の冷却効果とに
より平均温度T2に加熱され、この温度で応力ひ
ずみが緩和され、結晶化が進み、配向状態下で、
微結晶化が進行し、熱処理が施こされる。
On the other hand, the cavity-side surfaces of the support molds 3a and 3b are not directly heated because the resin portion interposed between the heater 8 and the cavity-side surfaces of the support molds 3a and 3b shields the radiant energy.
Due to the temperature gradient that occurs as a result of the temperature rise in the resin part and the heat conduction at the contact surfaces of the support molds 3a and 3b with the resin part, the temperature rises later than from the inside of the container. As a result, a temperature distribution as shown by the curve () in the graph shown in FIG. It is heated to an average temperature T 2 by the cooling effect of the support type surface layer 12 facing the outside of the container wall, and at this temperature stress strain is relaxed, crystallization progresses, and under the oriented state,
Microcrystallization progresses and heat treatment is performed.

次にヒーター8を容器1外に出し加熱をやめる
と温度調節用流体通路10を巡環する温度調節用
流体の冷却効果により第4図示のグラフのカーブ
で示す温度分布になり、支持型のキヤビテイ側
表面層12及び樹脂層11は急速に冷却される。
そして樹脂部11の温度がベース温度T0近くに
降下したのち、加圧気体を抜気し、熱処理用型2
を開き、容器1を離型する。前記冷却過程におい
ては、温度を上昇及び降下せしめる対象を熱処理
すべき樹脂層11それ自身と支持型3a,3bの
キヤビテイ側表面部12のみに限るため、温度を
上昇及び降下せしめる対象部分の熱容量をきわめ
て少なくすることができ、これにより、熱処理時
間を大巾に短縮することができる。
Next, when the heater 8 is taken out of the container 1 and heating is stopped, the temperature distribution becomes as shown by the curve of the graph shown in Figure 4 due to the cooling effect of the temperature regulating fluid circulating in the temperature regulating fluid passage 10, and the support type cavity is heated. The side surface layer 12 and the resin layer 11 are rapidly cooled.
After the temperature of the resin part 11 drops to near the base temperature T0 , the pressurized gas is vented, and the heat treatment mold 2
Open the container 1 and release it from the mold. In the cooling process, the temperature is raised and lowered only to the resin layer 11 itself to be heat treated and the cavity side surface portions 12 of the support molds 3a and 3b, so the heat capacity of the target parts to be raised and lowered is reduced. This can significantly reduce the heat treatment time.

尚、第2図において14は断熱壁、15はエア
もれをなくすシリコンパツキングである。
In FIG. 2, 14 is a heat insulating wall, and 15 is silicone packing to eliminate air leakage.

上記の本発明において、ヒーターによる輻射加
熱を止めた後容器内部に加圧冷却気体を吹き込む
ことにより、冷却を速め処理サイクルを短縮する
ことができる。
In the present invention described above, by blowing pressurized cooling gas into the container after stopping the radiant heating by the heater, cooling can be accelerated and the processing cycle can be shortened.

而して上記の本発明の製造方法において使用す
る熱処理用型の支持型としては、キヤビテイ側表
面部が熱伝導性の良い金属、例えばアルミニウム
合金、ベリリウム合金等よりなる型が、温度の上
昇下降に対する応答性が早いので最適である。
又、温度調節用流体通路10は温度調節用流体の
熱の型のキヤビテイ側表面への熱伝導性を考慮し
て型のキヤビテイ側表面からできるだけ近い深さ
の所に設けるのが望ましく、例えば、支持型のキ
ヤビテイ側表面層を鉄合金s50cに硬質クロムメツ
キしたもので構成するとき、20mm以下が望まし
い。
As the supporting mold for the heat treatment mold used in the above manufacturing method of the present invention, a mold whose cavity side surface is made of a metal with good thermal conductivity, such as an aluminum alloy or a beryllium alloy, is recommended. It is optimal because it has a fast response time.
Further, the temperature regulating fluid passage 10 is desirably provided at a depth as close as possible from the cavity side surface of the mold in consideration of the thermal conductivity of the temperature regulating fluid to the mold cavity side surface. When the support type cavity side surface layer is made of hard chrome plated iron alloy S50C, the thickness is preferably 20 mm or less.

