JPS6154796B2 - - Google Patents

Info

Publication number
JPS6154796B2
JPS6154796B2 JP53017402A JP1740278A JPS6154796B2 JP S6154796 B2 JPS6154796 B2 JP S6154796B2 JP 53017402 A JP53017402 A JP 53017402A JP 1740278 A JP1740278 A JP 1740278A JP S6154796 B2 JPS6154796 B2 JP S6154796B2
Authority
JP
Japan
Prior art keywords
crown ethers
polyethylene glycol
leaving group
compound
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53017402A
Other languages
Japanese (ja)
Other versions
JPS54119483A (en
Inventor
Mitsuo Okahara
Isao Ikeda
Shozo Yanagida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1740278A priority Critical patent/JPS54119483A/en
Publication of JPS54119483A publication Critical patent/JPS54119483A/en
Publication of JPS6154796B2 publication Critical patent/JPS6154796B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は所謂クラウンエーテル類の製造方法に
関する。 クラウンエーテル類(crown ethers)とは、
大環状ポリエーテルに慣用的に付された名称であ
つて、ペダーセン(C.J.pedersen)によつて最
初に合成され、アルカリ金属やアルカリ土金属の
陽イオン、更にはアンモニウムイオン、重金属イ
オン等と錯形成能を有することが明らかになるに
つれて、有機合成、分離分析、生化学、医薬品等
広い分野にわたつて利用され始めており、工業的
にも理論的にも興味深い化合物である。 尚、クラウンエーテル類をIUPAC法で命名す
ると非常に複雑となるので、ここでは一般的に用
いられている簡便な命名法に従うこととする
(C.J.Pedersen、J.Am.Chem.Soc.、89、2495
(1967))。 クラウンエーテル類は種々の方法で製造され、
既に工業的な規模でも製造されているが、これら
製造方法は二つに大別される。 一つの方法は式(1)に示すように、ポリエチレン
グリコール若しくは芳香族のo−ジヒドロキシ化
合物と、ポリエチレングリコールジハロゲン化
物、ジトシラート等をアルカリ金属水酸化物等の
存在下に、その鋳型効果を利用して縮合環化させ
るものである。 しかし、この方法においては、例えばジハライ
ドを用いた場合には、通常、高温度(100℃程
度)で長時間反応させる必要があり、しかも、収
率が低い。また、ジトシラートを用いた場合、稀
にはその環化縮合段階で好収率が報告されている
が、多くは環化の際にt−BuOK、t−BuON2
特別なアルカリ金属アルコキシドを必要とする欠
点がある。更に、この従来方法においては、出発
原料であるジハライド、ジトシラート等の合成段
階が必要で、クラウンエーテル類を高収率で得る
ことは必らずしも簡単ではなく、価格も必然的に
高価とならざるを得ない。 他の方法は、例えば、式(2)に示すように、ジオ
キサン等の溶剤中で鋳型効果をもつ無水金属塩の
存在下に酸化エチレンを環化低重合させるもので
ある。 しかし、この方法によれば、通常、環の大きさ
の異なるクラウンエーテルの混合物(式(2)中、m
が0、1、2、3等)が生成する難点があり、用
いる金属塩の選択性が問題である。更に、この方
法によれば、置換基を有するクラウンエーテル類
の製造は特別な場合を除いて困難である。 以上のように、クラウンエーテル類の従来の製
造方法には多くの欠点があり、更に、価格的な問
題があつて、現在は極めて限られた種類のクラウ
ンエーテルしか製造されていない。また、クラウ
ンエーテル類の用途を一層拡大するためには、活
性な官能基を含む置換基を有するクラウンエーテ
ル類を簡単且つ安価に製造することが要請される
が、従来の方法では価格面は考えないとしても、
製造すること自体が非常に困難である。 本発明はクラウンエーテル類の製造における上
記した諸点を考慮してなされたものであつて、一
般的には置換、未置換のクラウンエーテル類を製
造するための新規な方法を提供することを目的と
し、特に、置換、未置換ポリエチレングリコール
から温和な反応条件下、一段階で収率よく置換、
未置換クラウンエーテル類を製造する方法を提供
することを目的とする。 本発明によるクラウンエーテル類の製造方法
は、溶剤中において、鋳型効果を有する金属化合
物の存在下に、置換又は未置換ポリエチレングリ
コールにほぼ等モル量の脱離基形成性化合物を反
応させることによつて、ポリエチレングリコール
鎖の一端に脱離基を形成させ、次いで、この一端
において、ポリエチレングリコール鎖の他端の水
酸基によつて分子内縮合環化させると同時に、脱
離基を脱離させることを特徴とする。 本発明において用い得るポリエチレングリコー
ルは一般式() (但し、R1〜R4はそれぞれ独立に水素、アルキル
基又はアリール基を示し、x、yはそれぞれ独立
に0〜5の数である。)で表わされ、所望なら
ば、一般式()においてx、yの異なる混合物
を出発原料として用いることもできる。 尚、上記鋳型効果(template effect)とは、
金属カチオンとポリオキシエチレン鎖の酸素原子
の親和性を利用し、錯化合物形成によつて、反応
に適当な立体配置をとらしめる効果を意味し、本
発明においては、従来よりクラウンエーテルの製
造に際して鋳型効果を発揮させるために用いられ
る金属化合物の一種又はそれらの混合物が用いら
れる。これらの金属化合物としては、例えば水酸
化リチウム、水酸化カリウム、水酸化ナトリウ
ム、水酸化カルシウム等の金属水酸化物、水素化
リチウム、水素化カリウム、水素化ナトリウム、
水素化カルシウム等の金属水素化物、カリウム−
t−ブトキシド、ナトリウム−t−ブトキシド等
の金属アルコキシド等を例示することができる。 次に、本発明において用いる脱離基形成性化合
物とは、前記式()のポリエチレングリコール
の一つの水酸基と反応して、下式()に示すよ
うに、ポリオキシエチレン鎖の一端に脱離基Lを
形成する化合物である。 (但し、R1〜R4は、x、yは前記と同じであり、
Lは脱離基を示す。) 脱離基形成性化合物としては、一般式() R5−SO2X () (但し、R5はアルキル基又はアリール基、Xは塩
素、臭素又はヨウ素のハロゲン原子を示す。)で
表わされるスルホン酸ハライドや、一般式() R6−SO2−O−SO2−R7 () (但し、R6、R7はそれぞれ独立にアルキル基又は
アリール基を示す。)で表わされるスルホン酸無
水物が特に好適であり、一般式()で表わされ
るスルホン酸ハライドとしては、例えば塩化メタ
ンスルホニル、塩化エタンスルホニル、塩化ベン
ゼンスルホニル、塩化−p−トルエンスルホニ
ル、塩化トリフロロメタンスルホニル等を挙げる
ことができる。また、一般式()で表わされる
