JPS6155041B2 - - Google Patents

Info

Publication number
JPS6155041B2
JPS6155041B2 JP6193877A JP6193877A JPS6155041B2 JP S6155041 B2 JPS6155041 B2 JP S6155041B2 JP 6193877 A JP6193877 A JP 6193877A JP 6193877 A JP6193877 A JP 6193877A JP S6155041 B2 JPS6155041 B2 JP S6155041B2
Authority
JP
Japan
Prior art keywords
measured
rotary table
central axis
shape
rotationally symmetrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6193877A
Other languages
Japanese (ja)
Other versions
JPS53146656A (en
Inventor
Akira Isono
Toshuki Murakami
Atsushi Natori
Yoshisada Koyama
Zenbee Ootomo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6193877A priority Critical patent/JPS53146656A/en
Publication of JPS53146656A publication Critical patent/JPS53146656A/en
Publication of JPS6155041B2 publication Critical patent/JPS6155041B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 本発明は、光フアイバなどの外形が回転対称形
状を有する被測定物の外形形状測定装置および方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus and method for measuring the external shape of an object to be measured, such as an optical fiber, having a rotationally symmetrical external shape.

光フアイバは半径100〜200μ(0.1〜0.2mm)程
度の太さがあり、その内部には20〜60μ程度のコ
アを有する構造である。これらを偏心コネクタな
どに取りつけるため、その寸法精度は3μ程度以
下にする必要がある。このような同心円または偏
心円の測定装置としては、従来、投影機あるいは
顕微鏡などによつて光学的に測定されていた。
The optical fiber has a diameter of about 100 to 200 μ (0.1 to 0.2 mm), and has a core of about 20 to 60 μ inside. Since these are attached to eccentric connectors, etc., their dimensional accuracy must be approximately 3 μm or less. Conventionally, such concentric or eccentric circles have been measured optically using a projector or a microscope.

このような光フアイバなどの外形が回転対称形
状を有する被測定物の測定面に含まれる他の回転
対称形状の中心軸と被測定物外形の中心軸とのズ
レ量を測定する場合、投影機・顕微鏡等により光
学的に測定する方法は信頼性の高いミクロン単位
以下の測定は不可能に近い。人間の目の分解能は
約0.1mm程度あり、光学顕微鏡の分解能も光の波
動性による回折現象があるものの0.15〜0.25μ程
度まで可能である。したがつて理論的には光学顕
微鏡の倍率を最大1000倍程度まで上げても、計測
に必要な読み取り識別が出来ることになるが、現
実的ではない。
When measuring the amount of deviation between the center axis of another rotationally symmetrical shape included in the measurement surface of an object to be measured whose outer shape is rotationally symmetrical, such as an optical fiber, and the central axis of the outer shape of the object to be measured, a projector is used.・It is almost impossible to make reliable measurements below the micron level using methods such as optical measurement using a microscope. The resolution of the human eye is approximately 0.1 mm, and the resolution of an optical microscope is also possible down to approximately 0.15 to 0.25 microns, although there is a diffraction phenomenon due to the wave nature of light. Therefore, theoretically, even if the magnification of an optical microscope is increased to a maximum of 1000 times, it would be possible to read and identify the information necessary for measurement, but this is not practical.

その理由は測定倍率を上げて高精度の測定を行
う場合、次のような種々の問題があるためであ
る。
The reason for this is that when performing highly accurate measurements by increasing the measurement magnification, there are various problems as described below.

(1) 焦点深度の深い高倍率のレンズを製作するの
が難かしい。このため被測定物表面の平滑さ、
端面のシヤープエツヂさは、より一層要求され
る。特に被測定物の端面が面取りなどして有る
場合は、外形端面を測定面と同一焦点深度内で
捕えることが出来なくなり著しく測定時間を費
す。又測定機器そのものによる器差や読み取り
時の個人誤差等、測定誤差発生要因も増大す
る。
(1) It is difficult to produce a high-magnification lens with a deep depth of focus. Therefore, the smoothness of the surface of the object to be measured,
Sharpness of the end face is even more required. In particular, when the end face of the object to be measured is chamfered, etc., it becomes impossible to capture the external end face within the same depth of focus as the measurement surface, which takes a considerable amount of time for measurement. In addition, factors that cause measurement errors, such as instrumental differences due to the measuring equipment itself and individual errors during reading, also increase.