次に本発明に使用するヒーターとしては、樹脂
部のもつ吸収スペクトルに一致する電磁波を発生
するもの、例えば波長1mmから1mのマイクロ波
領域の電磁波を発生する高周波加熱装置を適用す
ることができる。さらに就中波長0.8μmから1
mmの赤外線領域の電磁波を発生するニクロム線等
の抵抗体を黄銅、ステンレス等の金属管に内蔵さ
せた鋳込みヒーター、及び赤外線ヒーターを適用
することができる。なかでも波長1μ〜3μの赤
外線を発生ピークとする赤外線ランプ及び石英管
ヒーター、波長3μから60μに及ぶ長波長の赤外
線を発生するセラミツク層を溶着形成せしめた赤
外線ヒーターが最適である。可視領域の電磁波を
発生するタングステンランプ等を使用するとき
は、樹脂部による可視光線領域の電磁波の吸収性
が劣るため、型表面にクロムメツキ等を施こして
型表面を鏡面にし反射性をもたせて樹脂部による
吸収を高める必要性がある。
Next, as the heater used in the present invention, one that generates electromagnetic waves that match the absorption spectrum of the resin part, for example, a high frequency heating device that generates electromagnetic waves in the microwave range with a wavelength of 1 mm to 1 m can be applied. In addition, the medium wavelength is 0.8μm to 1
Cast-in heaters and infrared heaters in which a resistor such as a nichrome wire that generates electromagnetic waves in the infrared region of mm is built into a metal tube such as brass or stainless steel can be used. Among these, infrared lamps and quartz tube heaters that emit infrared rays with a peak wavelength of 1 to 3 microns, and infrared heaters having a welded ceramic layer that generates infrared rays with long wavelengths of 3 to 60 microns are most suitable. When using a tungsten lamp etc. that generates electromagnetic waves in the visible range, the resin part has poor absorption of electromagnetic waves in the visible range, so apply chrome plating etc. to the mold surface to make it mirror-like and reflective. There is a need to increase absorption by the resin part.

しかしながら輻射エネルギーが大きいゆえに、
可視光線領域の電磁波の利用は有効である。
However, because the radiant energy is large,
The use of electromagnetic waves in the visible light range is effective.

これ以下の短波長領域のものを使用する場合、
樹脂の照射表面が急激に加熱され、白化がおこら
ない程度の輻射強度を選択使用すれば良い。更
に、ヒーターは輻射が全ての容器内壁に対して均
一に行なわれ得るように、熱処理を施こすべき容
器の形状によつて形状を変えたものを使用するの
が望ましい。例えば熱処理を施こすべき容器が円
筒狭口容器の場合、棒状の赤外線ヒーターをもち
いるのが望ましい。
When using a shorter wavelength range,
It is sufficient to select and use a radiation intensity that does not rapidly heat the irradiated surface of the resin and cause whitening. Furthermore, it is desirable to use a heater whose shape is changed depending on the shape of the container to be heat-treated so that the radiation can be applied uniformly to all the inner walls of the container. For example, if the container to be heat treated is a narrow cylindrical container, it is desirable to use a rod-shaped infrared heater.