スルホン酸無水物としては、メタンスルホン酸無
水物、ベンゼンスルホン酸無水物等を例示するこ
とができる。 この脱離基形成性化合物がポリオキシエチレン
鎖末端に形成した脱離基Lは、後記式(3)に示すよ
うに、アルカリ金属イオン等にポリオキシエチレ
ン分子の酸素原子が配位し、環化する際に脱離す
る基であり、塩化−p−トルエンスルホニルを用
いた場合には
The present invention relates to a method for producing so-called crown ethers. What are crown ethers?
This is the name conventionally given to macrocyclic polyethers, which were first synthesized by CJ Pedersen and have the ability to form complexes with alkali metal and alkaline earth metal cations, as well as ammonium ions, heavy metal ions, etc. As it has become clear that it has the following properties, it has begun to be used in a wide range of fields such as organic synthesis, separation analysis, biochemistry, and pharmaceuticals, making it an interesting compound both industrially and theoretically. Note that naming crown ethers using the IUPAC method would be very complicated, so here we will follow the commonly used and simple nomenclature (CJPedersen, J.Am.Chem.Soc., 89 , 2495
(1967)). Crown ethers are produced by various methods,
Although they have already been manufactured on an industrial scale, these manufacturing methods can be roughly divided into two. One method is to utilize the template effect of polyethylene glycol or an aromatic o-dihydroxy compound, polyethylene glycol dihalide, ditosylate, etc. in the presence of an alkali metal hydroxide, etc., as shown in formula (1). This is a condensed ring. However, in this method, for example, when a dihalide is used, it is usually necessary to react at high temperature (about 100° C.) for a long time, and the yield is low. In addition, when ditosylate is used, good yields have been reported in rare cases in the cyclization condensation step, but in most cases special alkali metal alkoxides such as t-BuOK and t-BuON 2 are required during cyclization. There is a drawback that. Furthermore, this conventional method requires a synthesis step for starting materials such as dihalides and ditosylates, and it is not always easy to obtain crown ethers in high yields, and the cost is inevitably high. I have no choice but to do so. Another method is, for example, as shown in formula (2), in which ethylene oxide is cyclopolymerized in a solvent such as dioxane in the presence of an anhydrous metal salt having a template effect. However, according to this method, a mixture of crown ethers with different ring sizes (in formula (2), m
0, 1, 2, 3, etc.), and the selectivity of the metal salt used is a problem. Furthermore, according to this method, it is difficult to produce crown ethers having substituents except in special cases. As described above, the conventional methods for producing crown ethers have many drawbacks, and furthermore, there is a cost problem, and currently only extremely limited types of crown ethers are produced. In addition, in order to further expand the uses of crown ethers, it is necessary to easily and inexpensively produce crown ethers having substituents containing active functional groups, but conventional methods do not take into account the cost. Even if there isn't,
Manufacturing itself is extremely difficult. The present invention was made in consideration of the above-mentioned points in the production of crown ethers, and generally aims to provide a new method for producing substituted and unsubstituted crown ethers. , in particular, substitution of substituted and unsubstituted polyethylene glycols in one step with good yield under mild reaction conditions,
