JPS6155744B2 - - Google Patents

Info

Publication number
JPS6155744B2
JPS6155744B2 JP53084660A JP8466078A JPS6155744B2 JP S6155744 B2 JPS6155744 B2 JP S6155744B2 JP 53084660 A JP53084660 A JP 53084660A JP 8466078 A JP8466078 A JP 8466078A JP S6155744 B2 JPS6155744 B2 JP S6155744B2
Authority
JP
Japan
Prior art keywords
vanadium pentoxide
cupric oxide
battery
discharge capacity
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53084660A
Other languages
Japanese (ja)
Other versions
JPS5512621A (en
Inventor
Takashi Sakai
Sanehiro Furukawa
Toshihiko Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8466078A priority Critical patent/JPS5512621A/en
Publication of JPS5512621A publication Critical patent/JPS5512621A/en
Publication of JPS6155744B2 publication Critical patent/JPS6155744B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明はリチウム、アルミニウム等の軽金属を
活物質とする負極と、非水系の電解液を用いる非
水電解液電池に関するものであつて、正極活物質
として酸化第二銅と五酸化バナジウムの混合物を
焼成してなる二成分系化合物を用いることにより
電池特性を改善せしめることを目的とするもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-aqueous electrolyte battery using a negative electrode made of a light metal such as lithium or aluminum as an active material and a non-aqueous electrolyte, in which cupric oxide is used as the positive electrode active material. The purpose of this invention is to improve battery characteristics by using a two-component compound obtained by firing a mixture of vanadium pentoxide and vanadium pentoxide.

さて、この種電池の正極活物質としては既に
種々のものが提案されているが特に金属酸化物は
安定で、且つ取扱いの容易さから有力視されてい
る。
Now, various materials have already been proposed as positive electrode active materials for this type of battery, but metal oxides are particularly promising because they are stable and easy to handle.

而して、金属酸化物の単一成分では放電容量及
び作動電圧の両者が十分満足しうるものがなく改
善が求められている。
However, there is no single component of metal oxide that satisfies both discharge capacity and operating voltage, and improvements are desired.

本発明者等は斯る点に鑑み種々検討したとこ
ろ、化学式Cu0.4V2O5或いはCu2V2O7で表わされ
る酸化第二銅―五酸化バナジウムの二成分系化合
物を正極活物質として用いたところ放電容量及び
作動電圧の向上が計れることを見出した。
In view of this, the present inventors conducted various studies and found that a two-component compound of cupric oxide and vanadium pentoxide, represented by the chemical formula Cu 0.4 V 2 O 5 or Cu 2 V 2 O 7 , can be used as a cathode active material. It was discovered that when used as a substance, it was possible to improve discharge capacity and operating voltage.

更に特筆する点は上記二成分系化合物は他の系
と比較して融点温度まで熱処理することなく化合
物を形成することができるので製造が簡易で、且
収率が極めて高いことを見出した。
Furthermore, it has been found that the above-mentioned two-component compound is easy to manufacture and has an extremely high yield compared to other systems because the compound can be formed without heat treatment to the melting point temperature.

即ち、第1図は酸化第二銅(CuO)―五酸化
バナジウム(V2O5)系混合物(1:1のモル比)
の示差熱曲線を示すものであるが、図より上記系
においてはV2O5の融点690℃以下の630℃近辺で
化合物の生成を意味すると思われる吸熱ピーク
イ,ロが存在するのが認められる。そしてこの吸
熱ピークを示す温度で熱処理したるものを冷却し
取出した固形物は比較的もろく容易に粉砕可能で
あつた。X線分析の結果、生成物はCu0.4V2O5
Cu2V2O7であることを確認した。尚、CuOの融点
は約1026℃である。
That is, Figure 1 shows a cupric oxide (CuO)-vanadium pentoxide (V 2 O 5 ) mixture (1:1 molar ratio).
The diagram shows the differential thermal curve of , and from the figure, it can be seen that in the above system, endothermic peaks a and b exist near 630°C, which is below the melting point of V 2 O 5 at 690°C, which seems to indicate the formation of a compound. . The solid material obtained by cooling the product heat-treated at a temperature exhibiting this endothermic peak was relatively brittle and could be easily pulverized. As a result of X-ray analysis, the product is Cu 0.4 V 2 O 5 ,
It was confirmed that it was Cu 2 V 2 O 7 . Note that the melting point of CuO is approximately 1026°C.

