JPS6156024B2 - - Google Patents

Info

Publication number
JPS6156024B2
JPS6156024B2 JP52120331A JP12033177A JPS6156024B2 JP S6156024 B2 JPS6156024 B2 JP S6156024B2 JP 52120331 A JP52120331 A JP 52120331A JP 12033177 A JP12033177 A JP 12033177A JP S6156024 B2 JPS6156024 B2 JP S6156024B2
Authority
JP
Japan
Prior art keywords
raw material
iron ore
crusher
present
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52120331A
Other languages
Japanese (ja)
Other versions
JPS5452602A (en
Inventor
Hidehiko Morimoto
Toshio Toyoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12033177A priority Critical patent/JPS5452602A/en
Publication of JPS5452602A publication Critical patent/JPS5452602A/en
Publication of JPS6156024B2 publication Critical patent/JPS6156024B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、鉄鉱石を10mm以下または8mm以下の
焼結鉱用原料に粉砕するための新しい手段の提供
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the provision of new means for grinding iron ore into sinter raw materials of less than 10 mm or less than 8 mm.

鉄鉱石を焼結鉱用原料に粉砕する場合、現在で
はロツドミルによる粉砕方式が一般的に採用され
ているが、この粉砕方式では以下の点で問題点が
ある。即ちロツドの摩耗が大きく、またロツドが
50mmφ程度に摩耗すると、運動中に折損するた
め、ロツドの頻繁な交換補修のためその出し入れ
の頻度が高く、稼動率の低下を招来するし、ロツ
ド歩留りの悪いことはランニングコストの増大に
もつながるのである。更にミル室の内径が大きく
なるとロツドの折損事故も増加するので、ロツド
ミル自体の機械サイズも限度があり、このため処
理量が大きくなると、ロツドミルを大型化する代
りに、その設置台数を増加する必要があり、これ
は設備全体の大型化、消費動力の著大化等の欠点
を生じるのであり、更に一般的な欠点として、こ
の種ロツドミル方式は、機械サイズの割に処理能
力の小さいこと、製品当りの動力消費量の大きい
こと、運転騒音の大きいこと等も挙げられる。
When iron ore is pulverized into a raw material for sintered ore, a pulverization method using a rod mill is currently generally employed, but this pulverization method has the following problems. In other words, the wear of the rod is large, and the rod is
When the rod wears down to about 50mmφ, it will break during movement, so rods must be frequently replaced and taken out and put in and out, leading to a decrease in operating efficiency, and poor rod yields also lead to increased running costs. It is. Furthermore, as the inner diameter of the mill chamber increases, the number of rod breakage accidents increases, so there is a limit to the machine size of the rod mill itself.For this reason, as the throughput increases, it is necessary to increase the number of rod mills installed instead of increasing the size of the rod mill. This results in disadvantages such as an increase in the size of the entire equipment and a significant increase in power consumption.More common disadvantages of this type of rod mill system are that the processing capacity is small compared to the machine size, and the product Other factors include high power consumption per unit and high operating noise.

本発明はこれらの問題点を解決し、機能的に摩
損の少なくかつ保守の容易なコーンクラツシヤを
用いて、所望粒度の焼結用鉄鉱石原料を高能率に
得られるようにしたものであり、その特徴とする
処は、40mm以下8mm以上に分級された鉄鉱石を、
出口開口間隙を製品寸法の1〜1.3倍の範囲で、
かつ偏心運動量を旋動体直径の0.02〜0.03(0.03
は除く)の範囲に設定してなるコーンクラツシヤ
に、その理論的最大通過量にほぼ等しい供給量で
もつて供給しつつ連続破砕するようにした点にあ
る。
The present invention solves these problems and makes it possible to obtain iron ore raw material for sintering with a desired particle size with high efficiency using a cone crusher that is functionally less abrasive and easy to maintain. The special feature is that iron ore classified under 40mm and over 8mm,
Adjust the outlet opening gap to 1 to 1.3 times the product size.
And the eccentric momentum is 0.02 to 0.03 (0.03
The present invention is configured to continuously crush the cone crusher while supplying the cone crusher with a feed rate approximately equal to the theoretical maximum throughput.