次に本発明に使用する結晶性プラスチツクとし
て、ガラス転移点Tg以上、融点Tm以下の温度領
域において結晶化するすべての結晶性プラスチツ
クが適用され得るものであり、それらの樹脂とし
てポリプロピレン、ポリエチレン、ポリアミド、
ポリエチレンテレフタレートなどがあげられる。
これらの樹脂はガラス転移点Tgよりも高い温度
で非結晶状態から延伸し、配向させた状態で、形
状を保持しつつ、ガラス転移点Tgから融点Tm迄
の温度領域のある適当な温度にて熱処理を行なう
と、それに伴なつて応力ひずみが除去されるとと
もに延伸により分子の配向した束縛状態において
の微結晶化が進行し、透明性が失なわれることな
く、密度は増大し、容器としての座屈強度、耐衝
撃性が増大し、熱処理した温度より低い温度では
変形を生じない耐熱性の容器が形成される。
Next, as the crystalline plastics used in the present invention, all crystalline plastics that crystallize in a temperature range above the glass transition point Tg and below the melting point Tm can be applied, and examples of these resins include polypropylene, polyethylene, and polyamide. ,
Examples include polyethylene terephthalate.
These resins are stretched from an amorphous state at a temperature higher than the glass transition point Tg, and in an oriented state, they are stretched at an appropriate temperature within the temperature range from the glass transition point Tg to the melting point Tm while maintaining their shape. When heat treatment is performed, stress and strain are removed, and microcrystalization progresses in the oriented and constrained state of molecules due to stretching, and the density increases without losing transparency, making it suitable for use as a container. A heat-resistant container is formed that has increased buckling strength and impact resistance and does not deform at temperatures lower than the temperature at which it was heat treated.

本発明においてベース温度T0と熱処理を行な
うときの樹脂層の平均温度T2の差は例えば結晶
性プラスチツクとしてポリエチレンテレフタレー
ト樹脂を用いるとき5℃以上あるのが望ましい。
In the present invention, the difference between the base temperature T 0 and the average temperature T 2 of the resin layer during heat treatment is preferably 5° C. or more when polyethylene terephthalate resin is used as the crystalline plastic, for example.

第5図は中空成形用金型のキヤビテイ側表面の
成形品の未延伸樹脂壁と対接する領域の下部に冷
却装置を設け、それ以外のキヤビテイ側表面の領
域の下部に温度調節用流体が巡環する温度調節用
流体通路を設けてなる成形熱処理両用型を用いて
熱処理を行なつている状態を示している。又、第
6図及び第7図はロツド・ヒーターを示してい
る。第5において、16は成形熱処理両用型、1
7a,17bは中空成形用金型並びに熱処理時の
延伸中空成形容器の支持型として利用しうる成
形・支持型、18はロツド、並びにびにヒーター
として利用しうるロツド・ヒーター、19はセラ
ミツク層内にニクロム線を内蔵した管状赤外線ヒ
ーター、20はヒーター支持管体、21はセラミ
ツク層、22はニクロム線、23は二軸延伸中空
成形に用いる延伸用ロツド、24はロツド本体、
25はロツド頭である。又、26はロツド周面に
刻設した溝とヒーター支持管体20の内壁で画定
された加圧気体通路、27はヒーター支持管体の
天部に刻設された溝とロツド頭25で画定された
加圧気体通路、28はヒーター支持管体の管壁を
貫通して設けられた加圧気体通路である。ロツ
ド・ヒーター18においてロツド23のみをキヤ
ビテイ内へ挿入することができ、又、ヒーター1
9をロツド23に先行してキヤビテイ外へ移動す
ることもできる。
Figure 5 shows that a cooling device is provided at the bottom of the area on the cavity side surface of a blow molding die that is in contact with the unstretched resin wall of the molded product, and a temperature regulating fluid is circulated at the bottom of the other cavity side surface area. This figure shows a state in which heat treatment is being performed using a mold for both molding and heat treatment, which is provided with a surrounding temperature-adjusting fluid passage. Also, FIGS. 6 and 7 show a rod heater. 5, 16 is a molding and heat treatment mold, 1
7a and 17b are molding and supporting molds that can be used as blow molding molds and supporting molds for stretched blow molded containers during heat treatment; 18 is a rod heater that can be used as a rod and a heater; 19 is a mold in the ceramic layer. A tubular infrared heater with a built-in nichrome wire, 20 a heater support tube, 21 a ceramic layer, 22 a nichrome wire, 23 a stretching rod used for biaxial stretching blow molding, 24 a rod body,
25 is the rod head. Further, 26 is a pressurized gas passage defined by a groove carved on the circumferential surface of the rod and the inner wall of the heater support tube 20, and 27 is a pressurized gas passage defined by a groove carved in the top of the heater support tube and the rod head 25. The pressurized gas passage 28 is a pressurized gas passage provided through the tube wall of the heater support tube. In the rod heater 18, only the rod 23 can be inserted into the cavity, and the heater 1
It is also possible to move the rod 9 out of the cavity in advance of the rod 23.

