JPS6154664A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6154664A
JPS6154664A JP17600484A JP17600484A JPS6154664A JP S6154664 A JPS6154664 A JP S6154664A JP 17600484 A JP17600484 A JP 17600484A JP 17600484 A JP17600484 A JP 17600484A JP S6154664 A JPS6154664 A JP S6154664A
Authority
JP
Japan
Prior art keywords
layer
base
region
collector
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17600484A
Other languages
Japanese (ja)
Inventor
Hiroshi Goto
広志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17600484A priority Critical patent/JPS6154664A/en
Publication of JPS6154664A publication Critical patent/JPS6154664A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve the degree of integration, and to lower parasitic capacitance between a collector and a base and base resistance by forming a device in vertical type structure, shaping a base leading-out section to the side wall of a base region and constituting the base leading-out section by a metal. CONSTITUTION:An n<+> type GaAs layer 2 and an n<-> type GaAs layer 3 (a collector) are formed onto a semi-insulating GaAs substrate 1. An SiO2 layer 6 a refractory metal layer 7 and an SiO2 layer 8 are shaped in succession. The layers 8-6 are removed from a section corresponding to an emitter-base forming region 9 and a section on a collector-electrode leading-out region 3'. A p type GaAs layer 11 (a base) is formed in the region 9 so as to be in contact with the layer 7, and an n type AlGaAs layer 12 (an emitter) and an n<+> type GaAs layer 13 are shaped onto the layer 11. The layer 8 is removed from a base-electrode forming region, and base electrode 14, an emitter electrode 15 and a collector electrode 16 are each formed into said base-electrode forming region, onto the layer 13 and into the region 3'.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は、半導体装置に関する。特に、エミッタ・ベー
ス拳コレクタを積層して縦型に構成したヘテロ接合型バ
イポーラトランジスタにおいて、ベース引き出し部をベ
ース領域の側壁に形成し。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a semiconductor device. In particular, in a heterojunction bipolar transistor in which an emitter and a base collector are stacked to form a vertical structure, the base extension portion is formed on the side wall of the base region.

集積度を向上し、コレクターベース間の寄生静電容量を
低下し、さらに、ベース抵抗を低下する改良に関する。
The present invention relates to improvements that increase the degree of integration, reduce collector-base parasitic capacitance, and further reduce base resistance.

(2)技術の背景 バイポーラトランジスタの範時に、化合物半導体より構
成されるヘテロ接合型トランジスタと呼ばれる半導体装
置がある。これは、エミッタを構成する半導体のバンド
ギャップを、ベースを構成する半導体のバンドギャップ
より大きくしたものであり、この場合、エミッタ、ベー
ス間のホールに対する障壁が高くなるのでホールがベー
スからエミッタに流入しにくくなり、電流増幅率に悪影
響を及ぼすことなくベースの抵抗を低下することができ
、さらに、浅い接合に対するパンチスルー現象の発生す
る可能性が小さくなり、高速素子となしやすいという利
益を有する。また、ベースを構成する半導体のバンドギ
ャップを、コレクタに接触する領域からエミッタに接触
する領域に向って、傾斜的に増大させて同様の効果を発
生する手法も提案されている。
(2) Background of the Technology As a category of bipolar transistors, there is a semiconductor device called a heterojunction transistor made of a compound semiconductor. This is because the bandgap of the semiconductor that makes up the emitter is larger than the bandgap of the semiconductor that makes up the base.In this case, the barrier to holes between the emitter and base becomes high, so holes flow from the base to the emitter. This has the advantage that the resistance of the base can be lowered without adversely affecting the current amplification factor, and the possibility of punch-through phenomenon occurring in shallow junctions is reduced, making it easier to use as a high-speed device. A method has also been proposed in which the bandgap of the semiconductor constituting the base is increased in a gradient manner from a region in contact with the collector to a region in contact with the emitter, thereby producing a similar effect.

(3)従来技術と問題点 従来技術におけるヘテロ接合型バイポーラトランジスタ
は、一般にプレーナ構造であり、ベース引き出し部はベ
ース領域と同一の材料をもって構成されており、ベース
抵抗が必ずしも満足できる程度に低くなしがたいという
点で改良の余地を残すものであり、さらに、ベース抵抗
の低いヘテロ接合型バイポーラトランジスタの開発が望
まれていた。
(3) Prior art and problems Heterojunction bipolar transistors in the prior art generally have a planar structure, and the base extension is made of the same material as the base region, so the base resistance is not necessarily low enough to be satisfactory. However, there is still room for improvement in that it is difficult to resist, and there has been a desire to develop a heterojunction bipolar transistor with low base resistance.