以下図示の実施例に基づき本発明を詳述する
と、 第1図は本発明による方法の一実施例としての
全体的なフローシート図を示したものであるが、
1は原料ビンであつて、この原料ビン1内には図
示省略してあるが、適宜の原石分級機によつて40
mm以下8mm以上の範囲内に分級された鉄鉱石原石
を収容し、またビンにはレべル計を設けて同ビン
内に前記分級された鉱石原料が絶えず一定量以上
確保されるようにして、コーンクラツシヤの連続
運転を可能とする。この原料ビン1の下位に設け
たフイーダ2は、コーンクラツシヤからの信号に
よつてその取出し量が任意に変更できる可変フイ
ーダ型式のものとし、同フイーダ2により取出さ
れた鉱石原料はコーンクラツシヤ3に送られて粉
砕を受けるのである。このコーンクラツシヤ3に
は自動形セチケータを設けて、後述するようにそ
の出口開口間隙を製品寸法の1〜1.3倍の設定値
に自動的にコントロール可能とし、また均等供給
装置を具備することにより、コーンクラツシヤの
破砕室全周に鉱石原料を供給するようにし、また
コーンクラツシヤ3の作動用油圧回路および/ま
たは駆動電動機より信号を取出して、前記フイー
ダ2と連動させ、クラツシヤを保護しながらその
理論的最大通過量にほぼ等しい供給量のもとに供
給しつつ、連続破砕を行なわせるのであり、コー
ンクラツシヤ3を絶えず最大能力で運転するよう
に設けるのである。このようにしてコーンクラツ
シヤ3により破砕されて送出される焼結用鉄鉱石
製品は振動篩4によつて10mm以下または8mm以下
の所定寸法粒度に篩い分けられ、オーバーサイズ
のものはリターン装置5によつて再び原料ビン1
に返送されて再破砕を受けるのである。
The present invention will be described in detail below based on the illustrated embodiments. FIG. 1 shows an overall flow sheet diagram as an embodiment of the method according to the present invention.
1 is a raw material bottle, and although it is not shown in the raw material bottle 1, 40
The raw iron ore classified within the range of 8 mm or less is stored, and the bin is equipped with a level gauge to ensure that a certain amount or more of the classified ore raw material is always kept in the bin. , which enables continuous operation of the cone crusher. The feeder 2 installed below the raw material bin 1 is of a variable feeder type, the amount of which is taken out can be changed arbitrarily by a signal from the cone crusher, and the ore raw material taken out by the feeder 2 is sent to the cone crusher 3. It is then crushed. The cone crusher 3 is equipped with an automatic setticator to automatically control the outlet opening gap to a set value of 1 to 1.3 times the product size, as described later, and is equipped with an even supply device. The ore raw material is supplied to the entire circumference of the crushing chamber, and a signal is taken out from the operating hydraulic circuit and/or drive motor of the cone crusher 3 to interlock with the feeder 2, so that the theoretical maximum passage of the crusher can be achieved while protecting the crusher. The cone crusher 3 is provided so as to continuously operate at maximum capacity. The iron ore products for sintering thus crushed and sent out by the cone crusher 3 are sieved by a vibrating sieve 4 to a predetermined particle size of 10 mm or less or 8 mm or less, and oversized ones are passed to a return device 5. Then again, raw material bottle 1
It is then sent back to Japan for re-shredding.

ここで本発明において用いるコーンクラツシヤ
3は、従来のコーンクラツシヤと相違し、その破
砕室の出口閉じ側開口間隙を製品寸法の1〜1.3
倍の範囲に設定し、かつその偏心運動量を旋動体
直径の0.02〜0.03(0.03は除く)の範囲に設定さ
れる点で、従来のコーンクラツシヤとは相違する
のである。
Here, the cone crusher 3 used in the present invention differs from conventional cone crushers in that the opening gap on the outlet closing side of the crushing chamber is 1 to 1.3 of the product size.
It is different from conventional cone crushers in that the eccentric momentum is set in the range of 0.02 to 0.03 (excluding 0.03) of the diameter of the rotating body.