加圧気体は通路26及び28を経てキヤビテイ
下方へ又、通路26及び27を経てキヤビテイ上
方へ送られる。
Pressurized gas is directed down the cavity through passages 26 and 28 and up the cavity through passages 26 and 27.

尚、第5図において第2図示の熱処理用型の部
分と共通する部分には同一の番号が付されてい
る。
Incidentally, in FIG. 5, parts common to those of the heat treatment mold shown in FIG. 2 are given the same numbers.

先ず、成形熱処理両用型16のキヤビテイ7内
へパリソン(図示せず)を取りつけた23をさし
こみ、結晶性プラスチツクを延伸中空成形し、延
伸中空成形容器1を得たのち、ひきつづいて、前
記型16内にこの延伸中空成形容器1をとどめ前
述の如くこの成形容器1の内部より加圧気体で容
器1内壁面を押圧して容器1壁面を成形・支持型
17a,17bのキヤビテイ7側表面に密着さ
せ、保形しながら容器1内部にヒーター19をロ
ツド本体24に沿つて上昇させて、挿入し、熱処
理を行なう。
First, a parison (not shown) 23 is inserted into the cavity 7 of the mold 16 for forming and heat treatment, and the crystalline plastic is stretch-hollow-molded to obtain the stretch-hollow-molded container 1. This stretch blow-molded container 1 is held inside the molded container 1, and the inner wall surface of the container 1 is pressed with pressurized gas from inside the molded container 1 as described above, so that the wall surface of the container 1 is brought into close contact with the surface of the cavity 7 side of the molding and supporting molds 17a and 17b. Then, while maintaining the shape, the heater 19 is raised and inserted into the container 1 along the rod body 24, and heat treatment is performed.

第5図示の型を用いた場合、成形と熱処理を一
工程で行なうことができる。
When the mold shown in Figure 5 is used, molding and heat treatment can be performed in one step.

次に実施例をあげて本発明を具体的に説明す
る。
Next, the present invention will be specifically explained with reference to Examples.

実施例 1 I.Vが0.7のポリエチレンテレフタール樹脂を用
いて2軸延伸中空成形によつて得られた容積1000
c.c.平均壁厚0.4mmのリブ付き円筒容器を被処理容
器とし、これと同形状のアルミ合金よりなる金型
内で支持型の熱処理ベース温度を120℃、底部
入子型及び口部入子型温度を50℃の処理温度に設
定し加圧空気圧力を7Kg/cm2として500Wのセラ
ミツク赤外線ヒーターを使用し20秒間照射したの
ちヒーターを容器外へ取り出し20秒間冷却したの
ち抜気型開きを同時に行つて容器を離型した。
Example 1 Volume 1000 obtained by biaxial stretch blow molding using polyethylene terephthal resin with IV of 0.7
cc A ribbed cylindrical container with an average wall thickness of 0.4 mm was used as the container to be treated, and the supporting type was heat-treated in a mold made of aluminum alloy with the same shape as the container, with a base temperature of 120°C, a bottom nested type and a mouth nested type. The temperature was set at 50℃, the pressurized air pressure was set at 7Kg/ cm2 , and a 500W ceramic infrared heater was used to irradiate for 20 seconds.The heater was then removed from the container and cooled for 20 seconds, then the vent mold was opened at the same time. I went there and released the container.