(4)発明の目的 本発明の目的は、この要請にこたえることにあり、縦型
構造でありベース引き出し部がベース領域の側壁に形成
されて集積度が高くコレクタ・ベース間の寄生静電容量
が低く、ベース引き出し部は金属をもって構成されてベ
ース抵抗が低いヘテロ接合型バイポーラトランジスタを
提供することにある。
(4) Purpose of the Invention The purpose of the present invention is to meet this demand.The present invention has a vertical structure in which the base extension part is formed on the side wall of the base region, and has a high degree of integration, thereby reducing the parasitic capacitance between the collector and the base. The object of the present invention is to provide a heterojunction bipolar transistor having a low base resistance and a base lead portion made of metal.

(5)発明の構成 本発明の構成は、1導電型の第1の半導体層(コレクタ
)上に、1部領域を除き第1の絶縁物層が形成され、該
第1の絶縁物層上にリフラクトリメタル層が形成・され
、該リフラクトリメタル層上に第2の絶縁物層が形成さ
れ、前記1部領域上に前記リフラクトリメタル層と接し
て前記l導電型と反対の導電型の第2の半導体層(ベー
ス)が形成され、該第2の半導体層(ベース)上に前記
第2の絶縁物層に接して前記第1の半導体よりバンドギ
ャップが大きく前記l導電型と同一の導電型の第3の半
導体層(エミッタ)が形成され、該第3の半導体層(エ
ミッタ)に接続してエミッタ電極が形成され、前記リフ
ラクトリメタル層に接続してベース電極が形成され、前
記第1の半導体層(コレクタ)に接続してコレクタ電極
が形成されてなる半導体装置にある。
(5) Structure of the Invention The structure of the present invention is that a first insulating layer is formed on a first semiconductor layer (collector) of one conductivity type, except for a part of the region, and on the first insulating layer. A refractory metal layer is formed on the refractory metal layer, and a second insulating layer is formed on the one region in contact with the refractory metal layer and has a conductivity type opposite to the l conductivity type. A second semiconductor layer (base) is formed on the second semiconductor layer (base) in contact with the second insulating layer and has a larger band gap than the first semiconductor and is the same as the l conductivity type. A third semiconductor layer (emitter) of a conductivity type is formed, an emitter electrode is formed connected to the third semiconductor layer (emitter), and a base electrode is formed connected to the refractory metal layer, A semiconductor device includes a collector electrode connected to the first semiconductor layer (collector).

(6)発明の実施例 以下、図面を参照しつへ本発明の実施例に係るヘテロ接
合型バイポーラトランジスタの製造工程についてさらに
説明する。
(6) Embodiments of the Invention The manufacturing process of a heterojunction bipolar transistor according to an embodiment of the present invention will be further described below with reference to the drawings.

第1図参照 分子線エピタキシー法またはメタルオーガニックCVD
法等を使用して半絶縁性ガリウムヒ素基板l上に、10
20c■−3程度にn型不純物を含有し厚さ5,000
人程麻のガリウムヒ素層2(コレクタ電極コンタクト層
)と、1018cm+−3程度にn型不純物を含有し厚
さ5,000人程麻のガリウムヒ素層3(コレクタφ第
1の半導体層)とを、つづけて形成する。
See Figure 1 Molecular beam epitaxy method or metal organic CVD
10 on a semi-insulating gallium arsenide substrate l using a method etc.
Contains n-type impurities at around 20c■-3 and has a thickness of 5,000mm
A gallium arsenide layer 2 (collector electrode contact layer) with a thickness of approximately 1,018 cm + -3 and a gallium arsenide layer 3 (collector φ first semiconductor layer) with a thickness of approximately 5,000 cm containing n-type impurities. Continue to form.

つrいて、素子分離領域4とコレクターコレクタ電極分
離領域5とに選択的にクローム、H+イオン等を導入し
てこれらの領域4.5を図示するように絶縁物層に転換
する。この工程はマスクを使用してなすイオン注入法等
を使用して容易に可能である。
Then, chromium, H+ ions, etc. are selectively introduced into the element isolation region 4 and the collector-collector electrode isolation region 5 to convert these regions 4.5 into insulating layers as shown in the figure. This step can be easily performed using an ion implantation method using a mask.