An object of the present invention is to provide a method for producing unsubstituted crown ethers. The method for producing crown ethers according to the present invention involves reacting substituted or unsubstituted polyethylene glycol with an approximately equimolar amount of a leaving group-forming compound in a solvent in the presence of a metal compound having a template effect. Then, a leaving group is formed at one end of the polyethylene glycol chain, and then, at this one end, intramolecular condensation and cyclization is performed with the hydroxyl group at the other end of the polyethylene glycol chain, and at the same time, the leaving group is eliminated. Features. The polyethylene glycol that can be used in the present invention has the general formula () (However, R 1 to R 4 each independently represent hydrogen, an alkyl group, or an aryl group, and x and y each independently represent a number of 0 to 5.), and if desired, the general formula ( ), a mixture of different x and y can also be used as a starting material. Furthermore, the above-mentioned template effect means:
This refers to the effect of creating a suitable steric configuration for the reaction by forming a complex by utilizing the affinity between the metal cation and the oxygen atom of the polyoxyethylene chain. One type of metal compound or a mixture thereof used to exhibit a template effect is used. Examples of these metal compounds include metal hydroxides such as lithium hydroxide, potassium hydroxide, sodium hydroxide, calcium hydroxide, lithium hydride, potassium hydride, sodium hydride,
Metal hydrides such as calcium hydride, potassium
Examples include metal alkoxides such as t-butoxide and sodium-t-butoxide. Next, the leaving group-forming compound used in the present invention is a compound that reacts with one hydroxyl group of the polyethylene glycol of the formula () to form a leaving group at one end of the polyoxyethylene chain as shown in the formula () below. It is a compound that forms the group L. (However, for R 1 to R 4 , x and y are the same as above,
L represents a leaving group. ) The leaving group-forming compound is represented by the general formula () R 5 -SO 2 sulfonic acid halides represented by the general formula () R 6 -SO 2 -O-SO 2 -R 7 () (wherein R 6 and R 7 each independently represent an alkyl group or an aryl group). Acid anhydrides are particularly preferred, and examples of the sulfonic acid halide represented by the general formula () include methanesulfonyl chloride, ethanesulfonyl chloride, benzenesulfonyl chloride, -p-toluenesulfonyl chloride, trifluoromethanesulfonyl chloride, etc. be able to. Furthermore, examples of the sulfonic anhydride represented by the general formula () include methanesulfonic anhydride, benzenesulfonic anhydride, and the like. The leaving group L formed by this leaving group-forming compound at the end of the polyoxyethylene chain is formed by coordinating the oxygen atom of the polyoxyethylene molecule with an alkali metal ion, etc., as shown in formula (3) below, and forming a leaving group L at the end of the polyoxyethylene chain. It is a group that leaves when p-toluenesulfonyl chloride is used.