かかる熱処理により90℃の熱水を充填後キヤツ
プを打栓せずに木製机上に室温で放置し、60分冷
却した後の容積収縮率が1%以下である耐熱性容
器が得られた。また熱処理前の直径80mmの円筒形
状は変形を生じなかつた。さらに熱処理によつて
透明性も失なわれなかつた。
Through this heat treatment, a heat-resistant container was obtained which had a volume shrinkage of 1% or less after being filled with hot water at 90°C, left on a wooden desk at room temperature without being capped, and cooled for 60 minutes. Furthermore, the cylindrical shape with a diameter of 80 mm before heat treatment did not undergo any deformation. Furthermore, transparency was not lost by heat treatment.

実施例 2 アルミ合金からなる成型熱処理両用型と図5に
示した縦延伸用の押上ロツドと500Wの管状セラ
ミツク赤外線ヒーターを合体させて、r.vが0.7の
ポリエチレンテレフタール樹脂を射出成形して得
られた有底パリソンを縦方向に延伸させると同時
に10Kg/cm2の加圧空気を吹込み二軸延伸中空成形
し、ひき続き型内に保形したまま20秒間赤外線を
照射した後ヒーター管をロツドマンドレルにそつ
てスライドさせ容器外へ移動させさらに20秒間容
器を冷却させ、加圧空気を抜気し、同時に型開き
を行ない容器を離型した。処理の間、支持型の熱
処理ベース温度は120℃に口部及び底部入子型は
50℃に設定した。かかる熱処理によつて95℃の熱
水充填後キヤツプを打栓せずに木製机上に室温で
放置し60分冷却させた後の容積収縮率が1%以下
である透明性を有する耐熱性容器が得られた。
Example 2 A polyethylene terephthal resin with an rv of 0.7 was injection molded by combining a molding and heat treatment mold made of an aluminum alloy, the push-up rod for longitudinal stretching shown in Fig. 5, and a 500W tubular ceramic infrared heater. At the same time, the bottomed parison was stretched in the longitudinal direction, and at the same time, 10 kg/cm 2 of pressurized air was blown into it to form a biaxially stretched hollow mold.The heater tube was then irradiated with infrared rays for 20 seconds while keeping its shape in the mold, and then the heater tube was inserted into the mold. The container was moved out of the container by sliding it along a domandrel, and the container was further cooled for 20 seconds, the pressurized air was removed, and the mold was opened at the same time to release the container. During the treatment, the heat treatment base temperature of the support mold is 120℃ and the mouth and bottom nested mold are
The temperature was set at 50°C. Through this heat treatment, a transparent heat-resistant container with a volumetric shrinkage of 1% or less after being filled with hot water at 95°C and left at room temperature on a wooden desk for 60 minutes without being capped is produced. Obtained.

比較例 本発明による容器内部からのヒーター加熱及び
口部及び底部入子型の冷却を行なわないで熱処理
を行つた。
Comparative Example Heat treatment was carried out without heating the container with a heater from inside the container and without cooling the mouth and bottom inserts according to the present invention.