(2) 観測視野が狭くなるため測定位置を探すのが
困難になり、その作業による測定器差の増大・
作業性の悪化を招く。
(2) As the observation field of view becomes narrower, it becomes difficult to find the measurement position, and this work increases the difference between measuring instruments.
This leads to deterioration of workability.

(3) 周囲の振動の影響を受けやすくなる。(3) Become more susceptible to the effects of surrounding vibrations.

(4) これらの方法で信頼性の高い高精度の測定を
おこなうことは非常に難しく、同時に観測者の
目や神経を非常に酷使するため、測定作業自体
長時間続ける事も困難である。また、同心度測
定の場合は触針による真円度測定機を用いるこ
とも出来るが、この際の被測定物形状は、第3
図に示すような同一平面の物は測定出来ず、第
4図あるいは第5図に示すような段付き形状・
中空パイプ形状等限られた対象物しか測定出来
ない。
(4) It is extremely difficult to perform highly reliable and highly accurate measurements using these methods, and at the same time, it is extremely taxing on the observer's eyes and nerves, making it difficult to continue the measurement process for long periods of time. In addition, in the case of concentricity measurement, it is also possible to use a roundness measuring machine using a stylus, but in this case the shape of the object to be measured is
It is not possible to measure objects on the same plane as shown in the figure.
Only limited objects such as hollow pipe shapes can be measured.

本発明の目的は、従来高精度の測定が困難であ
つた外形が回転対称形状を有する被測定物の測定
面に含まれる他の回転対称形状の中心軸と、被測
定物外形の中心軸とのズレ量を、有効読み取り値
をミクロン単位の精度で測定する装置および方法
を提供することにある。
The object of the present invention is to measure the center axis of another rotationally symmetrical shape included in the measurement surface of a workpiece whose external shape has a rotationally symmetrical shape, which has been difficult to measure with high precision in the past, and the central axis of the external shape of the workpiece. An object of the present invention is to provide a device and a method for measuring the amount of deviation of an effective reading value with an accuracy of microns.

本発明は光学式測定器と接触式測定機の両者を
組み合せた測定装置および方法で、光学式測定系
には高倍率における弱点をカバーするため、顕微
鏡とテレビカメラを接続してビデオモニタ画面
に、高倍率に拡大された被測定像を映し出すよう
にし、接触式測定系には、測定点の位置が記録表
示部の中心に表示される記録表示部が有り、その
中心に対し、被測定物の外形形状がどんな位置に
あるかをアナログ表示するようにしてある。
The present invention is a measuring device and method that combines both an optical measuring device and a contact measuring device.In order to cover the weak points of the optical measuring system at high magnification, a microscope and a television camera are connected and a video monitor screen is used. The contact measurement system has a recording display section that displays the position of the measurement point at the center of the recording display section, and the position of the measurement point is displayed at the center of the display section. The position of the external shape is displayed in analog form.

以下図面により本発明を説明する。 The present invention will be explained below with reference to the drawings.

第1図は本発明の実施例の測定装置の構成図で
あり、1は被測定物、2は回転テーブル、3は顕
微鏡、4はテレビカメラ、5はカメラ制御装置、
6はビデオモニタ、7は検出器、8は送り装置、
9は増幅装置、10は記録表示装置、11はXY
微動テーブルである。
FIG. 1 is a configuration diagram of a measuring device according to an embodiment of the present invention, in which 1 is an object to be measured, 2 is a rotary table, 3 is a microscope, 4 is a television camera, 5 is a camera control device,
6 is a video monitor, 7 is a detector, 8 is a feeding device,
9 is an amplifier, 10 is a recording display device, 11 is an XY
It is a fine movement table.