【式】がLであ る。 本発明による反応は普通、溶剤中で行なう。溶
剤は反応に関与しないものであれば任意のものが
用いられるが、通常は非プロトン性(aprotic)
の溶剤、例えば、ジエチルエーテル、テトラヒド
ロフラン(THF)、ジオキサン、モノグライム、
ジグライム、ジメチルスルホキシド(DMSO)、
N・N−ジメチルホルムアミド(DMF)、ヘキサ
メチルリン酸トリアミド(HMPA)等が好まし
い。しかし、アセトニトリルベンゼン、n−ヘキ
サン等の溶剤も用いることができる。 本発明による反応は、例えば適宜鎖長のポリオ
キシエチレン鎖を有する置換又は未置換ポリエチ
レングリコールと前記脱離基形成性化合物をモル
比ほぼ1:1で適宜の溶剤中に溶解させ、過剰量
の金属水酸化物等を分散させた溶剤中に激しく撹
拌しながら滴下することによつて行なわれる。ま
た、ポリエチレングリコール溶液と脱離基形成性
化合物溶液を金属水酸化物等の分散液中に添加し
てもよく、或いは、ポリエチレングリコールとア
ルカリ金属水酸化物との混合液中に脱離基形成性
化合物溶液を添加してもよい。反応温度は、用い
る溶剤にもよるが、0℃乃至150℃の範囲であ
り、通常、室温乃至80℃の範囲でよい。 本発明における反応は、ポリエチレングリコー
ルが前記一般式()においてx+yが1、2、
3又はそれ以上であるとき、即ち、ポリエチレン
グリコールがテトラ、ペンタ、ヘキサエチレング
リコール又はそれよりも長鎖のポリエチレングリ
コールであるとき、置換又は未置換の12−クラウ
ン−4・15−クラウン−5・18−クラウン−6又
はそれ以上の大環状のクラウンエーテルがそれぞ
れ得られる。例えば、ペンタエチレングリコール
に水酸化ナトリウムの存在で塩化−p−トルエン
スルホニルを作用させること、式(3)に従つて15−
クラウン−5が錯化合物として得られる。 一方、ポリエチレングリコールが前記一般式
()においてx+yが0であるトリエチレング
リコールであるとき、同様の反応条件下で、次式
(4)及び(5)に示すように、2モル又はそれ以上のト
リエチレングリコールが環化縮合して18−クラウ
ン−6及び大環状のクラウンエーテルが得られ
る。 更に、本発明においては、鎖長の異なるポリエ
チレングリコールの混合物を使用し、鋳型効果を
有する金属化合物を適宜に選択することによつ
て、二種又はそれ以上の環の大きさの異なるクラ
ウンエーテル類の混合物を得ることができる。ま
た、場合によつては、鋳型効果を高める目的で、
二種又はそれ以上の金属化合物を用い、或いは水
酸化物、水素化物、アルコキシドに更に他の金属
化合物、例えば、塩化リチウム、過塩素酸リチウ
ム等の金属塩化合物を添加して反応を行なわせて
もよい。 本発明の方法によれば、前記したように、クラ
ウンエーテル類は通常、錯化合物として得られる
が、これらはカラムクロマトグラフイー、熱分解
若しくはn−ヘキサンによる連続抽出等によつて
単離、精製することができる。 本発明の方法によれば、以上のように、置換又
未置換のポリエチレングリコールに、鋳型効果を
有する金属化合物の存在下、スルホン酸ハライド
等の脱離基形成性化合物を反応させて、鋳型効果
が十分に働き得る穏和な反応条件下、一工程で高
収率にクラウンエーテル類を製造することができ
る。しかし、本発明の方法においては、環化縮合
工程の前に出発原料を数工程を経て製造する必要
もなく、通常、容易且つ安価に入手し得るポリエ
チレングリコール、アルカリ金属水酸化物及びス
ルホン酸ハライド等を直接の出発原料として一挙
にクラウンエーテル類を製造するものであるか
ら、従来方法より遥かに簡単且つ安価にクラウン
エーテル類を得ることができる。更に、本発明に
よれば、例えば、置換エポキシド類のポリエチレ
ングリコールによる開環や、適宜の官能基を有す
るグリコール類に酸触媒を用いて酸化エチレンを
付加させる等の方法により、種々の置換基を有す
るポリエチレングリコールを得ることが容易であ
り、従つて、従来の方法では極めて困難であつた
各種の置換基を有するクラウンエーテル類も容易
に得られる。 以下に実施例を挙げる。 実施例 1 ペンタエチレングリコール4.76g及び塩化−p
−トルエンスルホニル4.0gをモノグライム20ml
中に溶解し、粉末水酸化ナトリウム6.0gを懸濁
させたモノグライム中に徐々に滴下した。滴下終
了後、約30℃で1時間撹拌した後、沈澱を過し
てエーテルで洗滌し、この洗滌液と液を濃縮し
て無色の油状物5.3gを得た。この化合物はIRス
ペクトルより15−クラウン−5、p−トルエンス
ルホン酸ナトリウム及び塩化ナトリウムからなる
錯化合物であり、GLC(カラムはシリコン
DC550又はカーボワツクス20M、温度200℃、キ
ヤリアガスは窒素)はほぼ単一のピークを与え、
GLCによる定量分析の結果、収率は70%であつ
た。上記油状化合物を減圧下、150℃に加熱して
分解し、2.7g(収率61%)の15−クラウン−5
を得た。 実施例 2 ヘキサエチレングリコール1.0g及び塩化−p
−トルエンスルホニル0.7gをTHF60ml中に溶解
させ、粉末水酸化カリウム1.1gを懸濁させた
THF中に室温で滴下し、実施例1と同様に処理
した。得られた生成物をカラムクロマトグラフイ
により処理して、0.65g(収率69%)の18−クラ
ウン−6−を得た。 実施例 3 テトラエチレングリコール3.9g及び塩化ベン
ゼンスルホニル3.6gをt−ブタノール30ml中に
溶解し、リチウム−t−ブトキシド6.4gを懸濁
させたジオキサン30ml中に室温で滴下した後、40
〜50℃の温度で1時間加熱撹拌後、沈澱を除去
し、油状物4.25gを得た。この油状生成物はGLC
分析の結果、30重量%の12−クラウン−4−を含
むことが認められた。 実施例 4 トリエチレングリコール1.5g及び塩化−p−
トルエンスルホニル1.9gをモノグライム15ml中
に溶解し、水酸化カリウム粉末2.8gをモノグラ
イム20ml中に懸濁させた液中に20〜25℃で滴下し
た後、実施例1と同様に処理して油状物1.6gを
得た。GLC定量分析を行なつた結果、この油状
生成物は0.58g(収率43%)の18−クラウン−6
を含むことが認められた。 実施例 5 ペンタエチレングリコール4.8g及び粉末状水
酸化ナトリウム1.6gをジグライム40mlに加えた
混合液を調製し、塩化メタンスルホニル2.3gを
ジグライム20mlに溶解した溶液を上記混合液に激
しく撹拌しながら徐々に添加した。添加後、実施
例1と同様に処理して油状物4.5gを得た。この
油状物はGLC分析の結果、58重量%の15−クラ
ウン−5を含むことが認められた。減圧下に加熱
して1.8g(収率41%)の15−クラウン−5を得
た。 実施例 6 プロピレングリコールにトリフツ化ホウ素エー
テラート存在下に酸化エチレンを付加させて、平
均付加モル数4.8の付加物を得、これから減圧蒸
留によつて酸化エチレン4モル付加物(bp.147〜
150℃/0.02mmHg)及び5モル付加物(bp.180〜
183℃/0.02mmHg)を分取した。 上記4モル付加物5.0g及び塩化−p−トルエ
ンスルホニル3.8gをジオキサン50mlに溶解し、
粉末水酸化ナトリウム2.0gを懸濁させたジオキ
サン50mlに加えた後、実施例1と同様に処理して
油状物5.3gを得た。この生成物はGLCでほぼ単
一のピークを示し、GLCで分取して得た生成物
についてIR、NMR及びMS分析を行なつた結果、
メチル−15−クラウン−5であることが確認され
た。単離収率は45%であつた。 また、上記酸化エチレン5モル付加物を上記同
様に処理し、メチル−18−クラウン−6を収率38
%で得た。
[Formula] is L. The reaction according to the invention is normally carried out in a solvent. Any solvent can be used as long as it does not participate in the reaction, but usually aprotic solvents are used.
solvents such as diethyl ether, tetrahydrofuran (THF), dioxane, monoglyme,
diglyme, dimethyl sulfoxide (DMSO),
