JPS6155425B2 - - Google Patents

Info

Publication number
JPS6155425B2
JPS6155425B2 JP12171479A JP12171479A JPS6155425B2 JP S6155425 B2 JPS6155425 B2 JP S6155425B2 JP 12171479 A JP12171479 A JP 12171479A JP 12171479 A JP12171479 A JP 12171479A JP S6155425 B2 JPS6155425 B2 JP S6155425B2
Authority
JP
Japan
Prior art keywords
crusher
control
controlling
gap
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12171479A
Other languages
Japanese (ja)
Other versions
JPS5645766A (en
Inventor
Takeshi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12171479A priority Critical patent/JPS5645766A/en
Publication of JPS5645766A publication Critical patent/JPS5645766A/en
Publication of JPS6155425B2 publication Critical patent/JPS6155425B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)

Description

【発明の詳細な説明】 この発明は、コーンクラツシヤの運転制御方法
に関し、少なくともクラツシヤ主軸の旋回速度を
変更制御することにより要求される最良の破砕状
態にコントロールするようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the operation of a cone crusher, in which at least the rotational speed of the crusher main shaft is changed and controlled to achieve the best required crushing state.

周知のようにコーン型クラツシヤの運転は、時
代の趨勢により自動制御に依る傾向が強まり、事
実これまでに種々制御方法が提案されてきた処で
ある。
As is well known, with the trend of the times, the operation of cone crushers has increasingly relied on automatic control, and in fact, various control methods have been proposed.

しかし現状では、クラツシヤの動力(モータ電
流)とかクラツシヤ負荷(クラツシヤ主軸を支承
する油圧力)、更には破砕室の出口隙間を対象と
して運転状況を自動チエツクし、これら実測値を
もとに比較制御してクラツシヤを設定値通りの有
効破砕に最良の状態へと自動制御を行なうのが通
例である。
However, at present, the operating conditions are automatically checked for crusher power (motor current), crusher load (hydraulic pressure supporting the crusher main shaft), and even the exit gap of the crushing chamber, and comparative control is performed based on these actual measurements. It is customary to automatically control the crusher to the best condition for effective crushing according to the set value.

この場合実際の制御に当つては、破砕室の出口
隙間のみをその要素として行なえば通常は有効で
問題はない訳であるが、供給量の変動が大巾にな
ると出口隙間を単に制御するだけでは、原料を破
砕室内に好適量充填しかつ消費電流又は油圧を設
定範囲内に保つことが事実上不可能になり、従つ
てその対策としてクラツシヤの前段階に周知サー
ジパイル(ビン)とか供給量制御用フイーダ更に
はクラツシヤに原料を供給するコンベア等を設備
することが必須となる。それがためプラントの製
作コストとか設備スペースの有効利用の関係で不
利を招き、特に上流と下流において複数段のクラ
ツシヤを設備する場合には各段階に対してサージ
パイルその他の供給制御設備を要するから上記問
題は一層大きくなるばかりでなく、実際に制御す
るにしても下流のクラツシヤ能力とかサージパイ
ルの容量等を懸案しつつ上流での制御をする必要
があるからプラント制御が全体的にみて大変で制
御自体にも困難性があつた。
In this case, in actual control, if the exit gap of the crushing chamber is used as the only element, it is usually effective and there is no problem, but if the supply amount fluctuates widely, it may be necessary to simply control the outlet gap. In this case, it is virtually impossible to fill the appropriate amount of raw material into the crushing chamber and keep the current consumption or oil pressure within the set range.As a countermeasure, the well-known surge pile (bin) or supply volume It is essential to provide a control feeder and a conveyor for supplying raw materials to the crusher. This causes disadvantages in terms of plant production costs and effective use of equipment space, and especially when installing multiple stages of crushers in the upstream and downstream, surge piles and other supply control equipment are required for each stage. Not only does the above problem become even more serious, but even when actually controlling it, it is necessary to perform upstream control while considering downstream crusher capacity, surge pile capacity, etc., making plant control difficult overall. Control itself was also difficult.