即ち従来のコーンクラツシヤは、第2図にその
代表的な1例を示すように、円錐筒体のコーンケ
ーブ21と、該ケーブ21内を偏心旋回運動する
マントル22とにより劃成される破砕室23に供
給する原料を、破砕室23内を落下する過程にお
いてマントル22の旋回によつて反復圧縮荷重を
受けさせ、圧壊を反復しつつ、マントル22とコ
ーンケーブ21により規制される出口閉じ側開口
24の間隙Cに略等しい粒度、寸法にまで破砕さ
れると、この出口開口24より機外へ排出される
のであるが、この種コーンクラツシヤを用いて鉄
鉱石原料を焼結鉱用原料として破砕する場合、従
来はその出口閉じ側開口部24の間隙Cを6.5mm
またはそれ以下に小さくすることによつて、目的
の細粒製品を得るようにしていたのである。これ
は製品比率を高くするため出口閉じ側開口24の
間隙Cを可及的小さく設定するのであるが、これ
ではクラツシヤ通過量が低下して、製品生産量即
ち処理能力も低下するのであり、また鉄鉱石原料
の若干の水分でも過負荷になり易く、連続処理に
よる大量生産も困難である。
That is, as a typical example is shown in FIG. 2, the conventional cone crusher has a crushing chamber 23 formed by a conical cone cave 21 and a mantle 22 that eccentrically rotates inside the cone cave 21. The raw material to be supplied is subjected to repeated compressive loads by the rotation of the mantle 22 in the process of falling in the crushing chamber 23, and while repeated crushing, the gap between the mantle 22 and the outlet closing side opening 24 regulated by the cone cave 21 is created. When the iron ore raw material is crushed to a particle size and size approximately equal to C, it is discharged from the machine through the outlet opening 24. However, when using this type of cone crusher to crush iron ore raw material as raw material for sintered ore, conventional The gap C of the outlet closing side opening 24 is 6.5 mm.
By reducing the particle size to a smaller size, the desired fine-grained product was obtained. This is because the gap C between the outlet closing side opening 24 is set as small as possible in order to increase the product ratio, but this results in a decrease in the amount of passage through the crusher and a decrease in the product production volume, that is, the throughput. Even a small amount of moisture in the iron ore raw material tends to cause overload, making it difficult to mass-produce through continuous processing.