Preferred are N.N-dimethylformamide (DMF), hexamethylphosphoric acid triamide (HMPA), and the like. However, solvents such as acetonitrilebenzene and n-hexane can also be used. The reaction according to the present invention can be carried out, for example, by dissolving a substituted or unsubstituted polyethylene glycol having a polyoxyethylene chain of an appropriate chain length and the leaving group-forming compound in an appropriate solvent at a molar ratio of about 1:1. This is carried out by dropping the metal hydroxide or the like into a solvent with vigorous stirring. Furthermore, a polyethylene glycol solution and a solution of a leaving group-forming compound may be added to a dispersion of metal hydroxide, or a leaving group-forming compound solution may be added to a mixed solution of polyethylene glycol and an alkali metal hydroxide. A chemical compound solution may also be added. The reaction temperature is in the range of 0°C to 150°C, although it depends on the solvent used, and usually in the range of room temperature to 80°C. In the reaction in the present invention, polyethylene glycol is expressed in the general formula () where x+y is 1, 2,
3 or more, that is, when the polyethylene glycol is tetra, penta, hexaethylene glycol or longer chain polyethylene glycol, substituted or unsubstituted 12-crown-4, 15-crown-5, Macrocyclic crown ethers of 18-crown-6 or more are obtained, respectively. For example, acting on pentaethylene glycol with -p-toluenesulfonyl chloride in the presence of sodium hydroxide, according to formula (3), 15-
Crown-5 is obtained as a complex compound. On the other hand, when polyethylene glycol is triethylene glycol in which x+y is 0 in the above general formula (), under similar reaction conditions, the following formula
As shown in (4) and (5), 2 moles or more of triethylene glycol are cyclized and condensed to yield 18-crown-6 and macrocyclic crown ether. Furthermore, in the present invention, by using a mixture of polyethylene glycols with different chain lengths and appropriately selecting a metal compound having a template effect, two or more types of crown ethers with different ring sizes can be produced. A mixture of can be obtained. In some cases, in order to enhance the mold effect,
The reaction is carried out using two or more metal compounds, or by adding another metal compound, such as a metal salt compound such as lithium chloride or lithium perchlorate, to a hydroxide, hydride, or alkoxide. Good too. According to the method of the present invention, as described above, crown ethers are usually obtained as complex compounds, which are isolated and purified by column chromatography, thermal decomposition, continuous extraction with n-hexane, etc. can do. According to the method of the present invention, as described above, substituted or unsubstituted polyethylene glycol is reacted with a leaving group-forming compound such as a sulfonic acid halide in the presence of a metal compound having a template effect. Crown ethers can be produced in a high yield in one step under mild reaction conditions that allow the reaction to work satisfactorily. However, in the method of the present invention, there is no need to prepare the starting materials through several steps before the cyclization condensation step, and polyethylene glycol, alkali metal hydroxide, and sulfonic acid halide, which are usually easily and inexpensively available, can be used. Since crown ethers are produced all at once using these as direct starting materials, crown ethers can be obtained much more easily and at a lower cost than conventional methods. Furthermore, according to the present invention, various substituents can be added by, for example, ring-opening of substituted epoxides with polyethylene glycol, or adding ethylene oxide to glycols having appropriate functional groups using an acid catalyst. Therefore, crown ethers having various substituents, which were extremely difficult to obtain by conventional methods, can also be easily obtained. Examples are given below. Example 1 4.76 g of pentaethylene glycol and p-chloride