又、別の問題として出口隙間の制御に当つて
は、該隙間を小さくすればする程製品に細粒化が
得られるが、通過量全体が隙間制御によつて減量
化するため仮に製品の生産能率を高めても製品の
絶対生産量は増加せず、従つて隙間制御のみによ
つては量産化が図れなかつた訳である。特に隙間
を小さくするとそれに伴なつて圧力即ちクラツシ
ヤ主軸の油圧力とかモータ電流に大巾な変動がみ
うけられ、従つてこの現象は製品の効率的生産を
阻むと共にそれによるオーバロードでクラツシヤ
の耐久性をも損なう結果となつていた訳である。
Another problem with controlling the outlet gap is that the smaller the gap, the finer the product will be, but since the overall amount of passing through is reduced by controlling the gap, even if the product production is Even if efficiency was increased, the absolute production volume of the product did not increase, and therefore mass production could not be achieved by controlling the gap alone. In particular, when the gap is made smaller, the pressure, that is, the hydraulic pressure of the crusher spindle and the motor current, will fluctuate widely. Therefore, this phenomenon hinders the efficient production of products, and the resulting overload reduces the durability of the crusher. This resulted in the loss of the results.

この発明は上記問題に鑑みて創作されたもので
あり、その目的とする処は、少なくともクラツシ
ヤ主軸の旋回速度を制御要素とすることによつて
クラツシヤを常に望む最適状態に制御するように
し、その制御によつてサージパイルその他の供給
制御手段が殊に不要となることでプラントコスト
の低減と設備スペースの一層の狭小化が達成され
るようにし、しかも原料通過量を一定に保つたま
まで製品生産能率を向上させることもできるよう
にしたクラツシヤの制御方法を提供するにあり、
従つてその特徴とする処は、コーンクラツシヤの
運転制御方法において、破砕運転時にクラツシヤ
の負荷、製品粒度、及び製品の生産能率のいずれ
か一つ或いは二つ以上を検出要素として連続的ま
たは定期的に検出し、該検出値が事前に設定され
た要求される範囲内にあるような破砕状態を維持
すべく少なく共クラツシヤの主軸の旋回速度を変
更せしめる制御を行なう点にある。
This invention was created in view of the above problem, and its purpose is to always control the crusher to a desired optimum state by using at least the rotation speed of the crusher main shaft as a control element. The control eliminates the need for surge piles and other supply control means, thereby reducing plant costs and further reducing equipment space, while also allowing product production while keeping the amount of raw material passing constant. The object of the present invention is to provide a crusher control method that also improves efficiency.
Therefore, the feature is that in the operation control method of a cone crusher, one or more of the crusher load, product particle size, and product production efficiency are detected continuously or periodically during the crushing operation. The object of the present invention is to perform control to change the rotational speed of the main shaft of the co-crusher to a minimum in order to maintain a crushing state in which the detected value is within a preset required range.

以下、図示した一例によつてこの発明方法を説
明する。
The method of the present invention will be explained below with reference to an illustrated example.

第1図はこの発明方法を実施するための破砕プ
ラントのフローチヤートであり、1は上流プラン
トを示し該プラント1からの砕石分はチヤートに
矢印aで示す如く第1分級機2に掛けられ矢示b
の製品3方向と矢示cのクラツシヤ4投入方向と
に2分される。
FIG. 1 is a flowchart of a crushing plant for carrying out the method of the present invention, in which 1 indicates an upstream plant, and crushed stone from the plant 1 is passed through a first classifier 2 as shown by arrow a on the chart. Show b
It is divided into two directions: the product 3 direction shown by arrow c and the crusher 4 input direction shown by arrow c.