このように酸化第二銅(CuO)―五酸化バナ
ジウム(V2O5)系化合物は五酸化バナジウムの融
点以下の温度で焼成が可能であるため次述の如き
効果がある。
As described above, the cupric oxide (CuO)-vanadium pentoxide (V 2 O 5 ) type compound can be fired at a temperature below the melting point of vanadium pentoxide, and therefore has the following effects.

即ち、溶融せず化合物が生成するため、焼成後
の粉砕が極めて容易であると共に生成物が製造容
器に付着したりすることがなく収率が高くなる。
That is, since the compound is produced without melting, pulverization after firing is extremely easy, and the product does not adhere to the production container, resulting in a high yield.

以下本発明の一実施例を示す。 An embodiment of the present invention will be shown below.

正極は市販特級酸化第二銅(CuO)80gと特
級五酸化バナジウム(V2O5)180gを乳鉢で充分
混合する。この混合物をアルミナボート上におい
て650℃で5時間焼成する。この焼成により次述
の反応式で化学式Cu0.4V2O5或いはCu2V2O7で表
わされる二成分系化合物が得られる。
For the positive electrode, 80 g of commercially available special grade cupric oxide (CuO) and 180 g of special grade vanadium pentoxide (V 2 O 5 ) are thoroughly mixed in a mortar. This mixture is calcined on an alumina boat at 650°C for 5 hours. By this calcination, a two-component compound represented by the chemical formula Cu 0.4 V 2 O 5 or Cu 2 V 2 O 7 according to the following reaction formula is obtained.

2CuO+5V2O5→5Cu0.4V2O5+O2 … 2CuO+V2O5→Cu2V2O7 …………… そして冷却後、この焼成物を粉砕し、200メツシ
ユパスした粉末80gに炭素粉末15g,フツ素樹脂
5gを加えて混合し、2.5ton/cm2の圧力で外径20
mm,厚み1.3mmに加圧成型した後、300℃で熱処理
して得る。
2CuO+5V 2 O 5 →5Cu 0 . 4 V 2 O 5 +O 2 … 2CuO+V 2 O 5 →Cu 2 V 2 O 7 …………… After cooling, this fired product was crushed and 80 g of powder passed through 200 meshes was mixed with carbon. Add 15g of powder and 5g of fluororesin, mix, and reduce the outer diameter to 20mm with a pressure of 2.5ton/ cm2.
After pressure molding to a thickness of 1.3 mm, heat treatment is performed at 300℃.

負極はリチウム圧延板を所定形状に打抜いたも
のを用い、電解液としてプロピレンカーボネイト
と1.2.ジメトキシエタンの等体積比の混合溶媒に
1モル濃度の過塩素酸リチウムを溶解したるもの
を用いて、外径24.5mm高さ2.8mmの電池Aを作
成する。尚比較のために酸化第二銅(CuO),五
酸化バナジウム(V2O5)を夫々単独で用いた正極
を組込んだ電池B,Cを作成した。
The negative electrode was a lithium rolled plate punched into a predetermined shape, and the electrolyte was a mixture of propylene carbonate and dimethoxyethane in an equal volume ratio of 1 molar concentration of lithium perchlorate. , create a battery A with an outer diameter of 24.5 mm and a height of 2.8 mm. For comparison, batteries B and C were prepared in which positive electrodes each using cupric oxide (CuO) or vanadium pentoxide (V 2 O 5 ) alone.

更に酸化銅と五酸化バナジウムとを単に混合す
るだけで焼成しない混合物(CuO+V2O5)を用い
た正極を組込んだ電池Dを作成した。
Furthermore, a battery D was prepared in which a positive electrode was incorporated using a mixture (CuO+V 2 O 5 ) of copper oxide and vanadium pentoxide that was simply mixed without being fired.