-4.0g of toluenesulfonyl in 20ml of monoglyme
6.0 g of powdered sodium hydroxide was gradually added dropwise to the suspended monoglyme. After the addition was completed, the mixture was stirred at about 30° C. for 1 hour, and the precipitate was filtered and washed with ether, and the washings and liquid were concentrated to obtain 5.3 g of a colorless oil. The IR spectrum indicates that this compound is a complex compound consisting of 15-crown-5, sodium p-toluenesulfonate, and sodium chloride.
DC550 or Carbowax 20M, temperature 200℃, carrier gas is nitrogen) gives almost a single peak,
As a result of quantitative analysis by GLC, the yield was 70%. The above oily compound was decomposed by heating to 150°C under reduced pressure, and 2.7g (yield 61%) of 15-crown-5 was obtained.
I got it. Example 2 Hexaethylene glycol 1.0g and chloride-p
- 0.7 g of toluenesulfonyl was dissolved in 60 ml of THF and 1.1 g of powdered potassium hydroxide was suspended.
It was added dropwise to THF at room temperature and treated in the same manner as in Example 1. The obtained product was treated by column chromatography to obtain 0.65 g (69% yield) of 18-crown-6-. Example 3 3.9 g of tetraethylene glycol and 3.6 g of benzenesulfonyl chloride were dissolved in 30 ml of t-butanol and added dropwise at room temperature to 30 ml of dioxane in which 6.4 g of lithium-t-butoxide was suspended.
After heating and stirring at a temperature of ~50°C for 1 hour, the precipitate was removed to obtain 4.25 g of an oily substance. This oily product is GLC
As a result of analysis, it was found that it contained 30% by weight of 12-crown-4-. Example 4 1.5 g of triethylene glycol and p-chloride
1.9 g of toluenesulfonyl was dissolved in 15 ml of monoglyme, and 2.8 g of potassium hydroxide powder was suspended in 20 ml of monoglyme, which was then added dropwise at 20 to 25°C, and then treated in the same manner as in Example 1 to form an oily substance. 1.6g was obtained. As a result of GLC quantitative analysis, 0.58 g (yield 43%) of this oily product was found to be 18-crown-6.
It was recognized that this includes Example 5 A mixed solution was prepared by adding 4.8 g of pentaethylene glycol and 1.6 g of powdered sodium hydroxide to 40 ml of diglyme, and a solution of 2.3 g of methanesulfonyl chloride dissolved in 20 ml of diglyme was gradually added to the above mixed solution with vigorous stirring. added to. After the addition, the same procedure as in Example 1 was carried out to obtain 4.5 g of an oily substance. As a result of GLC analysis, this oil was found to contain 58% by weight of 15-crown-5. Heating under reduced pressure yielded 1.8 g (41% yield) of 15-crown-5. Example 6 Ethylene oxide was added to propylene glycol in the presence of boron trifluoride etherate to obtain an adduct with an average number of added moles of 4.8, which was distilled under reduced pressure to obtain a 4-mole ethylene oxide adduct (bp.147~
150℃/0.02mmHg) and 5 molar adduct (bp.180~
183℃/0.02mmHg) was collected. 5.0 g of the above 4 molar adduct and 3.8 g of -p-toluenesulfonyl chloride were dissolved in 50 ml of dioxane,
After adding 2.0 g of powdered sodium hydroxide to 50 ml of dioxane in which it was suspended, the suspension was treated in the same manner as in Example 1 to obtain 5.3 g of an oily substance. This product showed almost a single peak in GLC, and the results of IR, NMR, and MS analysis of the product obtained by fractionation with GLC showed that
It was confirmed to be methyl-15-crown-5. The isolated yield was 45%. In addition, the above 5 mol ethylene oxide adduct was treated in the same manner as above to obtain methyl-18-crown-6 in a yield of 38
Obtained in %.