すなわち、実施例1に用いた延伸中空成形容器
と同じものを被処理容器としアルミ合金金型内を
シリコーンオイルの巡環により型温を120℃に保
ち40秒間にわたり7Kg/cm2の加圧空気により保形
したまま熱処理を行つた後加圧空気を抜気し同時
に型開きを行つて容器を離型した。かかる熱処理
によつて得られた容器は底部及び口部に晶球発生
による白化が生じ透明性が失なわれるとともにこ
れにより底部の落下強度が著しく損われた。ま熱
処理前の直径80mmの円筒形状が長軸81.7mm短軸
77.6mmの楕円形状に変形し、熱処理後の容積収縮
は2.6%みられた。但し、熱処理した容器の熱水
充填後の容積収縮は熱水充填前の容積に対し0.3
%にとどまり変形はみられなく、耐熱性は得られ
ていると考えられる。
That is, using the same stretch blow molded container used in Example 1 as the container to be treated, the mold temperature was kept at 120°C by circulating silicone oil inside the aluminum alloy mold, and pressurized air of 7 kg/cm 2 was applied for 40 seconds. After the container was heat-treated while maintaining its shape, the pressurized air was removed and the mold was opened at the same time to release the container. Containers obtained by such heat treatment had whitening at the bottom and mouth due to the formation of crystal spheres, resulting in a loss of transparency and a significant loss in the drop strength of the bottom. The cylindrical shape with a diameter of 80 mm before heat treatment has a long axis of 81.7 mm and a short axis.
It was deformed into an elliptical shape of 77.6 mm, and the volume shrinkage after heat treatment was 2.6%. However, the volume shrinkage of a heat-treated container after filling with hot water is 0.3 compared to the volume before filling with hot water.
%, no deformation was observed, and it is considered that heat resistance has been achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱処理される延伸中空成形容器の断面
図、第2図は本発明において用いる熱処理用型の
断面図、第3図は支持型の表層部の断面図、第4
図は熱処理中及びその前後の温度分布を示すグラ
フ、第5図は本発明において用いる成形熱処理両
用型の断面図、第6図及び第7図はロツド・ヒー
ターを示し、第6図は縦断面図、第7図は横断面
図である。 1……延伸中空成形容器、2……熱処理用型、
3a,3b……支持型、4,4′……口部入子
型、5……底部入子型、6……マンドレル、7…
…キヤビテイ、8……ヒーター、9……冷却パイ
プ、10……温度調節用流体通路、11……樹脂
層、12……支持型表面層、13……輻射エネル
ギー、16……成形熱処理両用型、17a,17
b……成形・支持型、18……ロツド・ヒータ
ー、19……ヒーター、22……ロツド。
FIG. 1 is a sectional view of a stretch blow-molded container to be heat treated, FIG. 2 is a sectional view of a heat treatment mold used in the present invention, FIG. 3 is a sectional view of the surface layer of a supporting mold, and FIG.
The figure is a graph showing the temperature distribution during and before and after heat treatment, Figure 5 is a cross-sectional view of the mold for molding and heat treatment used in the present invention, Figures 6 and 7 are rod heaters, and Figure 6 is a longitudinal cross-section. 7 are cross-sectional views. 1... Stretch blow-molded container, 2... Heat treatment mold,
3a, 3b... Support type, 4, 4'... Mouth nested type, 5... Bottom nested type, 6... Mandrel, 7...
... Cavity, 8 ... Heater, 9 ... Cooling pipe, 10 ... Fluid passage for temperature adjustment, 11 ... Resin layer, 12 ... Support type surface layer, 13 ... Radiant energy, 16 ... Molding heat treatment dual-purpose type , 17a, 17
b... Molding/support mold, 18... Rod heater, 19... Heater, 22... Rod.

Claims (1)