第2図参照 次に、コレクタ電極引き出し領域3′にn型不純物を導
入して高濃度n型層とする。
Refer to FIG. 2 Next, an n-type impurity is introduced into the collector electrode lead-out region 3' to form a highly doped n-type layer.

CVD法等を使用して、厚さ 1.000人程麻の二酸
化シリコン層6(第1の絶縁物層)を形成し、タングス
テン、モリブデン、チタン等のりフラクトリメタルを蒸
着して、厚さ 500〜1.000人のりフラクトリメ
タル層7を形成し、さらに、CVD法等を使用して、厚
さ2,000人程麻の二酸化シリコン層8を形成する。
Using CVD method etc., a silicon dioxide layer 6 (first insulator layer) of about 1,000 layers thick is formed, and a frac metal such as tungsten, molybdenum, titanium, etc. is evaporated and the thickness is increased. A frac-remetal layer 7 with a thickness of 500 to 1,000 thick is formed, and a silicon dioxide layer 8 with a thickness of about 2,000 thick is further formed using a CVD method or the like.

第3図参照 二酸化シリコン層8とリフラクトリメタル層7と二酸化
シリコン層6の3層を、ガリウムヒ素層3上のエミッタ
・ベース形成領域9に対応する部分とコレクタ電極引き
出し領域3°上の部分とから除去する。この工程は、ケ
ミカルエツチング法とりアクティブイオンエツチング法
とを組み合わせて容易に可能である。
Refer to FIG. 3. The three layers of silicon dioxide layer 8, refractory metal layer 7, and silicon dioxide layer 6 are divided into a portion corresponding to the emitter/base formation region 9 on the gallium arsenide layer 3 and a portion 3° above the collector electrode lead-out region. and remove from. This step can be easily performed by combining chemical etching and active ion etching.

第4図参照 分子線エピタキシー法またはメタルオーガニッりCVD
法等を使用してエミッタ・ベース形+を領域9に、リフ
ラクトリメタル層7に接するように、10”cm−3程
度にp型不純物を含有するガリウムヒ素層11(ベース
・第2の半導体層)を形成し、つCいて、その上に、二
酸化シリコン層8に接するように、1017〜1018
C11−3程庶にn型不純物を含有するアルミニウムガ
リウムヒ素層12(エミッタ・第3の半導体層)を形成
するベース領域を形成する際、エミッタ側へ進むにつれ
てアルミニウムを混入してゆきバンドギャップを広げて
ゆくという工程にしてもよい。最−ヒ層に、エミッタ電
極コンタクト層として1020cm−3程度に高濃度に
n型不純物を含有するガリウムヒ素層13を厚さ数百へ
程度に形成する。
See Figure 4 Molecular beam epitaxy method or metal organic CVD
Using an emitter-base type method etc., a gallium arsenide layer 11 containing p-type impurities (base-second semiconductor 1017 to 1018 are formed on the silicon dioxide layer 8 so as to be in contact with the silicon dioxide layer 8.
When forming the base region for forming the aluminum gallium arsenide layer 12 (emitter/third semiconductor layer) containing n-type impurities in C11-3, aluminum is mixed as it progresses toward the emitter side to widen the band gap. It may also be a process of expanding. In the outermost layer, a gallium arsenide layer 13 containing n-type impurities at a high concentration of about 10@20 cm@-3 is formed to a thickness of about several hundred as an emitter electrode contact layer.

第5図参照 二酸化シリコン層8をベース電極形成領域から除去して
、この領域とエミー2タ電極コンタクト層13ヒとコレ
クタ電極引き出し領域3′とに、選択的に、金・ゲルマ
ニウム層を形成して、それぞれ、ベース電極14、エミ
ッタ電極15、コレクタ電′ 極16を形成する。
Referring to FIG. 5, the silicon dioxide layer 8 is removed from the base electrode formation region, and a gold/germanium layer is selectively formed in this region, the emitter electrode contact layer 13, and the collector electrode extraction region 3'. Thus, a base electrode 14, an emitter electrode 15, and a collector electrode 16 are formed, respectively.