この装置による測定装置は、まず、初めに被測
定物(例えば光フアイバ)1の第1の中心軸をビ
デオモニタ6を見ながらXY微動テーブル11を
用いて回転テーブル2の回転中心軸と一致させ
る。その後、接触式検出器7を被測定物に接触さ
せて、回転テーブル2を回転し、被測定物外形の
変位量を検出する。この接触式検出器7は針など
の接触先をもち、この接触先の移動を可動鉄心な
どに接続して電気信号に変換して位置を検出する
ものである。この検出器7の信号は送り装置信号
と共に増幅装置9に送られ記録表示装置10へア
ナログ表示される。このアナログ表示により被測
定物1の第1の中心軸を求める。
In this measuring device, first, the first center axis of the object to be measured (for example, an optical fiber) 1 is aligned with the rotation center axis of the rotary table 2 using the XY fine movement table 11 while watching the video monitor 6. . Thereafter, the contact type detector 7 is brought into contact with the object to be measured, the rotary table 2 is rotated, and the amount of displacement of the outer shape of the object to be measured is detected. This contact type detector 7 has a contact point such as a needle, and detects the position by connecting the movement of the contact point to a movable iron core or the like and converting it into an electric signal. The signal from the detector 7 is sent to the amplifier 9 together with the sending device signal and displayed in analog form on the recording/display device 10. The first central axis of the object to be measured 1 is determined by this analog display.

次に、被測定物1の測定面に含まれる他の回転
対称形状(例えば光フアイバのコア)の第2の中
心軸を上述と同様な方法で求め、上述の第1の中
心軸とのズレを測定し同心度を測定する。
Next, the second central axis of another rotationally symmetrical shape (for example, the core of an optical fiber) included in the measurement surface of the object to be measured 1 is determined in the same manner as described above, and the deviation from the first central axis is determined. Measure the concentricity.

第2図は本発明の他の実施例の測定装置の構成
図であり、13は自動求心装置、14は切換えス
イツチであり、他は第1図と同様のものである。
この場合の測定方法は回転対称形状の被測定物1
の測定面に含まれる他の回転対称形状の中心軸を
ビデオモニタ6を見ながらXY微動テーブル11
を用いて回転テーブル2の回転中心軸と一致させ
る。その後接触式検出器7を被測定物に接触させ
て、回転テーブル2を回転し、被測定物外形の変
位量を検出する。スイツチ14が図のような場合
は第1図と同時に表示部11に被測定物の外形形
状をアナログ表示し、そのアナログデータから例
えばテンプレートを用いて外形形状の中心軸を求
め、表示部の中心軸とのズレ量を測定して同心度
を測定する。また、切換えスイツチ14を図と反
対側に切換えると、自動求心装置13を介して記
録表示装置11に求める値がデジタル表示され
る。この自動求心装置13は数値解析によつて被
測定物外形の中心軸の位置を求め先に求めた被測
定物の測定面に含まれる回転対称形状の中心軸と
のズレ量を、自動的にデイジタル計算して求める
装置であり、(株)小坂研究所にて製作させているも
のである。
FIG. 2 is a block diagram of a measuring device according to another embodiment of the present invention, in which 13 is an automatic centripetal device, 14 is a changeover switch, and the other components are the same as in FIG. 1.
In this case, the measurement method is as follows:
While looking at the video monitor 6, the XY fine movement table 11
to match the rotation center axis of the rotary table 2. Thereafter, the contact type detector 7 is brought into contact with the object to be measured, the rotary table 2 is rotated, and the amount of displacement of the outer shape of the object to be measured is detected. When the switch 14 is as shown in the figure, the external shape of the object to be measured is displayed in analog on the display section 11 at the same time as shown in FIG. Concentricity is measured by measuring the amount of deviation from the axis. Further, when the changeover switch 14 is switched to the opposite side as shown in the figure, the value to be determined is digitally displayed on the recording display device 11 via the automatic centripetal device 13. This automatic centripetal device 13 determines the position of the center axis of the outer shape of the object to be measured through numerical analysis, and automatically calculates the amount of deviation from the center axis of the rotationally symmetrical shape included in the measurement surface of the object. This is a device that performs digital calculations and is manufactured by Kosaka Research Institute Co., Ltd.

このような構成のこの装置の特徴は、 (1) 光学式測定法と接触式測定法の両者の長所を
生かすことによつて、従来高精度に測定出来な
かつた被測定物形状であつても容易に同心度が
測定出来る。
The features of this device with such a configuration are as follows: (1) By taking advantage of the advantages of both optical measurement method and contact measurement method, it is possible to measure the shape of the object to be measured, which previously could not be measured with high precision. Concentricity can be easily measured.