【特許請求の範囲】 1 結晶性プラスチツクを延伸中空成形し、延伸
中空成形容器を得たのち、その成形容器を成形用
金型内より取り出し、この成形容器の形状と同立
体形状のキヤビテイを有し、且つ、成形品の未延
伸部分に対接する前記キヤビテイ側表面の領域の
下部には冷却装置が設けられそれ以外のキヤビテ
イ側表面の領域の下部には温度調節用流体が巡環
する温度調節用流体通路が設けられている熱処理
用型内に前記成形容器を装着し、前記成形容器の
内部より加圧気体で容器内壁面を押圧して容器壁
面を前記キヤビテイ側表面に密着させ、保形しな
がら、前記成形品の未延伸部分に対接するキヤビ
テイ側表面の領域は樹脂の結晶化温度以下に冷却
し、一方、それ以外のキヤビテイ側表面の領域
は、前記温度調節用流体通路内に一定調節温度に
調節した温度調節用流体を巡環させることによ
り、前記結晶性プラスチツクの融点温度以下の温
度に保持しつつ、前記容器内部より輻射エネルギ
ーを容器内壁面に照射して前記流体の調節温度よ
りも高い前記結晶性プラスチツクのガラス転移点
以上融点温度以下の温度で熱処理を行なつたの
ち、前記輻射エネルギー源を容器内部よりとり出
し、容器壁の温度を前記調節温度付近に降下させ
たのち、前記加圧気体を抜気し、次いで前記熱処
理用型より熱処理された成形容器を離型すること
を特徴とする耐熱性成形容器の製造方法。 2 前記結晶性プラスチツクとして、ポリエチレ
ンテレフタレート樹脂を使用する特許請求の範囲
第1項記載の耐熱性成形容器の製造方法。 3 延伸中空成形用金型のキヤビテイ側表面の成
形品の未延伸樹脂壁と対接する領域の下部に冷却
装置を設け、それ以外のキヤビテイ側表面の領域
の下部に温度調節用流体が巡環する温度調節流体
通路を設けてなる成形熱処理両用型を用いて結晶
性プラスチツクを延伸中空成形し、延伸中空成形
容器を得たのち、ひきつづいて前記型内にこの延
伸中空成形容器をとどめ、この成形容器の内部よ
り加圧気体で容器内壁面を押圧して容器壁面を前
記キヤビテイ側表面に密着させ、保形しながら、
前記キヤビテイ側表面の成形品の未延伸部分に対
接する領域は前記冷却装置により樹脂の結晶化温
度以下に冷却し、一方、それ以外のキヤビテイ側
表面の領域は前記温度調節用流体通路内に一定調
節温度に調節した温度調節用流体を巡環させるこ
とにより、前記結晶性プラスチツクの融点温度以
下の温度に保持しつつ、前記容器内部より輻射エ
ネルギーを容器内壁面に照射して前記流体の調節
温度よりも高い前記結晶性プラスチツクのガラス
転移点以上、融点温度以下の温度で熱処理を行な
つたのち、前記輻射エネルギー源を容器内部より
とり出し、容器壁の温度を前記調節温度付近に降
下させたのち、前記加圧気体を抜気し、次いで、
前記成形熱処理両用型より熱処理された成形容器
を離型することを特徴とする耐熱性成形容器の製
造方法。 4 前記結晶性プラスチツクとして、ポリエチレ
ンテレフタレート樹脂を使用する特許請求の範囲
第3項記載の耐熱性成形容器の製造方法。
[Scope of Claims] 1. After a crystalline plastic is stretch-hollow-molded to obtain a stretch-hollow-molded container, the molded container is taken out from a molding die and has a cavity having the same three-dimensional shape as the molded container. In addition, a cooling device is provided below the region of the cavity side surface that is in contact with the unstretched portion of the molded product, and a temperature regulating fluid circulates in the lower part of the other region of the cavity side surface. The molded container is placed in a heat treatment mold in which a fluid passage is provided, and the inner wall of the container is pressed with pressurized gas from inside the molded container to bring the container wall into close contact with the cavity side surface, thereby retaining the shape. Meanwhile, the region of the cavity side surface that is in contact with the unstretched portion of the molded product is cooled to below the crystallization temperature of the resin, while the other region of the cavity side surface is cooled to a constant temperature within the temperature regulating fluid passage. By circulating the temperature regulating fluid adjusted to the regulated temperature, the radiant energy is irradiated from inside the container to the inner wall surface of the container while maintaining the temperature below the melting point of the crystalline plastic to adjust the regulated temperature of the fluid. After performing heat treatment at a temperature higher than the glass transition point of the crystalline plastic and lower than the melting point temperature, the radiant energy source is taken out from inside the container, and the temperature of the container wall is lowered to around the adjustment temperature. . A method for manufacturing a heat-resistant molded container, comprising: releasing the pressurized gas, and then releasing the heat-treated molded container from the heat treatment mold. 2. The method for manufacturing a heat-resistant molded container according to claim 1, wherein polyethylene terephthalate resin is used as the crystalline plastic. 3. A cooling device is provided at the bottom of the region on the cavity side surface of the stretch hollow molding mold that is in contact with the unstretched resin wall of the molded product, and a temperature regulating fluid circulates in the bottom of the other region on the cavity side surface. A crystalline plastic is stretch-hollow-molded using a molding and heat-treating mold provided with a temperature-regulating fluid passage to obtain a stretch-hollow-molded container, and then the stretch-hollow-molded container is subsequently held in the mold to form the molded container. The inner wall surface of the container is pressed with pressurized gas from inside the container to bring the container wall surface into close contact with the cavity side surface, while maintaining the shape.
The region of the cavity-side surface that is in contact with the unstretched part of the molded product is cooled to below the crystallization temperature of the resin by the cooling device, while the other region of the cavity-side surface is kept within the temperature-adjusting fluid passage. By circulating the temperature regulating fluid adjusted to the regulated temperature, the radiant energy is irradiated from inside the container to the inner wall surface of the container while maintaining the temperature below the melting point of the crystalline plastic to adjust the regulated temperature of the fluid. After performing heat treatment at a temperature higher than the glass transition point of the crystalline plastic and lower than the melting point temperature, the radiant energy source was taken out from inside the container, and the temperature of the container wall was lowered to around the adjustment temperature. Afterwards, the pressurized gas is vented, and then,
A method for manufacturing a heat-resistant molded container, which comprises releasing the heat-treated molded container from the mold for molding and heat treatment. 4. The method for manufacturing a heat-resistant molded container according to claim 3, wherein polyethylene terephthalate resin is used as the crystalline plastic.
JP957378A 1978-01-31 1978-01-31 Preparation of heat resistant bottle Granted JPS54102377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP957378A JPS54102377A (en) 1978-01-31 1978-01-31 Preparation of heat resistant bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP957378A JPS54102377A (en) 1978-01-31 1978-01-31 Preparation of heat resistant bottle