第2図はこれら電池の1KΩ定抵抗放電特性を
示すものであり、この特性図より電池Bにおいて
は放電容量が大なるものの作動電圧が低く、又電
池Cにおいては作動電圧が高いが放電容量は小さ
いことが伺え、更に電池Dにおいては放電容量は
比較的大きいものの放電々圧が2段となり平担性
に欠ける。一方本発明電池Aによれば平担性を損
うことなく作動電圧及び放電容量の両者に優れた
特性を示すことが解かる。
Figure 2 shows the 1KΩ constant resistance discharge characteristics of these batteries. From this characteristic diagram, battery B has a large discharge capacity but a low operating voltage, and battery C has a high operating voltage but a low discharge capacity. Furthermore, in battery D, although the discharge capacity is relatively large, the discharge pressure is two stages and lacks flatness. On the other hand, it can be seen that the battery A of the present invention exhibits excellent characteristics in both operating voltage and discharge capacity without impairing flatness.

又、第3図は酸化第2銅と硫化鉄との混合比と
電池の放電容量との関係を示し、第3図から酸化
第2銅の混合比が20〜80モル%の範囲で放電容量
を増大しうることがわかる。
In addition, Figure 3 shows the relationship between the mixing ratio of cupric oxide and iron sulfide and the discharge capacity of the battery, and from Figure 3, the discharge capacity increases when the mixing ratio of cupric oxide is in the range of 20 to 80 mol%. It can be seen that it is possible to increase the

上述した如く、本発明によれば酸化第二銅と五
酸化バナジウムの混合物を焼成して得た、化学式
Cu0.4V2O5或いはCu2V2O7で表わされる二成分系
化合物を正極活物質として用いることにより放
電々圧の平担性、放電容量及び作動電圧の改善が
計れるものである。
As mentioned above, according to the present invention, the chemical formula obtained by calcining a mixture of cupric oxide and vanadium pentoxide
By using a binary compound represented by Cu 0.4 V 2 O 5 or Cu 2 V 2 O 7 as a positive electrode active material, it is possible to improve the uniformity of discharge voltage, discharge capacity, and operating voltage . .

又、前述したように酸化第二銅―五酸化バナジ
ウム系は五酸化バナジウムの融点まで昇温するこ
となく焼成が可能であり、製造が簡易で、且つ収
率が高いものである等、非水電解液電池において
その工業的価値は極めて大なるものである。
In addition, as mentioned above, the cupric oxide-vanadium pentoxide system can be fired without raising the temperature to the melting point of vanadium pentoxide, is easy to manufacture, and has a high yield. The industrial value of electrolyte batteries is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における酸化第二銅と五酸化バ
ナジウムの二成分系化合物の示差熱曲線、第2図
は本発明電池の放電特性図、第3図は正極中にお
ける酸化第2銅の混合比と電池の放電容量との関
係を夫々示す。
Figure 1 is a differential thermal curve of the binary compound of cupric oxide and vanadium pentoxide in the present invention, Figure 2 is a discharge characteristic diagram of the battery of the present invention, and Figure 3 is a mixture of cupric oxide in the positive electrode. The relationship between the ratio and the discharge capacity of the battery is shown respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 リチウム、アルミニウム等の軽金属を活物質
とする負極と、非水系電解液と、酸化第二銅と五
酸化バナジウムの混合物を焼成して得た、化学式
Cu0.4V2O5或いはCu2V2O7で表わされる二成分系
化合物を活物質として含む正極とを備えた非水電
解液電池。
1 Chemical formula obtained by firing a mixture of a negative electrode made of a light metal such as lithium or aluminum as an active material, a non-aqueous electrolyte, cupric oxide and vanadium pentoxide
A nonaqueous electrolyte battery comprising a positive electrode containing a binary compound represented by Cu0.4V 2 O 5 or Cu 2 V 2 O 7 as an active material.
JP8466078A 1978-07-11 1978-07-11 Non-aqueous electrolyte cell Granted JPS5512621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8466078A JPS5512621A (en) 1978-07-11 1978-07-11 Non-aqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8466078A JPS5512621A (en) 1978-07-11 1978-07-11 Non-aqueous electrolyte cell