クラツシヤ4は第2図に示す周知コーン型であ
り、その概様をここで述べると、5はクラツシヤ
フレームで同フレーム5はその頂部に投入ホツパ
ー6を有し、又その下部に円錐型のコーンケープ
7を備えると共に、底部は開放されその中央に固
定受筒8を一体形成してある。9は同受筒8内で
回動自在とされたベベルギアで同ギア9はクラツ
シヤ中心Oに同心関係とされ第1図のモータ10
によつて横軸回りに回動される駆動ピニオン11
でもつて積極的に回動される。上記ベベルギア9
には偏動筒12が固定受筒8内で同心回動すべく
立設されその内周を偏心させておくことでその内
部に囲繞状に支持されたクラツシヤ主軸13の中
心O′が一定の偏心量でもつて上部固定軸受14
中心に下回りに旋動する。この主軸13はスラス
ト軸受15でもつて旋動を受け持たれると共に下
から油圧装置16でもつて昇降自在に支承されて
いる。17は主軸13の中段外周に嵌装されたマ
ントルで該マントル17はコーンケープ7内で旋
動自在とされると共に両者7,17間に形成され
た圧縮破砕室18の下端に出口隙間19を形成し
てある。この隙間19が前記旋動に伴なつて可変
自在とされ最も接近した時の隙間をもつて通常隙
間としてCSS…mmと称すのであり、その値は前記
油圧装置16の昇降によつて自在に変動させるこ
とができる。
The crusher 4 is of the well-known cone type shown in FIG. 2, and its outline will be described here. 5 is a crusher frame, and the frame 5 has a charging hopper 6 at its top, and a cone-shaped crusher at the bottom. The cone cape 7 has an open bottom and a fixed receiver 8 is integrally formed in the center thereof. Reference numeral 9 denotes a bevel gear rotatable within the receiving cylinder 8, and the gear 9 is concentric with the crusher center O, and is connected to the motor 10 in FIG.
Drive pinion 11 rotated around the horizontal axis by
However, it is actively rotated. Above bevel gear 9
In this case, the eccentric cylinder 12 is erected to rotate concentrically within the fixed receiver cylinder 8, and by making its inner periphery eccentric, the center O' of the crusher main shaft 13, which is supported in a surrounding manner inside the cylinder, is kept constant. Upper fixed bearing 14 even with eccentricity
Rotate downwards around the center. The main shaft 13 is rotated by a thrust bearing 15, and is also supported from below by a hydraulic device 16 so as to be able to rise and fall. Reference numeral 17 denotes a mantle fitted around the middle outer periphery of the main shaft 13. The mantle 17 is rotatable within the cone cape 7, and an outlet gap 19 is provided at the lower end of the compression crushing chamber 18 formed between both 7 and 17. It has been formed. This gap 19 is variable as the rotation occurs, and the gap when they are closest is called CSS...mm as the normal gap, and its value can be freely varied by raising and lowering the hydraulic device 16. can be done.

こうしたクラツシヤ4では、矢示cの如く原料
が投入されると破砕室18内で内外に圧密層状を
なして圧砕処理され、その砕石は第1図矢示fの
如く取り出されることで一旦第2分級機20にか
けられ、既に5mm以下となつたものを矢示gの如
く製品3として取り出し、又それ以上のものは矢
示hの如く還流によつて新規供給原料Cと共に適
当比率のもとに混合され再投入される。
In such a crusher 4, when the raw material is input as shown by the arrow c, it is crushed inside and outside the crushing chamber 18 to form a consolidation layer, and the crushed stone is taken out as shown by the arrow f in FIG. Those that have already been passed through the classifier 20 and have a size of 5 mm or less are taken out as product 3 as shown by the arrow g, and those that are larger than that are refluxed as shown by the arrow h and are recycled together with new feedstock C in an appropriate ratio. Mixed and reintroduced.

このように構成されたコーン型クラツシヤを運
転制御する訳であるが、この場合の検出要素とし
ては、クラツシヤの負荷、製品粒度、製品
の生産能率の三つが挙げられる。
The operation of the cone crusher constructed in this way is controlled, and the detection elements in this case include the crusher load, product particle size, and product production efficiency.

前記のクラツシヤ負荷は主として油圧装置1
6の油圧値として連続的又は定期的に検出され、
該検出値が事前に設定された要求される範囲内に
あるような最良破砕状態を維持すべくクラツシヤ
主軸13の旋回速度を変更し制御する。この場合
出口隙間19を油圧装置16によつて制御するこ
とでも可能であり、又供給量制御によつても可能
であつて、このようにクラツシヤ負荷について
は、出口隙間、供給量、旋回速度の三者を択一的
に制御すれば最良破砕状態に制御できる。
The crusher load mentioned above is mainly caused by the hydraulic system 1.
Continuously or periodically detected as an oil pressure value of 6,
The rotation speed of the crusher main shaft 13 is changed and controlled in order to maintain the best crushing condition in which the detected value is within a required range set in advance. In this case, it is possible to control the outlet gap 19 by the hydraulic device 16, and it is also possible to control the supply amount.In this way, the crusher load can be controlled by adjusting the outlet gap, the supply amount, and the rotation speed. By selectively controlling the three, the best crushing state can be achieved.