Publications (2)

Publication Number Publication Date
JPS54102377A JPS54102377A (en) 1979-08-11
JPS6156086B2 true JPS6156086B2 (en) 1986-12-01

Family

ID=11724040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP957378A Granted JPS54102377A (en) 1978-01-31 1978-01-31 Preparation of heat resistant bottle

Country Status (1)

Country Link
JP (1) JPS54102377A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398500A (en) * 1986-10-15 1988-04-28 田中貴金属工業株式会社 Pen tube for chart pen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398500A (en) * 1986-10-15 1988-04-28 田中貴金属工業株式会社 Pen tube for chart pen

Also Published As

Publication number Publication date
JPS54102377A (en) 1979-08-11

Similar Documents

Publication Publication Date Title
US6080353A (en) Method of molding a heat-resistant container
US4116606A (en) Apparatus for the preparation of hollow plastic articles
US3830893A (en) Method of processing high nitrile preforms
US5611987A (en) Process for producing biaxially drawn plastic bottles having excellent heat resistance
JP5033469B2 (en) Injection stretch blow molding method for heat-resistant bottles
JPH0123386B2 (en)
PL172400B1 (en) Stress relieving in blow-moulded products and their heat treatment
JPH0673903B2 (en) Mold device for molding hollow molded product and method for molding hollow molded product
CN102695591A (en) Preform for producing plastic containers in a two-stage stretch blow-moulding process
US5145632A (en) Process for the manufacture of pet containers designed to be filled with a hot liquid
CZ292300B6 (en) Process for producing transparent plastic container and apparatus for making the same
JPH0137252B2 (en)
JPH0156890B2 (en)
AU569316B2 (en) Tubular articles of biaxially oriented polymers
JPH1134152A (en) Large-sized container and its molding method
JPH11235751A (en) Crystallization of plastic molded object
JPS6156086B2 (en)
JP2534482B2 (en) Method for producing polyethylene terephthalate resin bottle
JPS6145530B2 (en)
GB2126156A (en) A method of controlling the temperature of a parison during injection stretch-blow moulding
JPS63189225A (en) Manufacture of heat-resistance multi-layer container and blow molding equipment
JPH0577310A (en) Bottle made of polyethylene terephthalate resin and preparation thereof
CN218701181U (en) Profiling device for adjusting temperature uniformity of hollow plastic product
JPH09504240A (en) Molding method for molecularly oriented preform
JPH0464498B2 (en)