Claims (1)

【特許請求の範囲】 1 溶剤中において、鋳型効果を有する金属化合
物の存在下に、置換又は未置換ポリエチレングリ
コールにほぼ等モル量の脱離基形成性化合物を反
応させることによつて、ポリエチレングリコール
鎖の一端に脱離基を形成させ、次いで、この一端
において、ポリエチレングリコール鎖の他端の水
酸基によつて分子内縮合環化させると同時に、脱
離基を脱離させることを特徴とするクラウンエー
テル類の製造方法。 2 脱離基形成性化合物がスルホン酸ハライド又
はスルホン酸無水物であることを特徴とする特許
請求の範囲第1項記載のクラウンエーテル類の製
造方法。 3 脱離基形成性化合物がスルホン酸塩化物であ
ることを特徴とする特許請求の範囲第1項記載の
クラウンエーテル類の製造方法。 4 鋳型効果を有する金属化合物がアルカリ金属
又はアルカリ土類金属の水酸化物であることを特
徴とする特許請求の範囲第1項記載のクラウンエ
ーテル類の製造方法。 5 鋳型効果を有する金属化合物がアルカリ金属
アルコキシドであることを特徴とする特許請求の
範囲第1項記載のクラウンエーテル類の製造方
法。 6 置換又は未置換ポリエチレングリコールが一
般式 (但し、R1〜R4はそれぞれ独立に水素、アルキル
基又はアリール基を示し、x及びyはそれぞれ独
立に0〜5の数である。) で表わされることを特徴とする特許請求の範囲第
1項記載のクラウンエーテル類の製造方法。
[Scope of Claims] 1 Polyethylene glycol is produced by reacting substituted or unsubstituted polyethylene glycol with an approximately equimolar amount of a leaving group-forming compound in a solvent in the presence of a metal compound having a template effect. A crown characterized in that a leaving group is formed at one end of the chain, and then, at this one end, intramolecular condensation and cyclization is performed with a hydroxyl group at the other end of the polyethylene glycol chain, and at the same time, the leaving group is eliminated. Method for producing ethers. 2. The method for producing crown ethers according to claim 1, wherein the leaving group-forming compound is a sulfonic acid halide or a sulfonic acid anhydride. 3. The method for producing crown ethers according to claim 1, wherein the leaving group-forming compound is a sulfonic acid chloride. 4. The method for producing crown ethers according to claim 1, wherein the metal compound having a template effect is an alkali metal or alkaline earth metal hydroxide. 5. The method for producing crown ethers according to claim 1, wherein the metal compound having a template effect is an alkali metal alkoxide. 6 Substituted or unsubstituted polyethylene glycol has the general formula (However, R 1 to R 4 each independently represent hydrogen, an alkyl group, or an aryl group, and x and y each independently represent a number from 0 to 5.) A method for producing crown ethers according to item 1.
JP1740278A 1978-02-16 1978-02-16 Manufacture of crown ethers Granted JPS54119483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1740278A JPS54119483A (en) 1978-02-16 1978-02-16 Manufacture of crown ethers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1740278A JPS54119483A (en) 1978-02-16 1978-02-16 Manufacture of crown ethers