以上の工程をもって製造された半導体装置は、(イ)エ
ミッタが、ベースを構成する半導体(ガリウムヒ素)よ
りバンドキャップの大きい半導体(アルミニウムガリウ
ムヒ素)をもって構成されているので、電流増幅率に悪
影響を及ぼすことなくベースの不純物濃度が1019C
I+−3程度に増加されてベース抵抗は低下されており
、(ロ)ベース引き出し部はりフラクトリメタル層をも
って構成されているのでベース引き出し部の抵抗も十分
低下されており、(ハ)エミッタ・ベース・コレクタが
積層的に形成されて縦型構造とされているので集積度も
向上しやすく、コレクタ・ベース間の寄生静電容量も低
下しており、スイッチングスピードは顕著に向上してお
り、高速素子として極めて有利である。
In the semiconductor device manufactured using the above process, (a) the emitter is composed of a semiconductor (aluminum gallium arsenide) with a larger band gap than the semiconductor composing the base (gallium arsenide), which adversely affects the current amplification factor. The base impurity concentration is 1019C without any adverse effects.
The base resistance has been lowered by increasing the resistance to about I+-3, (b) the resistance of the base lead-out part has been sufficiently reduced since the base lead-out part is constructed with a frac-remetal layer, and (c) the emitter resistance has been lowered. Since the base and collector are stacked to form a vertical structure, it is easy to improve the degree of integration, and the parasitic capacitance between the collector and base is also reduced, which significantly improves the switching speed. This is extremely advantageous as a high-speed device.

以上の実施例にあっては、ガリウムヒ素とアルミニウム
ガリウムヒ素との組み合わせが使用されているが、ヘテ
ロ接合型バイポーラトランジスタを構成するための要件
は、良好なペテロ接合を形成することができ、しかも、
バンドギャップに差のある半導体の組み合わせであれば
たりる。
In the above embodiments, a combination of gallium arsenide and aluminum gallium arsenide is used, but the requirements for constructing a heterojunction bipolar transistor are that a good petrojunction can be formed, and that ,
Any combination of semiconductors with different bandgaps can be used.

また、上記に示す製造工程が1例にすぎないことも云う
までもない。
Further, it goes without saying that the manufacturing process shown above is only one example.

(7)発明の詳細 な説明せるとおり、本発明によれば、縦型構造でありベ
ース引き出し部がベース領域の側壁に形成されて集積度
が高くコレクタ・ベース間の寄生静電容量が低く、ベー
ス引き出し部は金属をもって構成されてベース抵抗が低
いヘテロ接合型バイポーラトランジスタを提供すること
ができる。
(7) As described in detail, the present invention has a vertical structure, the base extension part is formed on the side wall of the base region, the degree of integration is high, and the parasitic capacitance between the collector and the base is low. The base extension portion is made of metal, so that a heterojunction bipolar transistor with low base resistance can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜5図は本発明の一実施例に係るヘテロ接合型バイ
ポーラトランジスタの主要製造工程完了後の基板断面図
である。 1・・・半絶縁性ガリウムヒ素基板、 2・・・n型ガ
リウムヒ素層(コレクタ電極コンタクト層)、 3目・
n型ガリウムヒ素層(コレクタ・第1の半導体層)、 
3° ・・Φコレクタ電極引き出し領域、 4・・・素
子分離領域、51・コレクターコレクタ電極分離領域、
6・・・二酸化シリコン層6(第1の絶縁物層)7・・
・リフラクトリメタル層、  8拳・・二酸化シリコン
層(第2の絶縁物層)、  9 ・ ・ ・エミッタ・
ベース形成領域、 lO・・Φコレクタ電極形成領域、
 11・・・p型ガリウムヒ素層(ベース#第2の半導
体層)、 12・・@n型アルミニウムガリウムヒ素層
(エミッタ・第3の半導体層)、 13Φ・拳n型ガリ
ウムヒ素層(エミッタ電極コンタクト層)、  14−
−・ベース電極、 15・・・エミッタ電極、 16・
・−コレクQ) 味
1 to 5 are cross-sectional views of a substrate after completion of the main manufacturing steps of a heterojunction bipolar transistor according to an embodiment of the present invention. 1: Semi-insulating gallium arsenide substrate, 2: N-type gallium arsenide layer (collector electrode contact layer), 3:
n-type gallium arsenide layer (collector/first semiconductor layer),
3°...ΦCollector electrode extraction region, 4...Element isolation region, 51.Collector collector electrode isolation region,
6... Silicon dioxide layer 6 (first insulator layer) 7...
・Refractory metal layer, 8 layers ・・Silicon dioxide layer (second insulator layer), 9 ・ ・ ・Emitter・
Base formation region, lO...Φ collector electrode formation region,
11...p-type gallium arsenide layer (base #second semiconductor layer), 12...@n-type aluminum gallium arsenide layer (emitter/third semiconductor layer), 13Φ/fist n-type gallium arsenide layer (emitter electrode contact layer), 14-
- Base electrode, 15... Emitter electrode, 16.
・-Collect Q) Taste