(2) 被測定物の測定面に含まれる回転対称形状の
中心軸を回転テーブルの中心軸と高精度で一致
させるために、高倍率の測定が必要であるが、
その際顕微鏡のみならず、テレビカメラ4を用
いて被測定像を拡大するため、レンズの焦点深
度の問題も軽減され、かつ広い視野で観測が出
来ることになり、作業性が著しく向上する。
(2) In order to align the center axis of the rotationally symmetrical shape included in the measurement surface of the object with high precision with the center axis of the rotary table, high-magnification measurement is required.
At this time, not only the microscope but also the television camera 4 is used to magnify the image to be measured, which alleviates the problem of the depth of focus of the lens and enables observation in a wide field of view, significantly improving work efficiency.

(3) 被測定物の端面が面取りしてあつたり、バ
リ・ダレ等があつても、接触式検出器を用いる
事によつて、その端面を容易に捕える事が出来
るので、光学式測定に比べ測定精度が著しく向
上する。
(3) Even if the end face of the object to be measured is chamfered, has burrs, sag, etc., the end face can be easily captured by using a contact type detector, making it suitable for optical measurement. Measurement accuracy is significantly improved.

(4) 被測定物の測定面に含まれる回転対称形状の
中心軸を回転テーブルの中心軸と正確に一致さ
せることが出来るため、 1 被測定物を回転テーブル上で回転させて、
固定位置にある接触式検出器から外形形状の
変位量を検出処理するだけで、被測定物の測
定面に含まれる回転対称形状の中心軸を表示
部の中心とする被測定物の外形形状を容易に
アナログ表示で求める事が出来る。
(4) Since the center axis of the rotationally symmetrical shape included in the measurement surface of the object to be measured can be precisely aligned with the center axis of the rotating table, 1. Rotating the object to be measured on the rotating table,
By simply detecting and processing the amount of displacement of the external shape from a contact detector located at a fixed position, the external shape of the measured object can be determined with the center axis of the rotationally symmetrical shape included in the measurement surface of the measured object as the center of the display. It can be easily determined using analog display.

2 被測定物を回転テーブル上で回転させて、
固定位置にある接触式検出器から外形形状の
変位量を検出処理し、数値解析によつて被測
定物外形の中心軸の位置を求め、先に求めた
被測定物の測定面に含まれる回転対称形状の
中心軸とのズレ量を自動的に求める自動求心
装置を用いる事によつて、同心度がデジタル
表示されるため同心度の測定がきわめて容易
に出来る。
2 Rotate the object to be measured on the rotary table,
The amount of displacement of the external shape is detected and processed by a contact detector located at a fixed position, the position of the central axis of the external shape of the object to be measured is determined by numerical analysis, and the rotation included in the measurement surface of the object to be measured is determined by numerical analysis. By using an automatic centripetal device that automatically determines the amount of deviation from the central axis of a symmetrical shape, concentricity can be displayed digitally, making it extremely easy to measure concentricity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の第1および第
2の実施例の外形形状測定装置の構成図、第3〜
5図は被測定物の形状の一例の斜視図である。図
いおいて 1…被測定物、2…回転テーブル、3…顕微
鏡、4…テレビカメラ、5…カメラ制御装置、6
…ビデオモニタ、7…検出器、8…送り装置、9
…増幅装置、10…記録表示装置、11…XY微
動テーブル、12…測定点、13…自動求心装
置、14…切換スイツチ、15…中心軸、であ
る。
FIGS. 1 and 2 are block diagrams of external shape measuring devices according to first and second embodiments of the present invention, and FIGS.
FIG. 5 is a perspective view of an example of the shape of the object to be measured. In the figure: 1...Object to be measured, 2...Rotary table, 3...Microscope, 4...TV camera, 5...Camera control device, 6
...video monitor, 7...detector, 8...feeding device, 9
. . . amplifier device, 10 . . . recording display device, 11 .

Claims (1)