Publications (2)

Publication Number Publication Date
JPS54119483A JPS54119483A (en) 1979-09-17
JPS6154796B2 true JPS6154796B2 (en) 1986-11-25

Family

ID=11942992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1740278A Granted JPS54119483A (en) 1978-02-16 1978-02-16 Manufacture of crown ethers

Country Status (1)

Country Link
JP (1) JPS54119483A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7403100B2 (en) * 2020-05-25 2023-12-22 パナソニックIpマネジメント株式会社 Ion-sensitive material, ion-sensitive membrane using the same, and method for producing the ion-sensitive material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TETRAHEDROM LETTERS=1972 *

Also Published As

Publication number Publication date
JPS54119483A (en) 1979-09-17

Similar Documents

Publication Publication Date Title
CN114133350A (en) Preparation method of anti-neocorolla drug Paxlovid intermediate
JPH0240077B2 (en)
JPS6154796B2 (en)
EP0372635A2 (en) Method of preparing dialkyl and diallyl dicarbonates
CN112110933A (en) Lignans natural product and intermediate and preparation method thereof
JP4162743B2 (en) Process for producing vinylene carbonate
WO2015122502A1 (en) Method for producing optically active compound, and novel metal-diamine complex
JP5544892B2 (en) Process for producing 2-cyano-1,3-diketonate salt and ionic liquid
US4808736A (en) Process for the preparation of hydroquinone derivatives and d-α-tocopherol
JP5574476B2 (en) Method for producing carbonate ester
CN114149434A (en) Heterocyclic compound and preparation method and application thereof
JPS6254104B2 (en)
EP0041748B1 (en) Manufacture of macrocyclic polyethers
US6207847B1 (en) Manufacture of optically active halohydrin trialkylsilyl ethers
JP2890887B2 (en) Production of ethers
US6455704B1 (en) Process for the preparation of base-free carbazolide anions
US6580007B1 (en) Method for preparing tetrakis (pentafluorophenyl) borate derivatives
JPS5944315B2 (en) Method for producing 2-pentynyl ether
JP3863956B2 (en) Novel process for producing phosphonic acid diesters
JP2580282B2 (en) Method for producing polyoxacyclodiene compound
JPH0150231B2 (en)
CN117567281A (en) Method for synthesizing cycloheptatriene derivative by catalyzing DMAP
CN116940545A (en) Method for producing fluorine-containing compound, and fluorine-containing compound
KR100234886B1 (en) Novel process for thr preparation of 3-alkoxy-4-piperidinone derivatives
JPS6243997B2 (en)