Publications (2)

Publication Number Publication Date
JPS5512621A JPS5512621A (en) 1980-01-29
JPS6155744B2 true JPS6155744B2 (en) 1986-11-28

Family

ID=13836871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8466078A Granted JPS5512621A (en) 1978-07-11 1978-07-11 Non-aqueous electrolyte cell

Country Status (1)

Country Link
JP (1) JPS5512621A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123670A (en) * 1980-03-03 1981-09-28 Nippon Telegr & Teleph Corp <Ntt> Lithium copper-vanadate secondary battery
JPS5723466A (en) * 1980-07-18 1982-02-06 Sanyo Electric Co Ltd Nonaqueous electrolyte cell
JPS5868869A (en) * 1981-10-20 1983-04-23 Sanyo Electric Co Ltd Nonaqueous battery
JPS58178957A (en) * 1982-04-12 1983-10-20 Nippon Telegr & Teleph Corp <Ntt> Lithium secondary cell
JPS58186887A (en) * 1982-04-26 1983-10-31 矢崎総業株式会社 Inspector for taxi meter
JPS58201255A (en) * 1982-05-18 1983-11-24 Nippon Telegr & Teleph Corp <Ntt> Lithium battery
JPS60174975U (en) * 1984-04-27 1985-11-20 矢崎総業株式会社 taxi meter
JPH01286253A (en) * 1988-05-12 1989-11-17 Sanyo Electric Co Ltd Nonaqueous electrolytic battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854443A (en) * 1971-11-10 1973-07-31
JPS5217616A (en) * 1975-07-31 1977-02-09 Matsushita Electric Ind Co Ltd Organic electrolyte battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854443A (en) * 1971-11-10 1973-07-31
JPS5217616A (en) * 1975-07-31 1977-02-09 Matsushita Electric Ind Co Ltd Organic electrolyte battery

Also Published As

Publication number Publication date
JPS5512621A (en) 1980-01-29

Similar Documents

Publication Publication Date Title
JP3611188B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2578646B2 (en) Non-aqueous secondary battery
JP5320710B2 (en) Positive electrode active material, method for producing the same, and electrochemical device
JPH05299092A (en) Nonaqueous electrolytic lithium secondary battery and manufacture thereof
JPH05242891A (en) Non-aqueous battery
JPH0746607B2 (en) Non-aqueous secondary battery
JP4496150B2 (en) Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
JP2005196992A (en) Positive pole material for lithium secondary battery and battery
JP2004220952A (en) Positive electrode active material for nonaqueous electrolyte secondary battery
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
JPH1072219A (en) Multiple oxide of lithium, its production and active material of positive electrode for lithium secondary battery
JPS6155744B2 (en)
JP3707744B2 (en) Method for producing lithium composite oxide
JP3229425B2 (en) Positive electrode for lithium secondary battery and method for producing the same
JP4900888B2 (en) Lithium transition metal oxides for lithium batteries
JPH1064516A (en) Lithium battery
JPH07262995A (en) Cobalt acid lithium positive electrode active material for lithium secondary battery and manufacture thereof
JP4069066B2 (en) Method for producing lithium-manganese composite oxide
JPS6155745B2 (en)
JPS6138583B2 (en)
JP2703278B2 (en) Non-aqueous secondary battery
JP2002234733A (en) Manganese-containing lithium compound oxide of lamellar rock-salt structure, producing method thereof and secondary battery using the same
JP3104321B2 (en) Non-aqueous electrolyte lithium secondary battery and method for producing the same
JP3931228B2 (en) Lithium chromium titanium composite oxide having ramsdellite type crystal structure and method for producing the same
JPH0748377B2 (en) Non-aqueous secondary battery