【特許請求の範囲】 1 外形が回転対称形状を有する被測定物を載せ
る回転テーブルと、前記回転テーブル上に設けら
れかつ前記回転テーブルの中心軸に前記被測定物
の第1の中心軸あるいは前記被測定物の端面内の
他の回転対称形状の第2の中心軸を移動調整でき
る移動機構と、前記被測定物の端面の像を光学的
に拡大観測できる光モニター手段と、前記被測定
物に接触してその外形を検出する接触検出手段
と、前記接触検出手段の出力を表示する表示手段
とから構成され、前記回転テーブルを回転させて
前記被測定物の外形を前記表示手段に表示するこ
とにより前記第1と第2の中心軸とのズレを測定
することを特徴とする外形形状測定装置。 2 外形が回転対称形状を有する被測定物の外形
形状を測定する方法において、回転テーブルに載
せられた前記被測定物の端面の像を光学的に拡大
観測しながら前記被測定物の第1の中心軸および
前記端面内の他の回転対称形状の第2の中心軸を
前記回転テーブルの中心軸にそれぞれ一致させ、
前記回転テーブルを回転させながら外形接触子に
より前記被測定物の外形をそれぞれ検出し表示す
ることにより前記第1と第2の中心軸とのズレを
測定することを特徴とする外形形状測定方法。
[Scope of Claims] 1. A rotary table on which a workpiece having a rotationally symmetrical outer shape is placed, and a rotary table provided on the rotary table and with a central axis of the rotary table aligned with a first central axis of the workpiece or the a moving mechanism capable of moving and adjusting a second central axis of another rotationally symmetrical shape within an end surface of the object to be measured; a light monitoring means capable of optically magnifying and observing an image of the end surface of the object to be measured; and the object to be measured. and a display means for displaying the output of the contact detection means, and displays the outer shape of the object to be measured on the display means by rotating the rotary table. An external shape measuring device characterized by measuring a deviation between the first and second central axes. 2. In a method for measuring the outer shape of a workpiece whose outer shape has a rotationally symmetrical shape, while optically enlarging and observing an image of an end face of the workpiece placed on a rotary table, a central axis and a second central axis of another rotationally symmetrical shape within the end surface are respectively aligned with the central axis of the rotary table;
An external shape measuring method, characterized in that the deviation between the first and second central axes is measured by detecting and displaying the external shapes of the object to be measured using external contactors while rotating the rotary table.
JP6193877A 1977-05-26 1977-05-26 Outside shape measuring apparatus Granted JPS53146656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6193877A JPS53146656A (en) 1977-05-26 1977-05-26 Outside shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6193877A JPS53146656A (en) 1977-05-26 1977-05-26 Outside shape measuring apparatus

Publications (2)

Publication Number Publication Date
JPS53146656A JPS53146656A (en) 1978-12-20
JPS6155041B2 true JPS6155041B2 (en) 1986-11-26

Family

ID=13185615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6193877A Granted JPS53146656A (en) 1977-05-26 1977-05-26 Outside shape measuring apparatus

Country Status (1)

Country Link
JP (1) JPS53146656A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697807A (en) * 1980-01-07 1981-08-06 Kosaka Kenkyusho:Kk Display device of out-of-roundness measuring instrument
JPS62265520A (en) * 1986-05-12 1987-11-18 Mitsutoyo Corp Three-dimensional measuring machine equipped with two detecting elements

Also Published As

Publication number Publication date
JPS53146656A (en) 1978-12-20

Similar Documents

Publication Publication Date Title
US4764016A (en) Instrument for measuring the topography of a surface
US6301007B1 (en) Machine tool locator
CN103123251B (en) Differential confocal internal focusing method lens axis and method for measuring thickness
JPS6155041B2 (en)
JPS61221632A (en) Measuring system for eccentricity of single core optical connector ferrule
JP3833186B2 (en) Depth measuring device
JPS63222206A (en) Image processor for measuring structure of optical fiber
US4574306A (en) Apparatus and method for automatically measuring the shoe-length of a video disc stylus
JPS6231943B2 (en)
JP2003315238A (en) Alignment method for measurement, cantilever and scanning probe microscope
JP2521736B2 (en) Microscope adjustment inspection device
JP3217434B2 (en) Concentricity measuring device for cylindrical work
JPH08233545A (en) Method and apparatus for measuring hole shape
JP2004325159A (en) Micro-shape measuring probe and micro-shape measuring method
JPS6315139A (en) Scratch hardness testing apparatus
JPH0222505A (en) Laser interference measuring instrument
JPH05172524A (en) Optical measuring apparatus
JPH11201717A (en) Object recognizing device
SU866583A1 (en) Microcircuit testing device
JPH0429363Y2 (en)
GB1453572A (en) Method and device for measuring azimuth angles
JPH10111215A (en) Measuring equipment and method of afocal optical system with indicating mark
JPH05118843A (en) Scanning type probe microscope
Moore Precise measurement of fibre geometry by image shearing
JP2686770B2 (en) Micro dimension measurement X-ray equipment