本発明ではこれの点を改善するため、その出口
セツトを小さくすることなく、製品寸法の1〜
1.3倍範囲に設定すると共に、むしろクラツシヤ
に対する原石供給量を、その理論的最大通過量に
ほぼ等しい供給量、即ち供給量を最大とし、破砕
室内でパツキング現象を生じさせることにより、
その細粒化を可能としたもので、このため本発明
ではコーンクラツシヤ3として、コーンケーブ3
1と同ケーブ31内においてコーンケーブ31の
中心軸線の回りに偏心旋回運動を行なうマントル
32により、破砕室33を劃成すると共に、マン
トル32の旋回偏心運動量をマントル32の直径
の0.02〜0.03(0.03は除く)の範囲に設定するの
であり、34はその出口閉じ側開口を示してい
る。即ち製品生産量の増大のためには、クラツシ
ヤにおける原石通過量を大きくすることが必要で
あるが、他面においてはその通過量に対する所望
粒度の製品含有率を増大させるという相反する要
求を満足させねばならないが、前者の通過量の増
大は出口閉じ側開口の間隙を大きくすることによ
り、マントル32の偏心運動量並びに破砕室33
の形状とにより、一義的にクラツシヤの単位時間
当りの計算通過量(T/h)が決定され、後者の
要求については、破砕室33内において充分な高
密度と高い圧縮比を与えることにより解決できる
ことになる。従つて本発明のようにその出口閉じ
側開口34の間隙Cを大きくし、これに対応した
マントル32の偏心運動量eを設定すれば、これ
によりクラツシヤ3における原料の通過量、換言
すれば破砕処理量が定まることになり、この処理
量を破砕室33内に連続的に供給すれば、原料は
破砕室33内の破砕室長さH方向の各位置におい
て、圧密充填状態で落下流動し、破砕室33内に
おける原料の圧密層状の流動状態を維持しつつ、
マントル32による旋回による圧縮時に、原料に
充分な高密度と高い圧縮比を与えて、好適な破砕
が得られるのである。またこのような破砕を行な
わせるためには、破砕室33内における原料に対
して圧縮荷重をより有効にその層状の相互間に伝
播させることが必要であり、これには先にも述べ
たように破砕室33に対する原料の供給量を充分
に行なうことで、本発明ではクラツシヤ3の破砕
室33内に、その理論的最大通過量にほぼ等しい
供給量でもつて連続的に供給することにより、マ
ントル32の偏心旋回運動による仕事量、即ち原
料に対する圧縮荷重は層状をなす圧縮状態の原料
相互間で伝播し、その結果低い強度の原石から破
壊を生起し、室33内でこれが反復されて進行
し、マントル32が図中の仮想線で示される偏心
運動量eの、最もコーンケーブ31に接近する位
置となるまで、原料は層状のまま圧縮され、いわ
ば層圧縮破砕ともいうべき破砕現象を生起し、所
望粒度の破砕が連続かつ効率的に行なえるのであ
る。
In the present invention, in order to improve this point, it is possible to reduce the size of the product from 1 to
By setting the raw ore supply amount to the crusher to be approximately equal to the theoretical maximum passing amount, that is, the maximum supply amount, and causing a packing phenomenon in the crushing chamber.
Therefore, in the present invention, the corn cave 3 is used as the corn crusher 3.
A crushing chamber 33 is created by the mantle 32 which performs an eccentric rotation movement around the center axis of the cone cave 31 in the same cave 31 as shown in FIG. 34 indicates the opening on the exit closing side. In other words, in order to increase product production, it is necessary to increase the amount of rough ore passing through the crusher, but on the other hand, it is necessary to satisfy the conflicting demands of increasing the product content of the desired particle size relative to the amount of rough passing through the crusher. However, the former amount of passage can be increased by increasing the gap between the outlet closing side openings, thereby reducing the eccentric momentum of the mantle 32 and the crushing chamber 33.
The shape of the crusher uniquely determines the calculated throughput per unit time (T/h) of the crusher, and the latter requirement can be solved by providing a sufficiently high density and high compression ratio in the crushing chamber 33. It will be possible. Therefore, as in the present invention, if the gap C of the outlet closing side opening 34 is increased and the eccentric momentum e of the mantle 32 is set accordingly, the amount of material passing through the crusher 3, in other words, the crushing process can be reduced. If the amount to be processed is determined, and this processing amount is continuously supplied into the crushing chamber 33, the raw material will fall and flow in a compacted packed state at each position in the crushing chamber length H direction within the crushing chamber 33, and the raw material will fall and flow into the crushing chamber. While maintaining the consolidated layered fluidity state of the raw material in 33,
When compressed by swirling with the mantle 32, sufficient high density and high compression ratio are given to the raw material, and suitable crushing can be obtained. In addition, in order to carry out such crushing, it is necessary to more effectively propagate the compressive load to the raw material in the crushing chamber 33 between the layers, and this requires the above-mentioned method. In the present invention, by supplying a sufficient amount of raw material to the crushing chamber 33 in the crushing chamber 33, the mantle is The amount of work due to the eccentric rotation movement of 32, that is, the compressive load on the raw material, is propagated between the layered raw materials in a compressed state, and as a result, fracture occurs from the raw stone with low strength, and this process is repeated and progresses within the chamber 33. , until the mantle 32 reaches the position closest to the cone cave 31 with the eccentric momentum e shown by the imaginary line in the figure, the raw material is compressed in a layered state, causing a fracture phenomenon that can be called layer compression fracture, and producing the desired result. Particle size crushing can be carried out continuously and efficiently.

尚、出口閉じ側開口間隙c及び、偏心連動量e
を、本発明より更に大きな値にすれば、生産量を
更に増大させることが可能であるが、リターン量
も増大し、製品量の3〜5倍になる。
In addition, the outlet closing side opening gap c and the eccentric interlocking amount e
If the value of is made larger than that of the present invention, it is possible to further increase the production amount, but the return amount also increases and becomes 3 to 5 times the product amount.

すなわち、第8図は出口閉じ側開口間隙cと、
原料通過能力と製品生産量の関係を示すグラフで
あり、出口閉じ側開口間隙cを大きくし過ぎる
と、通過能力は増大するが、それに比例して製品
生産量は増加しておらず、リターン量が増加して
いることが判る。従つて、出口閉じ側開口間隙c
は本発明数値が最適であることが判かる。
That is, FIG. 8 shows the outlet closing side opening gap c,
This is a graph showing the relationship between raw material passage capacity and product production volume.If the exit closing side opening gap c is made too large, the passage capacity will increase, but the product production volume will not increase in proportion to it, and the return volume will decrease. It can be seen that the number is increasing. Therefore, the outlet closing side opening gap c
It can be seen that the numerical values of the present invention are optimal.