即ち、第3図に示すグラフは、横軸に主軸の回
転数をとり縦軸に主軸油圧値(Kg/cm2)をとつて
旋回速度制御によつてクラツシヤ負荷を最良の状
態に変動させることができることを示したもので
あり、又隙間制御によつても可能である旨を示し
たものである。
In other words, the graph shown in Fig. 3 shows how to vary the crusher load to the best condition by controlling the swing speed, with the horizontal axis representing the rotational speed of the main shaft and the vertical axis representing the main shaft oil pressure (Kg/cm 2 ). This shows that it is possible to do this, and also that it is possible by controlling the gap.

又、前記に挙げた製品粒度については、その
検出値が事前に設定された要求される範囲内にな
い場合、前記出口隙間、供給量、及び旋回速度の
三つの制御要素のうちの二者を組み合わせて制御
することにより最良の粒度に導かれるものであ
る。
Regarding the product particle size listed above, if the detected value is not within the required range set in advance, two of the three control elements of the outlet gap, feed rate, and rotation speed are adjusted. Combination control leads to the best particle size.

更にの製品の生産能率についてその検出値が
満足されない場合には隙間、供給量、及び旋回速
度の三つの制御要素を全て組み合わせて制御する
ことにより(製品生産量/通過量)の比率を設定
された要求範囲にコントロールする。即ち、制御
要素の1つである旋回速度によつて製品比率が如
何に制御されるかを示したのが第4図であり、こ
の場合隙間が一定で主軸回転数を変化させると通
過量は略々一定であるが製品生産量が増減し、回
転数の上昇につれて製品生産能率が増大する傾向
にある。又隙間を制御すれば同様に生産能率を変
更でき、これらに供給量制御を組み合わせて生産
能率を当初設定範囲にコントロールする。
Furthermore, if the detected value is not satisfied with respect to product production efficiency, the ratio of (product production amount/passage amount) is set by controlling all three control elements of gap, supply amount, and rotation speed in combination. control within the required range. In other words, Figure 4 shows how the product ratio is controlled by the rotation speed, which is one of the control elements. In this case, when the gap is constant and the spindle rotation speed is changed, the throughput is Although it remains approximately constant, the product production volume increases and decreases, and the product production efficiency tends to increase as the rotational speed increases. Also, by controlling the gap, the production efficiency can be changed in the same way, and by combining these with supply amount control, the production efficiency is controlled within the initially set range.

実際にはクラツシヤの負荷、製品粒度、
製品の生産能率の何れか一つあるいは二つ以上を
検出要素として連続的又は定期的に検出し、これ
ら検出値が事前に設定された要求される範囲内に
あるような破砕状態を維持すべく少なく共クラツ
シヤ主軸の旋回速度を変更せしめる制御を行なう
のである。
In reality, crusher load, product granularity,
In order to continuously or periodically detect any one or more of the production efficiency of the product as a detection element, and maintain the crushing state such that these detected values are within the required range set in advance. Control is performed to at least change the rotation speed of the crusher spindle.

この発明方法は以上の如くであり、従つてクラ
ツシヤの運転制御方法としてクラツシヤ主軸の旋
回速度を制御要素としたからその制御能力により
如何なる要求に対しても自在に最良の破砕状態へ
と制御することができるようになつたものであ
る。これに伴なつてサージパイルとかその切り出
しフイーダ等の制御設備を特に必要とせず、従つ
てプラントはコスト的にも又スペース的にも非常
に有利となり、特に上記例の如く上流並びに下流
プラントを構成するものにあつては有効である。
又回転数制御によれば、その回転数上昇によつて
細粒化し易くなり、製品生産量が増大すると云う
副次的な効果もある。
The method of this invention is as described above, and since the turning speed of the crusher main shaft is used as a control element as a crusher operation control method, the control ability can be used to freely control the crushing state to the best possible state for any request. It has become possible to do this. Along with this, there is no need for special control equipment such as surge piles and feeders for cutting surge piles, and the plant is therefore very advantageous in terms of cost and space, especially when the upstream and downstream plants are configured as in the above example. It is valid for those who do.
Furthermore, controlling the rotational speed has the secondary effect that the increase in the rotational speed makes it easier to make the grains finer, thereby increasing the product production amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明方法におけるコーン型クラツ
シヤとその運転状態を示す説明図、第2図は制御
対象を示すクラツシヤ縦断面図、第3図はクラツ
シヤ主軸の速度制御とクラツシヤ負荷の関係を示
すデータグラフ、第4図は主軸速度制御と製品生
産能率の関係を示すデータグラフ図である。
Fig. 1 is an explanatory diagram showing the cone crusher and its operating state in the method of this invention, Fig. 2 is a vertical cross-sectional view of the crusher showing the controlled object, and Fig. 3 is data showing the relationship between speed control of the crusher main shaft and crusher load. The graph shown in FIG. 4 is a data graph showing the relationship between spindle speed control and product production efficiency.