Claims (1)

【特許請求の範囲】[Claims] 1導電型の第1の半導体層(コレクタ)上に、1部領域
を除き第1の絶縁物層が形成され、該第1の絶縁物層上
にリフラクトリメタル層が形成され、該リフラクトリメ
タル層上に第2の絶縁物層が形成され、前記1部領域上
に前記リフラクトリメタル層と接して前記1導電型と反
対の導電型の第2の半導体層(ベース)が形成され、該
第2の半導体層(ベース)上に前記第2の絶縁物層に接
して前記第1の半導体よりバンドギャップが大きく前記
1導電型と同一の導電型の第3の半導体層(エミッタ)
が形成され、該第3の半導体層(エミッタ)に接続して
エミッタ電極が形成され、前記リフラクトリメタル層に
接続してベース電極が形成され、前記第1の半導体層(
コレクタ)に接続してコレクタ電極が形成されてなる半
導体装置。
A first insulating layer is formed on a first conductivity type first semiconductor layer (collector) except for a part of the region, a refractory metal layer is formed on the first insulating layer, and a refractory metal layer is formed on the first insulating layer. a second insulating layer is formed on the metal layer, a second semiconductor layer (base) of a conductivity type opposite to the first conductivity type is formed on the one region in contact with the refractory metal layer; a third semiconductor layer (emitter) on the second semiconductor layer (base), in contact with the second insulating layer, and having a larger band gap than the first semiconductor and the same conductivity type as the first conductivity type;
is formed, an emitter electrode is formed connected to the third semiconductor layer (emitter), a base electrode is formed connected to the refractory metal layer, and the first semiconductor layer (
A semiconductor device in which a collector electrode is formed by connecting the collector to the collector.
JP17600484A 1984-08-24 1984-08-24 Semiconductor device Pending JPS6154664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17600484A JPS6154664A (en) 1984-08-24 1984-08-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17600484A JPS6154664A (en) 1984-08-24 1984-08-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6154664A true JPS6154664A (en) 1986-03-18

Family

ID=16006027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17600484A Pending JPS6154664A (en) 1984-08-24 1984-08-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6154664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635564A (en) * 1986-06-25 1988-01-11 Sony Corp Hetero junction bipolar transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635564A (en) * 1986-06-25 1988-01-11 Sony Corp Hetero junction bipolar transistor

Similar Documents

Publication Publication Date Title
US6642553B1 (en) Bipolar transistor and method for producing same
JPS62211917A (en) Formation of ohmic contact in p-type region
JPS63110774A (en) Heterojunction-type bipolar transistor
JP2576828B2 (en) High gain MIS transistor
JPS607771A (en) Semiconductor device
JP2851044B2 (en) Method for manufacturing semiconductor device
JPS6154664A (en) Semiconductor device
EP0036620B1 (en) Semiconductor device and method for fabricating the same
JPS63272076A (en) Heterojunction type bipolar transistor and its manufacture
JPS60164356A (en) Semiconductor device
JP2976664B2 (en) Manufacturing method of bipolar transistor
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH03211736A (en) Manufacture of bipolar semiconductor integrated circuit device
JPS6378571A (en) Manufacture of bipolar transistor
JPH01187863A (en) Semiconductor device
JPS63107066A (en) Heterojunction type bipolar semiconductor
JPS62189752A (en) Semiconductor device
JPS641933B2 (en)
JPS59197176A (en) Manufacture of junction gate field-effect transistor
JPH04287329A (en) Lateral bipolar transistor and its manufacture
JPH06104270A (en) Semiconductor device
JPH04372135A (en) Manufacture of heterojunction bipolar transistor
JPS61218168A (en) Manufacture of semiconductor device with graft base
JPH053202A (en) Semiconductor device and manufacture thereof
JPH0322440A (en) Manufacture of semiconductor device