本発明は以上の通りであつて、第4,5図に示
したものは、本発明によつて生産された製品と、
従来のロツドミルによる製品との粒度分布の比較
図を示し、第4図に示したものはその原料鉄鉱石
銘柄がヤンピーサウンドであり、第5図に示した
ものはその銘柄がリオドセであり、両図において
点線によるものが従来のロツドミルによるもの
で、実線によるものが本発明によるもので、図で
明らかなように、本発明によつても従来のロツド
ミルによる生産品と略同一の粒度分布が得られた
ものである。また第6,7図に示したものは、同
一銘柄の鉱石の破砕において、前記した出口閉じ
側開口の間隙を6.5mmのものと、9.5mmにした場合
の破砕粒度図であり、第6図は銘柄ヤンピサウン
ド、第7図は銘柄リオドセのものを示し、その各
テストNo.と記号は図面付記の通りである。即ち
この両図で明白なように、その原料供給量が本発
明方法による供給量で充分に大きい場合、出口閉
じ側開口の間隙が9.5mmのものでも、6.5mmによる
製品と同程度か、更に細粒化が得られるのであ
り、かつ本発明方法によればより大量生産が可能
となるのである。即ち上記実施結果で明らかなよ
うに、本発明方法によれば、原料鉄鉱石から焼結
用鉄鉱石原料を破砕製造するに当り、従来方法よ
りも効率的に所望粒度の製品を大量生産できるの
であり、ロツドミル方式における問題点を解決
し、摩損の少ないかつ保守の容易なコーンクラツ
シヤ方式の採用により、所要設備自体を著しく簡
素化できるのであり、経済的に焼結用鉄鉱石原料
を生産できる点で優れ、また本発明による前記装
置を鉱石整粒設備に組み込めば、整粒設備の生産
量の増加にも寄与できるのであり、鉄鉱石のよう
な硬貨原料の破砕手段として利用価値大である。
The present invention is as described above, and what is shown in FIGS. 4 and 5 is a product produced according to the present invention,
A comparison diagram of particle size distribution with products made by conventional Rod mills is shown. The iron ore brand shown in Figure 4 is Yampi Sound, and the brand of iron ore shown in Figure 5 is Riodoce. In the figure, the dotted line is the product produced by the conventional rod mill, and the solid line is the product produced by the present invention.As is clear from the figure, the particle size distribution of the present invention is approximately the same as that of the product produced by the conventional rod mill. It is something that was given. Also, Figures 6 and 7 show the crushed particle size diagrams when the same brand of ore is crushed, with the gap of the outlet closing side opening being 6.5 mm and 9.5 mm. shows the brand Yampi Sound, and Figure 7 shows the brand Rio Doce, and the test numbers and symbols are as shown in the appendix to the drawing. In other words, as is clear from both figures, if the feed rate of the raw material is sufficiently large according to the method of the present invention, even a product with a gap of 9.5 mm at the outlet closing side opening will be on the same level as a product with a gap of 6.5 mm, or even better. This makes it possible to obtain fine grains, and the method of the present invention also enables mass production. That is, as is clear from the above implementation results, according to the method of the present invention, when crushing and manufacturing iron ore raw material for sintering from raw iron ore, products with desired particle size can be mass-produced more efficiently than conventional methods. By solving the problems of the rod mill method and adopting the cone crusher method, which has less wear and tear and is easy to maintain, the necessary equipment itself can be significantly simplified, making it possible to economically produce iron ore raw materials for sintering. Furthermore, if the device according to the present invention is incorporated into ore sizing equipment, it can contribute to increasing the production volume of the sizing equipment, and it has great utility as a means for crushing coin raw materials such as iron ore.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法実施例のフローシート図、
第2図は従来のコーンクラツシヤ説明図、第3図
は本発明で用いるコーンクラツシヤ説明図、第
4,5図は本発明方法とロツドミル方式による各
製品の粒度分布対比図、第6,7図は出口間隙に
よる破砕粒度の対比図、第8図は出口閉じ側開口
間隙と通過能力及び製品生産量の関係を示すグラ
フである。 1…原料ビン、2…フイーダ、3…コーンクラ
ツシヤ、4…振動篩。
FIG. 1 is a flow sheet diagram of an embodiment of the method of the present invention;
Fig. 2 is an explanatory diagram of a conventional cone crusher, Fig. 3 is an explanatory diagram of a cone crusher used in the present invention, Figs. 4 and 5 are comparison diagrams of particle size distribution of each product by the method of the present invention and the rod mill method, and Figs. 6 and 7 are illustrations of the outlet. FIG. 8 is a graph showing the relationship between the opening gap on the closed side of the outlet, the passage capacity, and the product production amount. 1... Raw material bottle, 2... Feeder, 3... Corn crusher, 4... Vibrating sieve.