Claims (1)

【特許請求の範囲】[Claims] 1 コーンクラツシヤの運転制御方法において、
破砕運転時にクラツシヤの負荷、製品粒度、及び
製品の生産能率のいずれか一つ或いは二つ以上を
検出要素として連続的または定期的に検出し、該
検出値が事前に設定された要求される範囲内にあ
るような破砕状態を維持すべく少なく共クラツシ
ヤの主軸の旋回速度を変更せしめる制御を行なう
ことを特徴とするコーンクラツシヤの運転制御方
法。
1. In a cone crusher operation control method,
During crushing operation, one or more of crusher load, product particle size, and product production efficiency are detected continuously or periodically as detection elements, and the detected values are within a required range set in advance. 1. A method for controlling the operation of a cone crusher, characterized by controlling the rotation speed of a main shaft of a co-crusher to a minimum in order to maintain a crushing state such as that in a cone crusher.
JP12171479A 1979-09-20 1979-09-20 Method of controlling operation of corn crusher Granted JPS5645766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12171479A JPS5645766A (en) 1979-09-20 1979-09-20 Method of controlling operation of corn crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12171479A JPS5645766A (en) 1979-09-20 1979-09-20 Method of controlling operation of corn crusher

Publications (2)

Publication Number Publication Date
JPS5645766A JPS5645766A (en) 1981-04-25
JPS6155425B2 true JPS6155425B2 (en) 1986-11-27

Family

ID=14818055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12171479A Granted JPS5645766A (en) 1979-09-20 1979-09-20 Method of controlling operation of corn crusher

Country Status (1)

Country Link
JP (1) JPS5645766A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199052A (en) * 1983-04-25 1984-11-12 株式会社クボタ Shaking type crusher
JPS62180759A (en) * 1986-02-01 1987-08-08 株式会社神戸製鋼所 Hydro-corn crusher
JPS63221852A (en) * 1987-03-11 1988-09-14 株式会社神戸製鋼所 Method of crushing raw material stone
JPS647958A (en) * 1987-06-30 1989-01-11 Masuko Sangyo Kk Method for automatically controlling clearance of grinder
BRPI0721556B8 (en) * 2007-04-05 2023-04-18 Metso Minerals Inc METHOD FOR CONTROLLING A CRUSHER, CRUSHER, AND PROCESSOR READABLE STORAGE MEDIA
EP1994866A1 (en) * 2007-05-23 2008-11-26 Rhea Vendors S.p.A. Device for grinding coffee or other alimentary substances

Also Published As

Publication number Publication date
JPS5645766A (en) 1981-04-25

Similar Documents

Publication Publication Date Title
AU2019313327B2 (en) Gyratory crusher including a variable speed drive and control system
US5221051A (en) Crushing apparatus and crushing method
US3933317A (en) Grinding mill
JPS6155425B2 (en)
US3529778A (en) Grinding method and system
JPH02174946A (en) Vertical type grinder
CN2468592Y (en) Ball grinder for pre-milling
JP7151512B2 (en) Vertical pulverizer and its operation method
JPH03232544A (en) Vertical type grinder
JPH05104011A (en) Automatic operation of vertical pulverizer
US2291992A (en) Crushing machinery
JPH05104019A (en) Crushing equipment
JPH11333310A (en) Aggregate production method and apparatus therefor
JP2681854B2 (en) Crushing equipment
JP2681853B2 (en) Crushing equipment
JPH03213156A (en) Vertical grinder
RU2782545C2 (en) Gyratory crusher including drive with adjustable speed and control system
JPH02139054A (en) Operation of vertical crusher
JP2007007593A (en) Operating method of vertical pulverizer and vertical pulverizer
JPH10216638A (en) Classifier for two-stage crushing
JPH03174259A (en) Vertical grinding machine
JPH0210702B2 (en)
JPH05329392A (en) Method for operating upright grinder
JPH0463150A (en) Roll press
US2126081A (en) Pulverizer