Claims (1)

【特許請求の範囲】[Claims] 1 40mm以下8mm以上に分級された鉄鉱石を、出
口閉じ側開口間隙を製品寸法の1〜1.3倍の範囲
で、かつ偏心運動量を旋動体直径の0.02〜0.03
(0.03は除く)の範囲に設定してなるコーンクラ
ツシヤに、その理論的最大通過量にほぼ等しい供
給量でもつて供給しつつ連続破砕することを特徴
とする焼結用鉄鉱石原料の製造方法。
1. Iron ore classified into 40 mm or less and 8 mm or more is set so that the opening gap on the closed side of the outlet is in the range of 1 to 1.3 times the product size, and the eccentric momentum is 0.02 to 0.03 of the diameter of the rotating body.
A method for producing an iron ore raw material for sintering, which comprises continuously crushing the raw material of iron ore for sintering while supplying it to a cone crusher set in the range of 0.03 (excluding 0.03) at a feed rate almost equal to its theoretical maximum throughput.
JP12033177A 1977-10-04 1977-10-04 Preparation of iron ores raw material for sintering Granted JPS5452602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12033177A JPS5452602A (en) 1977-10-04 1977-10-04 Preparation of iron ores raw material for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12033177A JPS5452602A (en) 1977-10-04 1977-10-04 Preparation of iron ores raw material for sintering

Publications (2)

Publication Number Publication Date
JPS5452602A JPS5452602A (en) 1979-04-25
JPS6156024B2 true JPS6156024B2 (en) 1986-12-01

Family

ID=14783606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12033177A Granted JPS5452602A (en) 1977-10-04 1977-10-04 Preparation of iron ores raw material for sintering

Country Status (1)

Country Link
JP (1) JPS5452602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119029U (en) * 1987-01-27 1988-08-01

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101164A (en) * 1977-02-15 1978-09-04 Kobe Steel Ltd Method of crushing rocks or ores

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101164A (en) * 1977-02-15 1978-09-04 Kobe Steel Ltd Method of crushing rocks or ores

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119029U (en) * 1987-01-27 1988-08-01

Also Published As

Publication number Publication date
JPS5452602A (en) 1979-04-25

Similar Documents

Publication Publication Date Title
US2381351A (en) Method and means of feeding material to grinding mills
US11027287B2 (en) Gyratory crusher including a variable speed drive and control system
CN104399550A (en) Stepless gear roller set and stepless gear roller crusher
JPH089016B2 (en) Grinding device and grinding method by vertical roller mill
US4651933A (en) Cone crusher
CN206853853U (en) A kind of nickel alloy raw material grinding bolting mill
JPS6156024B2 (en)
JP2671156B2 (en) Vertical crusher
JPH02174946A (en) Vertical type grinder
JP2007261870A (en) Concrete recycled aggregate production system
JPH11333310A (en) Aggregate production method and apparatus therefor
CN101947479B (en) Structurally improved single-section hammer type screening crusher
JPS6155425B2 (en)
JPH0576786A (en) Crushing equipment
CN217527640U (en) A machine is ground in vibrations for covering slag processing
JP2748996B2 (en) Crushing equipment
JPH03213156A (en) Vertical grinder
CN100518942C (en) Method of improving continuous ball mill
JPH03221154A (en) Vertical grinder
JPH0448500B2 (en)
JPS5823141B2 (en) Manufacturing method of fine aggregate
JPS5854615B2 (en) Fine aggregate production method
JPH0753244B2 (en) Vertical crusher
JPS5820313B2 (en) Method of crushing rocks or ores, etc.
KR820001902B1 (en) Method of crushing rock ore ets